/* * Copyright © 2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include "display/intel_dp.h" #include "i915_drv.h" #include "intel_atomic.h" #include "intel_display_types.h" #include "intel_psr.h" #include "intel_sprite.h" /** * DOC: Panel Self Refresh (PSR/SRD) * * Since Haswell Display controller supports Panel Self-Refresh on display * panels witch have a remote frame buffer (RFB) implemented according to PSR * spec in eDP1.3. PSR feature allows the display to go to lower standby states * when system is idle but display is on as it eliminates display refresh * request to DDR memory completely as long as the frame buffer for that * display is unchanged. * * Panel Self Refresh must be supported by both Hardware (source) and * Panel (sink). * * PSR saves power by caching the framebuffer in the panel RFB, which allows us * to power down the link and memory controller. For DSI panels the same idea * is called "manual mode". * * The implementation uses the hardware-based PSR support which automatically * enters/exits self-refresh mode. The hardware takes care of sending the * required DP aux message and could even retrain the link (that part isn't * enabled yet though). The hardware also keeps track of any frontbuffer * changes to know when to exit self-refresh mode again. Unfortunately that * part doesn't work too well, hence why the i915 PSR support uses the * software frontbuffer tracking to make sure it doesn't miss a screen * update. For this integration intel_psr_invalidate() and intel_psr_flush() * get called by the frontbuffer tracking code. Note that because of locking * issues the self-refresh re-enable code is done from a work queue, which * must be correctly synchronized/cancelled when shutting down the pipe." * * DC3CO (DC3 clock off) * * On top of PSR2, GEN12 adds a intermediate power savings state that turns * clock off automatically during PSR2 idle state. * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep * entry/exit allows the HW to enter a low-power state even when page flipping * periodically (for instance a 30fps video playback scenario). * * Every time a flips occurs PSR2 will get out of deep sleep state(if it was), * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6 * frames, if no other flip occurs and the function above is executed, DC3CO is * disabled and PSR2 is configured to enter deep sleep, resetting again in case * of another flip. * Front buffer modifications do not trigger DC3CO activation on purpose as it * would bring a lot of complexity and most of the moderns systems will only * use page flips. */ static bool psr_global_enabled(struct drm_i915_private *i915) { switch (i915->psr.debug & I915_PSR_DEBUG_MODE_MASK) { case I915_PSR_DEBUG_DEFAULT: return i915_modparams.enable_psr; case I915_PSR_DEBUG_DISABLE: return false; default: return true; } } static bool intel_psr2_enabled(struct drm_i915_private *dev_priv, const struct intel_crtc_state *crtc_state) { /* Cannot enable DSC and PSR2 simultaneously */ drm_WARN_ON(&dev_priv->drm, crtc_state->dsc.compression_enable && crtc_state->has_psr2); switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) { case I915_PSR_DEBUG_DISABLE: case I915_PSR_DEBUG_FORCE_PSR1: return false; default: return crtc_state->has_psr2; } } static void psr_irq_control(struct drm_i915_private *dev_priv) { enum transcoder trans_shift; u32 mask, val; i915_reg_t imr_reg; /* * gen12+ has registers relative to transcoder and one per transcoder * using the same bit definition: handle it as TRANSCODER_EDP to force * 0 shift in bit definition */ if (INTEL_GEN(dev_priv) >= 12) { trans_shift = 0; imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder); } else { trans_shift = dev_priv->psr.transcoder; imr_reg = EDP_PSR_IMR; } mask = EDP_PSR_ERROR(trans_shift); if (dev_priv->psr.debug & I915_PSR_DEBUG_IRQ) mask |= EDP_PSR_POST_EXIT(trans_shift) | EDP_PSR_PRE_ENTRY(trans_shift); /* Warning: it is masking/setting reserved bits too */ val = intel_de_read(dev_priv, imr_reg); val &= ~EDP_PSR_TRANS_MASK(trans_shift); val |= ~mask; intel_de_write(dev_priv, imr_reg, val); } static void psr_event_print(u32 val, bool psr2_enabled) { DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val); if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE) DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n"); if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled) DRM_DEBUG_KMS("\tPSR2 disabled\n"); if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN) DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n"); if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN) DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n"); if (val & PSR_EVENT_GRAPHICS_RESET) DRM_DEBUG_KMS("\tGraphics reset\n"); if (val & PSR_EVENT_PCH_INTERRUPT) DRM_DEBUG_KMS("\tPCH interrupt\n"); if (val & PSR_EVENT_MEMORY_UP) DRM_DEBUG_KMS("\tMemory up\n"); if (val & PSR_EVENT_FRONT_BUFFER_MODIFY) DRM_DEBUG_KMS("\tFront buffer modification\n"); if (val & PSR_EVENT_WD_TIMER_EXPIRE) DRM_DEBUG_KMS("\tPSR watchdog timer expired\n"); if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE) DRM_DEBUG_KMS("\tPIPE registers updated\n"); if (val & PSR_EVENT_REGISTER_UPDATE) DRM_DEBUG_KMS("\tRegister updated\n"); if (val & PSR_EVENT_HDCP_ENABLE) DRM_DEBUG_KMS("\tHDCP enabled\n"); if (val & PSR_EVENT_KVMR_SESSION_ENABLE) DRM_DEBUG_KMS("\tKVMR session enabled\n"); if (val & PSR_EVENT_VBI_ENABLE) DRM_DEBUG_KMS("\tVBI