/* * Samsung SoC MIPI DSI Master driver. * * Copyright (c) 2014 Samsung Electronics Co., Ltd * * Contacts: Tomasz Figa <t.figa@samsung.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <drm/drmP.h> #include <drm/drm_crtc_helper.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_panel.h> #include <linux/clk.h> #include <linux/gpio/consumer.h> #include <linux/irq.h> #include <linux/of_device.h> #include <linux/of_gpio.h> #include <linux/phy/phy.h> #include <linux/regulator/consumer.h> #include <linux/component.h> #include <video/mipi_display.h> #include <video/videomode.h> #include "exynos_drm_crtc.h" #include "exynos_drm_drv.h" /* returns true iff both arguments logically differs */ #define NEQV(a, b) (!(a) ^ !(b)) #define DSIM_STATUS_REG 0x0 /* Status register */ #define DSIM_SWRST_REG 0x4 /* Software reset register */ #define DSIM_CLKCTRL_REG 0x8 /* Clock control register */ #define DSIM_TIMEOUT_REG 0xc /* Time out register */ #define DSIM_CONFIG_REG 0x10 /* Configuration register */ #define DSIM_ESCMODE_REG 0x14 /* Escape mode register */ /* Main display image resolution register */ #define DSIM_MDRESOL_REG 0x18 #define DSIM_MVPORCH_REG 0x1c /* Main display Vporch register */ #define DSIM_MHPORCH_REG 0x20 /* Main display Hporch register */ #define DSIM_MSYNC_REG 0x24 /* Main display sync area register */ /* Sub display image resolution register */ #define DSIM_SDRESOL_REG 0x28 #define DSIM_INTSRC_REG 0x2c /* Interrupt source register */ #define DSIM_INTMSK_REG 0x30 /* Interrupt mask register */ #define DSIM_PKTHDR_REG 0x34 /* Packet Header FIFO register */ #define DSIM_PAYLOAD_REG 0x38 /* Payload FIFO register */ #define DSIM_RXFIFO_REG 0x3c /* Read FIFO register */ #define DSIM_FIFOTHLD_REG 0x40 /* FIFO threshold level register */ #define DSIM_FIFOCTRL_REG 0x44 /* FIFO status and control register */ /* FIFO memory AC characteristic register */ #define DSIM_PLLCTRL_REG 0x4c /* PLL control register */ #define DSIM_PHYACCHR_REG 0x54 /* D-PHY AC characteristic register */ #define DSIM_PHYACCHR1_REG 0x58 /* D-PHY AC characteristic register1 */ #define DSIM_PHYCTRL_REG 0x5c #define DSIM_PHYTIMING_REG 0x64 #define DSIM_PHYTIMING1_REG 0x68 #define DSIM_PHYTIMING2_REG 0x6c /* DSIM_STATUS */ #define DSIM_STOP_STATE_DAT(x) (((x) & 0xf) << 0) #define DSIM_STOP_STATE_CLK (1 << 8) #define DSIM_TX_READY_HS_CLK (1 << 10) #define DSIM_PLL_STABLE (1 << 31) /* DSIM_SWRST */ #define DSIM_FUNCRST (1 << 16) #define DSIM_SWRST (1 << 0) /* DSIM_TIMEOUT */ #define DSIM_LPDR_TIMEOUT(x) ((x) << 0) #define DSIM_BTA_TIMEOUT(x) ((x) << 16) /* DSIM_CLKCTRL */ #define DSIM_ESC_PRESCALER(x) (((x) & 0xffff) << 0) #define DSIM_ESC_PRESCALER_MASK (0xffff << 0) #define DSIM_LANE_ESC_CLK_EN_CLK (1 << 19) #define DSIM_LANE_ESC_CLK_EN_DATA(x) (((x) & 0xf) << 20) #define DSIM_LANE_ESC_CLK_EN_DATA_MASK (0xf << 20) #define DSIM_BYTE_CLKEN (1 << 24) #define DSIM_BYTE_CLK_SRC(x) (((x) & 0x3) << 25) #define DSIM_BYTE_CLK_SRC_MASK (0x3 << 25) #define DSIM_PLL_BYPASS (1 << 27) #define DSIM_ESC_CLKEN (1 << 28) #define DSIM_TX_REQUEST_HSCLK (1 << 31) /* DSIM_CONFIG */ #define DSIM_LANE_EN_CLK (1 << 0) #define DSIM_LANE_EN(x) (((x) & 0xf) << 1) #define DSIM_NUM_OF_DATA_LANE(x) (((x) & 0x3) << 5) #define DSIM_SUB_PIX_FORMAT(x) (((x) & 0x7) << 8) #define DSIM_MAIN_PIX_FORMAT_MASK (0x7 << 12) #define DSIM_MAIN_PIX_FORMAT_RGB888 (0x7 << 12) #define DSIM_MAIN_PIX_FORMAT_RGB666 (0x6 << 12) #define DSIM_MAIN_PIX_FORMAT_RGB666_P (0x5 << 12) #define DSIM_MAIN_PIX_FORMAT_RGB565 (0x4 << 12) #define DSIM_SUB_VC (((x) & 0x3) << 16) #define DSIM_MAIN_VC (((x) & 0x3) << 18) #define DSIM_HSA_MODE (1 << 20) #define DSIM_HBP_MODE (1 << 21) #define DSIM_HFP_MODE (1 << 22) #define DSIM_HSE_MODE (1 << 23) #define DSIM_AUTO_MODE (1 << 24) #define DSIM_VIDEO_MODE (1 << 25) #define DSIM_BURST_MODE (1 << 26) #define DSIM_SYNC_INFORM (1 << 27) #define DSIM_EOT_DISABLE (1 << 28) #define DSIM_MFLUSH_VS (1 << 29) /* This flag is valid only for exynos3250/3472/4415/5260/5430 */ #define DSIM_CLKLANE_STOP (1 << 30) /* DSIM_ESCMODE */ #define DSIM_TX_TRIGGER_RST (1 << 4) #define DSIM_TX_LPDT_LP (1 << 6) #define DSIM_CMD_LPDT_LP (1 << 7) #define DSIM_FORCE_BTA (1 << 16) #define DSIM_FORCE_STOP_STATE (1 << 20) #define DSIM_STOP_STATE_CNT(x) (((x) & 0x7ff) << 21) #define DSIM_STOP_STATE_CNT_MASK (0x7ff << 21) /* DSIM_MDRESOL */ #define DSIM_MAIN_STAND_BY (1 << 31) #define DSIM_MAIN_VRESOL(x) (((x) & 0x7ff) << 16) #define DSIM_MAIN_HRESOL(x) (((x) & 0X7ff) << 0) /* DSIM_MVPORCH */ #define DSIM_CMD_ALLOW(x) ((x) << 28) #define DSIM_STABLE_VFP(x) ((x) << 16) #define DSIM_MAIN_VBP(x) ((x) << 0) #define DSIM_CMD_ALLOW_MASK (0xf << 28) #define DSIM_STABLE_VFP_MASK (0x7ff << 16) #define DSIM_MAIN_VBP_MASK (0x7ff << 0) /* DSIM_MHPORCH */ #define DSIM_MAIN_HFP(x) ((x) << 16) #define DSIM_MAIN_HBP(x) ((x) << 0) #define DSIM_MAIN_HFP_MASK ((0xffff) << 16) #define DSIM_MAIN_HBP_MASK ((0xffff) << 0) /* DSIM_MSYNC */ #define DSIM_MAIN_VSA(x) ((x) << 22) #define DSIM_MAIN_HSA(x) ((x) << 0) #define DSIM_MAIN_VSA_MASK ((0x3ff) << 22) #define DSIM_MAIN_HSA_MASK ((0xffff) << 0) /* DSIM_SDRESOL */ #define DSIM_SUB_STANDY(x) ((x) << 31) #define DSIM_SUB_VRESOL(x) ((x) << 16) #define DSIM_SUB_HRESOL(x) ((x) << 0) #define DSIM_SUB_STANDY_MASK ((0x1) << 31) #define DSIM_SUB_VRESOL_MASK ((0x7ff) << 16) #define DSIM_SUB_HRESOL_MASK ((0x7ff) << 0) /* DSIM_INTSRC */ #define DSIM_INT_PLL_STABLE (1 << 31) #define DSIM_INT_SW_RST_RELEASE (1 << 30) #define DSIM_INT_SFR_FIFO_EMPTY (1 << 29) #define DSIM_INT_BTA (1 << 25) #define DSIM_INT_FRAME_DONE (1 << 24) #define DSIM_INT_RX_TIMEOUT (1 << 21) #define DSIM_INT_BTA_TIMEOUT (1 << 20) #define DSIM_INT_RX_DONE (1 << 18) #define DSIM_INT_RX_TE (1 << 17) #define DSIM_INT_RX_ACK (1 << 16) #define DSIM_INT_RX_ECC_ERR (1 << 15) #define DSIM_INT_RX_CRC_ERR (1 << 14) /* DSIM_FIFOCTRL */ #define DSIM_RX_DATA_FULL (1 << 25) #define DSIM_RX_DATA_EMPTY (1 << 24) #define DSIM_SFR_HEADER_FULL (1 << 23) #define DSIM_SFR_HEADER_EMPTY (1 << 22) #define DSIM_SFR_PAYLOAD_FULL (1 << 21) #define DSIM_SFR_PAYLOAD_EMPTY (1 << 20) #define DSIM_I80_HEADER_FULL (1 << 19) #define DSIM_I80_HEADER_EMPTY (1 << 18) #define DSIM_I80_PAYLOAD_FULL (1 << 17) #define DSIM_I80_PAYLOAD_EMPTY (1 << 16) #define DSIM_SD_HEADER_FULL (1 << 15) #define DSIM_SD_HEADER_EMPTY (1 << 14) #define DSIM_SD_PAYLOAD_FULL (1 << 13) #define DSIM_SD_PAYLOAD_EMPTY (1 << 12) #define DSIM_MD_HEADER_FULL (1 << 11) #define DSIM_MD_HEADER_EMPTY (1 << 10) #define DSIM_MD_PAYLOAD_FULL (1 << 9) #define DSIM_MD_PAYLOAD_EMPTY (1 << 8) #define DSIM_RX_FIFO (1 << 4) #define DSIM_SFR_FIFO (1 << 3) #define DSIM_I80_FIFO (1 << 2) #define DSIM_SD_FIFO (1 << 1) #define DSIM_MD_FIFO (1 << 0) /* DSIM_PHYACCHR */ #define DSIM_AFC_EN (1 << 14) #define DSIM_AFC_CTL(x) (((x) & 0x7) << 5) /* DSIM_PLLCTRL */ #define DSIM_FREQ_BAND(x) ((x) << 24) #define DSIM_PLL_EN (1 << 23) #define DSIM_PLL_P(x) ((x) << 13) #define DSIM_PLL_M(x) ((x) << 4) #define DSIM_PLL_S(x) ((x) << 1) /* DSIM_PHYCTRL */ #define DSIM_PHYCTRL_ULPS_EXIT(x) (((x) & 0x1ff) << 0) /* DSIM_PHYTIMING */ #define DSIM_PHYTIMING_LPX(x) ((x) << 8) #define DSIM_PHYTIMING_HS_EXIT(x) ((x) << 0) /* DSIM_PHYTIMING1 */ #define DSIM_PHYTIMING1_CLK_PREPARE(x) ((x) << 24) #define DSIM_PHYTIMING1_CLK_ZERO(x) ((x) << 16) #define DSIM_PHYTIMING1_CLK_POST(x) ((x) << 8) #define DSIM_PHYTIMING1_CLK_TRAIL(x) ((x) << 0) /* DSIM_PHYTIMING2 */ #define DSIM_PHYTIMING2_HS_PREPARE(x) ((x) << 16) #define DSIM_PHYTIMING2_HS_ZERO(x) ((x) << 8) #define DSIM_PHYTIMING2_HS_TRAIL(x) ((x) << 0) #define DSI_MAX_BUS_WIDTH 4 #define DSI_NUM_VIRTUAL_CHANNELS 4 #define DSI_TX_FIFO_SIZE 2048 #define DSI_RX_FIFO_SIZE 256 #define DSI_XFER_TIMEOUT_MS 100 #define DSI_RX_FIFO_EMPTY 0x30800002 enum exynos_dsi_transfer_type { EXYNOS_DSI_TX, EXYNOS_DSI_RX, }; struct exynos_dsi_transfer { struct list_head list; struct completion completed; int result; u8 data_id; u8 data[2]; u16 flags; const u8 *tx_payload; u16 tx_len; u16 tx_done; u8 *rx_payload; u16 rx_len; u16 rx_done; }; #define DSIM_STATE_ENABLED BIT(0) #define DSIM_STATE_INITIALIZED BIT(1) #define DSIM_STATE_CMD_LPM BIT(2) struct exynos_dsi_driver_data { unsigned int plltmr_reg; unsigned int has_freqband:1; unsigned int has_clklane_stop:1; }; struct exynos_dsi { struct exynos_drm_display display; struct mipi_dsi_host dsi_host; struct drm_connector connector; struct device_node *panel_node; struct drm_panel *panel; struct device *dev; void __iomem *reg_base; struct phy *phy; struct clk *pll_clk; struct clk *bus_clk; struct regulator_bulk_data supplies[2]; int irq; int te_gpio; u32 pll_clk_rate; u32 burst_clk_rate; u32 esc_clk_rate; u32 lanes; u32 mode_flags; u32 format; struct videomode vm; int state; struct drm_property *brightness; struct completion completed; spinlock_t transfer_lock; /* protects transfer_list */ struct list_head transfer_list; struct exynos_dsi_driver_data *driver_data; }; #define host_to_dsi(host) container_of(host, struct exynos_dsi, dsi_host) #define connector_to_dsi(c) container_of(c, struct exynos_dsi, connector) static inline struct exynos_dsi *display_to_dsi(struct exynos_drm_display *d) { return container_of(d, struct exynos_dsi, display); } static struct exynos_dsi_driver_data exynos3_dsi_driver_data = { .plltmr_reg = 0x50, .has_freqband = 1, .has_clklane_stop = 1, }; static