enabled\n"); if (val & PSR_EVENT_LPSP_MODE_EXIT) DRM_DEBUG_KMS("\tLPSP mode exited\n"); if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled) DRM_DEBUG_KMS("\tPSR disabled\n"); } void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir) { enum transcoder cpu_transcoder = dev_priv->psr.transcoder; enum transcoder trans_shift; i915_reg_t imr_reg; ktime_t time_ns = ktime_get(); if (INTEL_GEN(dev_priv) >= 12) { trans_shift = 0; imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder); } else { trans_shift = dev_priv->psr.transcoder; imr_reg = EDP_PSR_IMR; } if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) { dev_priv->psr.last_entry_attempt = time_ns; drm_dbg_kms(&dev_priv->drm, "[transcoder %s] PSR entry attempt in 2 vblanks\n", transcoder_name(cpu_transcoder)); } if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) { dev_priv->psr.last_exit = time_ns; drm_dbg_kms(&dev_priv->drm, "[transcoder %s] PSR exit completed\n", transcoder_name(cpu_transcoder)); if (INTEL_GEN(dev_priv) >= 9) { u32 val = intel_de_read(dev_priv, PSR_EVENT(cpu_transcoder)); bool psr2_enabled = dev_priv->psr.psr2_enabled; intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder), val); psr_event_print(val, psr2_enabled); } } if (psr_iir & EDP_PSR_ERROR(trans_shift)) { u32 val; drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n", transcoder_name(cpu_transcoder)); dev_priv->psr.irq_aux_error = true; /* * If this interruption is not masked it will keep * interrupting so fast that it prevents the scheduled * work to run. * Also after a PSR error, we don't want to arm PSR * again so we don't care about unmask the interruption * or unset irq_aux_error. */ val = intel_de_read(dev_priv, imr_reg); val |= EDP_PSR_ERROR(trans_shift); intel_de_write(dev_priv, imr_reg, val); schedule_work(&dev_priv->psr.work); } } static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp) { u8 alpm_caps = 0; if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP, &alpm_caps) != 1) return false; return alpm_caps & DP_ALPM_CAP; } static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp) { u8 val = 8; /* assume the worst if we can't read the value */ if (drm_dp_dpcd_readb(&intel_dp->aux, DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1) val &= DP_MAX_RESYNC_FRAME_COUNT_MASK; else DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n"); return val; } static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp) { u16 val; ssize_t r; /* * Returning the default X granularity if granularity not required or * if DPCD read fails */ if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED)) return 4; r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2); if (r != 2) DRM_DEBUG_KMS("Unable to read DP_PSR2_SU_X_GRANULARITY\n"); /* * Spec says that if the value read is 0 the default granularity should * be used instead. */ if (r != 2 || val == 0) val = 4; return val; } void intel_psr_init_dpcd(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = to_i915(dp_to_dig_port(intel_dp)->base.base.dev); if (dev_priv->psr.dp) { drm_warn(&dev_priv->drm, "More than one eDP panel found, PSR support should be extended\n"); return; } drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd, sizeof(intel_dp->psr_dpcd)); if (!intel_dp->psr_dpcd[0]) return; drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n", intel_dp->psr_dpcd[0]); if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) { drm_dbg_kms(&dev_priv->drm, "PSR support not currently available for this panel\n"); return; } if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) { drm_dbg_kms(&dev_priv->drm, "Panel lacks power state control, PSR cannot be enabled\n"); return; } dev_priv->psr.sink_support = true; dev_priv->psr.sink_sync_latency = intel_dp_get_sink_sync_latency(intel_dp); dev_priv->psr.dp = intel_dp; if (INTEL_GEN(dev_priv) >= 9 && (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) { bool y_req = intel_dp->psr_dpcd[1] & DP_PSR2_SU_Y_COORDINATE_REQUIRED; bool alpm = intel_dp_get_alpm_status(intel_dp); /* * All panels that supports PSR version 03h (PSR2 + * Y-coordinate) can handle Y-coordinates in VSC but we are * only sure that it is going to be used when required by the * panel. This way panel is capable to do selective update * without a aux frame sync. * * To support PSR version 02h and PSR version 03h without * Y-coordinate requirement panels we would need to enable * GTC first. */ dev_priv->psr.sink_psr2_support = y_req && alpm; drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n", dev_priv->psr.sink_psr2_support ? "" : "not "); if (dev_priv->psr.sink_psr2_support) { dev_priv->psr.colorimetry_support = intel_dp_get_colorimetry_status(intel_dp); dev_priv->psr.su_x_granularity = intel_dp_get_su_x_granulartiy(intel_dp); } } } static void intel_psr_setup_vsc(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct dp_sdp psr_vsc; if (dev_priv->psr.psr2_enabled) { /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */ memset(&psr_vsc, 0, sizeof(psr_vsc)); psr_vsc.sdp_header.HB0 = 0; psr_vsc.sdp_header.HB1 = 0x7; if (dev_priv->psr.colorimetry_support) { psr_vsc.sdp_header.HB2 = 0x5; psr_vsc.sdp_header.HB3 = 0x13; } else { psr_vsc.sdp_header.HB2 = 0x4; psr_vsc.sdp_header.HB3 = 0xe; } } else { /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */ memset(&psr_vsc, 0, sizeof(psr_vsc)); psr_vsc.sdp_header.HB0 = 0; psr_vsc.sdp_header.HB1 = 0x7; psr_vsc.sdp_header.HB2 = 0x2; psr_vsc.sdp_header.HB3 = 0x8; } intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state, DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc)); } static void hsw_psr_setup_aux(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 aux_clock_divider, aux_ctl; int i; static const u8 aux_msg[] = { [0] = DP_AUX_NATIVE_WRITE << 4, [1] = DP_SET_POWER >> 8, [2] = DP_SET_POWER & 0xff, [3] = 1 - 1, [4] = DP_SET_POWER_D0, }; u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK | EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK | EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK | EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK; BUILD_BUG_ON(sizeof(aux_msg) > 20); for (i = 0; i < sizeof(aux_msg); i += 4) intel_de_write(dev_priv, EDP_PSR_AUX_DATA(dev_priv->psr.transcoder, i >> 2), intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i)); aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); /* Start with bits set for DDI_AUX_CTL register */ aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg), aux_clock_divider); /* Select only valid bits for SRD_AUX_CTL */ aux_ctl &= psr_aux_mask; intel_de_write(dev_priv, EDP_PSR_AUX_CTL(dev_priv->psr.transcoder), aux_ctl); } static void intel_psr_enable_sink(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u8 dpcd_val = DP_PSR_ENABLE; /* Enable ALPM at sink for psr2 */ if (dev_priv->psr.psr2_enabled) { drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, DP_ALPM_ENABLE | DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE); dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS; } else { if (dev_priv->psr.link_standby) dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE; if (INTEL_GEN(dev_priv) >= 8) dpcd_val |= DP_PSR_CRC_VERIFICATION; } drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val); drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); } static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 val = 0; if (INTEL_GEN(dev_priv) >= 11) val |= EDP_PSR_TP4_TIME_0US; if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0) val |= EDP_PSR_TP1_TIME_0us; else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100) val |= EDP_PSR_TP1_TIME_100us; else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500) val |= EDP_PSR_TP1_TIME_500us; else val |= EDP_PSR_TP1_TIME_2500us; if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0) val |= EDP_PSR_TP2_TP3_TIME_0us; else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100) val |= EDP_PSR_TP2_TP3_TIME_100us; else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500) val |= EDP_PSR_TP2_TP3_TIME_500us; else val |= EDP_PSR_TP2_TP3_TIME_2500us; if (intel_dp_source_supports_hbr2(intel_dp) && drm_dp_tps3_supported(intel_dp->dpcd)) val |= EDP_PSR_TP1_TP3_SEL; else val |= EDP_PSR_TP1_TP2_SEL; return val; } static u8 psr_compute_idle_frames(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); int idle_frames; /* Let's use 6 as the minimum to cover all known cases including the * off-by-one issue that HW has in some cases. */ idle_frames = max(6, dev_priv->vbt.psr.idle_frames); idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1); if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf)) idle_frames = 0xf; return idle_frames; } static void hsw_activate_psr1(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 max_sleep_time = 0x1f; u32 val = EDP_PSR_ENABLE; val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT; val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT; if (IS_HASWELL(dev_priv)) val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; if (dev_priv->psr.link_standby) val |= EDP_PSR_LINK_STANDBY; val |= intel_psr1_get_tp_time(intel_dp); if (INTEL_GEN(dev_priv) >= 8) val |= EDP_PSR_CRC_ENABLE; val |= (intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK); intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), val); } static void hsw_activate_psr2(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 val; val = psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT; val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE; if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) val |= EDP_Y_COORDINATE_ENABLE; val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1); if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 && dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50) val |= EDP_PSR2_TP2_TIME_50us; else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100) val |= EDP_PSR2_TP2_TIME_100us; else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500) val |= EDP_PSR2_TP2_TIME_500us; else val |= EDP_PSR2_TP2_TIME_2500us; /* * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is * recommending keep this bit unset while PSR2 is enabled. */ intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), 0); intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val); } static bool transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans) { if (INTEL_GEN(dev_priv) < 9) return false; else if (INTEL_GEN(dev_priv) >= 12) return trans == TRANSCODER_A; else return trans == TRANSCODER_EDP; } static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate) { if (!cstate || !cstate->hw.active) return 0; return DIV_ROUND_UP(1000 * 1000, drm_mode_vrefresh(&cstate->hw.adjusted_mode)); } static void psr2_program_idle_frames(struct drm_i915_private *dev_priv, u32 idle_frames) { u32 val; idle_frames <<= EDP_PSR2_IDLE_FRAME_SHIFT; val = intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder)); val &= ~EDP_PSR2_IDLE_FRAME_MASK; val |= idle_frames; intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val); } static void tgl_psr2_enable_dc3co(struct drm_i915_private *dev_priv) { psr2_program_idle_frames(dev_priv, 0); intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO); } static void tgl_psr2_disable_dc3co(struct drm_i915_private *dev_priv) { struct intel_dp *intel_dp = dev_priv->psr.dp; intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6); psr2_program_idle_frames(dev_priv, psr_compute_idle_frames(intel_dp)); } static void tgl_dc3co_disable_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), psr.dc3co_work.work); mutex_lock(&dev_priv->psr.lock); /* If delayed work is pending, it is not idle */ if (delayed_work_pending(&dev_priv->psr.dc3co_work)) goto unlock; tgl_psr2_disable_dc3co(dev_priv); unlock: mutex_unlock(&dev_priv->psr.lock); } static void tgl_disallow_dc3co_on_psr2_exit(struct drm_i915_private *dev_priv) { if (!dev_priv->psr.dc3co_enabled) return; cancel_delayed_work(&dev_priv->psr.dc3co_work); /* Before PSR2 exit disallow dc3co*/ tgl_psr2_disable_dc3co(dev_priv); } static void tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay; struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); u32 exit_scanlines; if (!(dev_priv->csr.allowed_dc_mask & DC_STATE_EN_DC3CO)) return; /* B.Specs:49196 DC3CO only works with pipeA and DDIA.*/ if (to_intel_crtc(crtc_state->uapi.crtc)->pipe != PIPE_A || dig_port->base.port != PORT_A) return; /* * DC3CO Exit time 200us B.Spec 49196 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1 */ exit_scanlines = intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1; if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay)) return; crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines; } static bool intel_psr2_config_valid(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay; int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay; int psr_max_h = 0, psr_max_v = 0, max_bpp = 0; if (!dev_priv->psr.sink_psr2_support) return false; if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) { drm_dbg_kms(&dev_priv->drm, "PSR2 not supported in transcoder %s\n", transcoder_name(crtc_state->cpu_transcoder)); return false; } /* * DSC and PSR2 cannot be enabled simultaneously. If a requested * resolution requires DSC to be enabled, priority is given to DSC * over PSR2. */ if (crtc_state->dsc.compression_enable) { drm_dbg_kms(&dev_priv->drm, "PSR2 cannot be enabled since DSC is enabled\n"); return false; } if (INTEL_GEN(dev_priv) >= 12) { psr_max_h = 5120; psr_max_v = 3200; max_bpp = 30; } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) { psr_max_h = 4096; psr_max_v = 2304; max_bpp = 24; } else if (IS_GEN(dev_priv, 9)) { psr_max_h = 3640; psr_max_v = 2304; max_bpp = 24; } if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) { drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n", crtc_hdisplay, crtc_vdisplay, psr_max_h, psr_max_v); return false; } if (crtc_state->pipe_bpp > max_bpp) { drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, pipe bpp %d > max supported %d\n", crtc_state->pipe_bpp, max_bpp); return false; } /* * HW sends SU blocks of size four scan lines, which means the starting * X coordinate and Y granularity requirements will always be met. We * only need to validate the SU block width is a multiple of * x granularity. */ if (crtc_hdisplay % dev_priv->psr.su_x_granularity) { drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, hdisplay(%d) not multiple of %d\n", crtc_hdisplay, dev_priv->psr.su_x_granularity); return false; } if (crtc_state->crc_enabled) { drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled because it would inhibit pipe CRC calculation\n"); return false; } tgl_dc3co_exitline_compute_config(intel_dp, crtc_state); return true; } void intel_psr_compute_config(struct intel_dp *intel_dp, struct intel_crtc_state *crtc_state) { struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode; int psr_setup_time; if (!CAN_PSR(dev_priv)) return; if (intel_dp != dev_priv->psr.dp) return; /* * HSW spec explicitly says PSR is tied to port A. * BDW+ platforms have a instance of PSR registers per transcoder but * for now it only supports one instance of PSR, so lets keep it * hardcoded to PORT_A */ if (dig_port->base.port != PORT_A) { drm_dbg_kms(&dev_priv->drm, "PSR condition failed: Port not supported\n"); return; } if (dev_priv->psr.sink_not_reliable) { drm_dbg_kms(&dev_priv->drm, "PSR sink implementation is not reliable\n"); return; } if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { drm_dbg_kms(&dev_priv->drm, "PSR condition failed: Interlaced mode enabled\n"); return; } psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd); if (psr_setup_time < 0) { drm_dbg_kms(&dev_priv->drm, "PSR condition failed: Invalid PSR setup time (0x%02x)\n", intel_dp->psr_dpcd[1]); return; } if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) > adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) { drm_dbg_kms(&dev_priv->drm, "PSR condition failed: PSR setup time (%d us) too long\n", psr_setup_time); return; } crtc_state->has_psr = true; crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state); } static void intel_psr_activate(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder)) drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder)) & EDP_PSR2_ENABLE); drm_WARN_ON(&dev_priv->drm, intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)) & EDP_PSR_ENABLE); drm_WARN_ON(&dev_priv->drm, dev_priv->psr.active); lockdep_assert_held(&dev_priv->psr.lock); /* psr1 and psr2 are mutually exclusive.*/ if (dev_priv->psr.psr2_enabled) hsw_activate_psr2(intel_dp); else hsw_activate_psr1(intel_dp); dev_priv->psr.active = true; } static void intel_psr_enable_source(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; u32 mask; /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+ * use hardcoded values PSR AUX transactions */ if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) hsw_psr_setup_aux(intel_dp); if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))) { i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder); u32 chicken = intel_de_read(dev_priv, reg); chicken |= PSR2_VSC_ENABLE_PROG_HEADER | PSR2_ADD_VERTICAL_LINE_COUNT; intel_de_write(dev_priv, reg, chicken); } /* * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also * mask LPSP to avoid dependency on other drivers that might block * runtime_pm besides preventing other hw tracking issues now we * can rely on frontbuffer tracking. */ mask = EDP_PSR_DEBUG_MASK_MEMUP | EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP | EDP_PSR_DEBUG_MASK_MAX_SLEEP; if (INTEL_GEN(dev_priv) < 11) mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE; intel_de_write(dev_priv, EDP_PSR_DEBUG(dev_priv->psr.transcoder), mask); psr_irq_control(dev_priv); if (crtc_state->dc3co_exitline) { u32 val; /* * TODO: if future platforms supports DC3CO in more than one * transcoder, EXITLINE will need to be unset when disabling PSR */ val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder)); val &= ~EXITLINE_MASK; val |= crtc_state->dc3co_exitline << EXITLINE_SHIFT; val |= EXITLINE_ENABLE; intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val); } } static void intel_psr_enable_locked(struct drm_i915_private *dev_priv, const struct intel_crtc_state *crtc_state) { struct intel_dp *intel_dp = dev_priv->psr.dp; u32 val; drm_WARN_ON(&dev_priv->drm, dev_priv->psr.enabled); dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state); dev_priv->psr.busy_frontbuffer_bits = 0; dev_priv->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe; dev_priv->psr.dc3co_enabled = !!crtc_state->dc3co_exitline; dev_priv->psr.transcoder = crtc_state->cpu_transcoder; /* DC5/DC6 requires at least 6 idle frames */ val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6); dev_priv->psr.dc3co_exit_delay = val; /* * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR * will still keep the error set even after the reset done in the * irq_preinstall and irq_uninstall hooks. * And enabling in this situation cause the screen to freeze in the * first time that PSR HW tries to activate so lets keep PSR disabled * to avoid any rendering problems. */ if (INTEL_GEN(dev_priv) >= 12) { val = intel_de_read(dev_priv, TRANS_PSR_IIR(dev_priv->psr.transcoder)); val &= EDP_PSR_ERROR(0); } else { val = intel_de_read(dev_priv, EDP_PSR_IIR); val &= EDP_PSR_ERROR(dev_priv->psr.transcoder); } if (val) { dev_priv->psr.sink_not_reliable = true; drm_dbg_kms(&dev_priv->drm, "PSR interruption error set, not enabling PSR\n"); return; } drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n", dev_priv->psr.psr2_enabled ? "2" : "1"); intel_psr_setup_vsc(intel_dp, crtc_state); intel_psr_enable_sink(intel_dp); intel_psr_enable_source(intel_dp, crtc_state); dev_priv->psr.enabled = true; intel_psr_activate(intel_dp); } /** * intel_psr_enable - Enable PSR * @intel_dp: Intel DP * @crtc_state: new CRTC state * * This function can only be called after the pipe is fully trained and enabled. */ void intel_psr_enable(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (!crtc_state->has_psr) return; if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(dev_priv))) return; drm_WARN_ON(&dev_priv->drm, dev_priv->drrs.dp); mutex_lock(&dev_priv->psr.lock); if (!psr_global_enabled(dev_priv)) { drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n"); goto unlock; } intel_psr_enable_locked(dev_priv, crtc_state); unlock: mutex_unlock(&dev_priv->psr.lock); } static void intel_psr_exit(struct drm_i915_private *dev_priv) { u32 val; if (!dev_priv->psr.active) { if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder)) { val = intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder)); drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE); } val = intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)); drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE); return; } if (dev_priv->psr.psr2_enabled) { tgl_disallow_dc3co_on_psr2_exit(dev_priv); val = intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder)); drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE)); val &= ~EDP_PSR2_ENABLE; intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val); } else { val = intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)); drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE)); val &= ~EDP_PSR_ENABLE; intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), val); } dev_priv->psr.active = false; } static void intel_psr_disable_locked(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); i915_reg_t psr_status; u32 psr_status_mask; lockdep_assert_held(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) return; drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n", dev_priv->psr.psr2_enabled ? "2" : "1"); intel_psr_exit(dev_priv); if (dev_priv->psr.psr2_enabled) { psr_status = EDP_PSR2_STATUS(dev_priv->psr.transcoder); psr_status_mask = EDP_PSR2_STATUS_STATE_MASK; } else { psr_status = EDP_PSR_STATUS(dev_priv->psr.transcoder); psr_status_mask = EDP_PSR_STATUS_STATE_MASK; } /* Wait till PSR is idle */ if (intel_de_wait_for_clear(dev_priv, psr_status, psr_status_mask, 2000)) drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n"); /* Disable PSR on Sink */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0); if (dev_priv->psr.psr2_enabled) drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0); dev_priv->psr.enabled = false; } /** * intel_psr_disable - Disable PSR * @intel_dp: Intel DP * @old_crtc_state: old CRTC state * * This function needs to be called before disabling pipe. */ void intel_psr_disable(struct intel_dp *intel_dp, const struct intel_crtc_state *old_crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); if (!old_crtc_state->has_psr) return; if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(dev_priv))) return; mutex_lock(&dev_priv->psr.lock); intel_psr_disable_locked(intel_dp); mutex_unlock(&dev_priv->psr.lock); cancel_work_sync(&dev_priv->psr.work); cancel_delayed_work_sync(&dev_priv->psr.dc3co_work); } static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) >= 9) /* * Display WA #0884: skl+ * This documented WA for bxt can be safely applied * broadly so we can force HW tracking to exit PSR * instead of disabling and re-enabling. * Workaround tells us to write 0 to CUR_SURFLIVE_A, * but it makes more sense write to the current active * pipe. */ intel_de_write(dev_priv, CURSURFLIVE(dev_priv->psr.pipe), 0); else /* * A write to CURSURFLIVE do not cause HW tracking to exit PSR * on older gens so doing the manual exit instead. */ intel_psr_exit(dev_priv); } /** * intel_psr_update - Update PSR state * @intel_dp: Intel DP * @crtc_state: new CRTC state * * This functions will update PSR states, disabling, enabling or switching PSR * version when executing fastsets. For full modeset, intel_psr_disable() and * intel_psr_enable() should be called instead. */ void intel_psr_update(struct intel_dp *intel_dp, const struct intel_crtc_state *crtc_state) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct i915_psr *psr = &dev_priv->psr; bool enable, psr2_enable; if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp) return; mutex_lock(&dev_priv->psr.lock); enable = crtc_state->has_psr && psr_global_enabled(dev_priv); psr2_enable = intel_psr2_enabled(dev_priv, crtc_state); if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) { /* Force a PSR exit when enabling CRC to avoid CRC timeouts */ if (crtc_state->crc_enabled && psr->enabled) psr_force_hw_tracking_exit(dev_priv); else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) { /* * Activate PSR again after a force exit when enabling * CRC in older gens */ if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits) schedule_work(&dev_priv->psr.work); } goto unlock; } if (psr->enabled) intel_psr_disable_locked(intel_dp); if (enable) intel_psr_enable_locked(dev_priv, crtc_state); unlock: mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_wait_for_idle - wait for PSR1 to idle * @new_crtc_state: new CRTC state * @out_value: PSR status in case of failure * * This function is expected to be called from pipe_update_start() where it is * not expected to race with PSR enable or disable. * * Returns: 0 on success or -ETIMEOUT if PSR status does not idle. */ int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state, u32 *out_value) { struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); if (!dev_priv->psr.enabled || !new_crtc_state->has_psr) return 0; /* FIXME: Update this for PSR2 if we need to wait for idle */ if (READ_ONCE(dev_priv->psr.psr2_enabled)) return 0; /* * From bspec: Panel Self Refresh (BDW+) * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of * exit training time + 1.5 ms of aux channel handshake. 50 ms is * defensive enough to cover everything. */ return __intel_wait_for_register(&dev_priv->uncore, EDP_PSR_STATUS(dev_priv->psr.transcoder), EDP_PSR_STATUS_STATE_MASK, EDP_PSR_STATUS_STATE_IDLE, 2, 50, out_value); } static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv) { i915_reg_t reg; u32 mask; int err; if (!dev_priv->psr.enabled) return false; if (dev_priv->psr.psr2_enabled) { reg = EDP_PSR2_STATUS(dev_priv->psr.transcoder); mask = EDP_PSR2_STATUS_STATE_MASK; } else { reg = EDP_PSR_STATUS(dev_priv->psr.transcoder); mask = EDP_PSR_STATUS_STATE_MASK; } mutex_unlock(&dev_priv->psr.lock); err = intel_de_wait_for_clear(dev_priv, reg, mask, 50); if (err) drm_err(&dev_priv->drm, "Timed out waiting for PSR Idle for re-enable\n"); /* After the unlocked wait, verify that PSR is still wanted! */ mutex_lock(&dev_priv->psr.lock); return err == 0 && dev_priv->psr.enabled; } static int intel_psr_fastset_force(struct drm_i915_private *dev_priv) { struct drm_device *dev = &dev_priv->drm; struct drm_modeset_acquire_ctx ctx; struct drm_atomic_state *state; struct intel_crtc *crtc; int err; state = drm_atomic_state_alloc(dev); if (!state) return -ENOMEM; drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE); state->acquire_ctx = &ctx; retry: for_each_intel_crtc(dev, crtc) { struct intel_crtc_state *crtc_state = intel_atomic_get_crtc_state(state, crtc); if (IS_ERR(crtc_state)) { err = PTR_ERR(crtc_state); goto error; } if (crtc_state->hw.active && crtc_state->has_psr) { /* Mark mode as changed to trigger a pipe->update() */ crtc_state->uapi.mode_changed = true; break; } } err = drm_atomic_commit(state); error: if (err == -EDEADLK) { drm_atomic_state_clear(state); err = drm_modeset_backoff(&ctx); if (!err) goto retry; } drm_modeset_drop_locks(&ctx); drm_modeset_acquire_fini(&ctx); drm_atomic_state_put(state); return err; } int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val) { const u32 mode = val & I915_PSR_DEBUG_MODE_MASK; u32 old_mode; int ret; if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) || mode > I915_PSR_DEBUG_FORCE_PSR1) { drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val); return -EINVAL; } ret = mutex_lock_interruptible(&dev_priv->psr.lock); if (ret) return ret; old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK; dev_priv->psr.debug = val; /* * Do it right away if it's already enabled, otherwise it will be done * when enabling the source. */ if (dev_priv->psr.enabled) psr_irq_control(dev_priv); mutex_unlock(&dev_priv->psr.lock); if (old_mode != mode) ret = intel_psr_fastset_force(dev_priv); return ret; } static void intel_psr_handle_irq(struct drm_i915_private *dev_priv) { struct i915_psr *psr = &dev_priv->psr; intel_psr_disable_locked(psr->dp); psr->sink_not_reliable = true; /* let's make sure that sink is awaken */ drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0); } static void intel_psr_work(struct work_struct *work) { struct drm_i915_private *dev_priv = container_of(work, typeof(*dev_priv), psr.work); mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) goto unlock; if (READ_ONCE(dev_priv->psr.irq_aux_error)) intel_psr_handle_irq(dev_priv); /* * We have to make sure PSR is ready for re-enable * otherwise it keeps disabled until next full enable/disable cycle. * PSR might take some time to get fully disabled * and be ready for re-enable. */ if (!__psr_wait_for_idle_locked(dev_priv)) goto unlock; /* * The delayed work can race with an invalidate hence we need to * recheck. Since psr_flush first clears this and then reschedules we * won't ever miss a flush when bailing out here. */ if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active) goto unlock; intel_psr_activate(dev_priv->psr.dp); unlock: mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_invalidate - Invalidade PSR * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * @origin: which operation caused the invalidate * * Since the hardware frontbuffer tracking has gaps we need to integrate * with the software frontbuffer tracking. This function gets called every * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be * disabled if the frontbuffer mask contains a buffer relevant to PSR. * * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits." */ void intel_psr_invalidate(struct drm_i915_private *dev_priv, unsigned frontbuffer_bits, enum fb_op_origin origin) { if (!CAN_PSR(dev_priv)) return; if (origin == ORIGIN_FLIP) return; mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) { mutex_unlock(&dev_priv->psr.lock); return; } frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe); dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits; if (frontbuffer_bits) intel_psr_exit(dev_priv); mutex_unlock(&dev_priv->psr.lock); } /* * When we will be completely rely on PSR2 S/W tracking in future, * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP * event also therefore tgl_dc3co_flush() require to be changed * accordingly in future. */ static void tgl_dc3co_flush(struct drm_i915_private *dev_priv, unsigned int frontbuffer_bits, enum fb_op_origin origin) { mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.dc3co_enabled) goto unlock; if (!dev_priv->psr.psr2_enabled || !dev_priv->psr.active) goto unlock; /* * At every frontbuffer flush flip event modified delay of delayed work, * when delayed work schedules that means display has been idle. */ if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe))) goto unlock; tgl_psr2_enable_dc3co(dev_priv); mod_delayed_work(system_wq, &dev_priv->psr.dc3co_work, dev_priv->psr.dc3co_exit_delay); unlock: mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_flush - Flush PSR * @dev_priv: i915 device * @frontbuffer_bits: frontbuffer plane tracking bits * @origin: which operation caused the flush * * Since the hardware frontbuffer tracking has gaps we need to integrate * with the software frontbuffer tracking. This function gets called every * time frontbuffer rendering has completed and flushed out to memory. PSR * can be enabled again if no other frontbuffer relevant to PSR is dirty. * * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits. */ void intel_psr_flush(struct drm_i915_private *dev_priv, unsigned frontbuffer_bits, enum fb_op_origin origin) { if (!CAN_PSR(dev_priv)) return; if (origin == ORIGIN_FLIP) { tgl_dc3co_flush(dev_priv, frontbuffer_bits, origin); return; } mutex_lock(&dev_priv->psr.lock); if (!dev_priv->psr.enabled) { mutex_unlock(&dev_priv->psr.lock); return; } frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe); dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits; /* By definition flush = invalidate + flush */ if (frontbuffer_bits) psr_force_hw_tracking_exit(dev_priv); if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits) schedule_work(&dev_priv->psr.work); mutex_unlock(&dev_priv->psr.lock); } /** * intel_psr_init - Init basic PSR work and mutex. * @dev_priv: i915 device private * * This function is called only once at driver load to initialize basic * PSR stuff. */ void intel_psr_init(struct drm_i915_private *dev_priv) { if (!HAS_PSR(dev_priv)) return; if (!dev_priv->psr.sink_support) return; if (IS_HASWELL(dev_priv)) /* * HSW don't have PSR registers on the same space as transcoder * so set this to a value that when subtract to the register * in transcoder space results in the right offset for HSW */ dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE; if (i915_modparams.enable_psr == -1) if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable) i915_modparams.enable_psr = 0; /* Set link_standby x link_off defaults */ if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) /* HSW and BDW require workarounds that we don't implement. */ dev_priv->psr.link_standby = false; else if (INTEL_GEN(dev_priv) < 12) /* For new platforms up to TGL let's respect VBT back again */ dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link; INIT_WORK(&dev_priv->psr.work, intel_psr_work); INIT_DELAYED_WORK(&dev_priv->psr.dc3co_work, tgl_dc3co_disable_work); mutex_init(&dev_priv->psr.lock); } static int psr_get_status_and_error_status(struct intel_dp *intel_dp, u8 *status, u8 *error_status) { struct drm_dp_aux *aux = &intel_dp->aux; int ret; ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status); if (ret != 1) return ret; ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status); if (ret != 1) return ret; *status = *status & DP_PSR_SINK_STATE_MASK; return 0; } static void psr_alpm_check(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct drm_dp_aux *aux = &intel_dp->aux; struct i915_psr *psr = &dev_priv->psr; u8 val; int r; if (!psr->psr2_enabled) return; r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val); if (r != 1) { drm_err(&dev_priv->drm, "Error reading ALPM status\n"); return; } if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) { intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; drm_dbg_kms(&dev_priv->drm, "ALPM lock timeout error, disabling PSR\n"); /* Clearing error */ drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val); } } static void psr_capability_changed_check(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct i915_psr *psr = &dev_priv->psr; u8 val; int r; r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val); if (r != 1) { drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n"); return; } if (val & DP_PSR_CAPS_CHANGE) { intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; drm_dbg_kms(&dev_priv->drm, "Sink PSR capability changed, disabling PSR\n"); /* Clearing it */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val); } } void intel_psr_short_pulse(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); struct i915_psr *psr = &dev_priv->psr; u8 status, error_status; const u8 errors = DP_PSR_RFB_STORAGE_ERROR | DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR | DP_PSR_LINK_CRC_ERROR; if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp)) return; mutex_lock(&psr->lock); if (!psr->enabled || psr->dp != intel_dp) goto exit; if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) { drm_err(&dev_priv->drm, "Error reading PSR status or error status\n"); goto exit; } if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) { intel_psr_disable_locked(intel_dp); psr->sink_not_reliable = true; } if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status) drm_dbg_kms(&dev_priv->drm, "PSR sink internal error, disabling PSR\n"); if (error_status & DP_PSR_RFB_STORAGE_ERROR) drm_dbg_kms(&dev_priv->drm, "PSR RFB storage error, disabling PSR\n"); if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR) drm_dbg_kms(&dev_priv->drm, "PSR VSC SDP uncorrectable error, disabling PSR\n"); if (error_status & DP_PSR_LINK_CRC_ERROR) drm_dbg_kms(&dev_priv->drm, "PSR Link CRC error, disabling PSR\n"); if (error_status & ~errors) drm_err(&dev_priv->drm, "PSR_ERROR_STATUS unhandled errors %x\n", error_status & ~errors); /* clear status register */ drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status); psr_alpm_check(intel_dp); psr_capability_changed_check(intel_dp); exit: mutex_unlock(&psr->lock); } bool intel_psr_enabled(struct intel_dp *intel_dp) { struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); bool ret; if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp)) return false; mutex_lock(&dev_priv->psr.lock); ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled); mutex_unlock(&dev_priv->psr.lock); return ret; } void intel_psr_atomic_check(struct drm_connector *connector, struct drm_connector_state *old_state, struct drm_connector_state *new_state) { struct drm_i915_private *dev_priv = to_i915(connector->dev); struct intel_connector *intel_connector; struct intel_digital_port *dig_port; struct drm_crtc_state *crtc_state; if (!CAN_PSR(dev_priv) || !new_state->crtc || dev_priv->psr.initially_probed) return; intel_connector = to_intel_connector(connector); dig_port = enc_to_dig_port(intel_attached_encoder(intel_connector)); if (dev_priv->psr.dp != &dig_port->dp) return; crtc_state = drm_atomic_get_new_crtc_state(new_state->state, new_state->crtc); crtc_state->mode_changed = true; dev_priv->psr.initially_probed = true; }