struct exynos_dsi_driver_data exynos4_dsi_driver_data = { .plltmr_reg = 0x50, .has_freqband = 1, .has_clklane_stop = 1, }; static struct exynos_dsi_driver_data exynos4415_dsi_driver_data = { .plltmr_reg = 0x58, .has_clklane_stop = 1, }; static struct exynos_dsi_driver_data exynos5_dsi_driver_data = { .plltmr_reg = 0x58, }; static struct of_device_id exynos_dsi_of_match[] = { { .compatible = "samsung,exynos3250-mipi-dsi", .data = &exynos3_dsi_driver_data }, { .compatible = "samsung,exynos4210-mipi-dsi", .data = &exynos4_dsi_driver_data }, { .compatible = "samsung,exynos4415-mipi-dsi", .data = &exynos4415_dsi_driver_data }, { .compatible = "samsung,exynos5410-mipi-dsi", .data = &exynos5_dsi_driver_data }, { } }; static inline struct exynos_dsi_driver_data *exynos_dsi_get_driver_data( struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(exynos_dsi_of_match, &pdev->dev); return (struct exynos_dsi_driver_data *)of_id->data; } static void exynos_dsi_wait_for_reset(struct exynos_dsi *dsi) { if (wait_for_completion_timeout(&dsi->completed, msecs_to_jiffies(300))) return; dev_err(dsi->dev, "timeout waiting for reset\n"); } static void exynos_dsi_reset(struct exynos_dsi *dsi) { reinit_completion(&dsi->completed); writel(DSIM_SWRST, dsi->reg_base + DSIM_SWRST_REG); } #ifndef MHZ #define MHZ (1000*1000) #endif static unsigned long exynos_dsi_pll_find_pms(struct exynos_dsi *dsi, unsigned long fin, unsigned long fout, u8 *p, u16 *m, u8 *s) { unsigned long best_freq = 0; u32 min_delta = 0xffffffff; u8 p_min, p_max; u8 _p, uninitialized_var(best_p); u16 _m, uninitialized_var(best_m); u8 _s, uninitialized_var(best_s); p_min = DIV_ROUND_UP(fin, (12 * MHZ)); p_max = fin / (6 * MHZ); for (_p = p_min; _p <= p_max; ++_p) { for (_s = 0; _s <= 5; ++_s) { u64 tmp; u32 delta; tmp = (u64)fout * (_p << _s); do_div(tmp, fin); _m = tmp; if (_m < 41 || _m > 125) continue; tmp = (u64)_m * fin; do_div(tmp, _p); if (tmp < 500 * MHZ || tmp > 1000 * MHZ) continue; tmp = (u64)_m * fin; do_div(tmp, _p << _s); delta = abs(fout - tmp); if (delta < min_delta) { best_p = _p; best_m = _m; best_s = _s; min_delta = delta; best_freq = tmp; } } } if (best_freq) { *p = best_p; *m = best_m; *s = best_s; } return best_freq; } static unsigned long exynos_dsi_set_pll(struct exynos_dsi *dsi, unsigned long freq) { struct exynos_dsi_driver_data *driver_data = dsi->driver_data; unsigned long fin, fout; int timeout; u8 p, s; u16 m; u32 reg; clk_set_rate(dsi->pll_clk, dsi->pll_clk_rate); fin = clk_get_rate(dsi->pll_clk); if (!fin) { dev_err(dsi->dev, "failed to get PLL clock frequency\n"); return 0; } dev_dbg(dsi->dev, "PLL input frequency: %lu\n", fin); fout = exynos_dsi_pll_find_pms(dsi, fin, freq, &p, &m, &s); if (!fout) { dev_err(dsi->dev, "failed to find PLL PMS for requested frequency\n"); return 0; } dev_dbg(dsi->dev, "PLL freq %lu, (p %d, m %d, s %d)\n", fout, p, m, s); writel(500, dsi->reg_base + driver_data->plltmr_reg); reg = DSIM_PLL_EN | DSIM_PLL_P(p) | DSIM_PLL_M(m) | DSIM_PLL_S(s); if (driver_data->has_freqband) { static const unsigned long freq_bands[] = { 100 * MHZ, 120 * MHZ, 160 * MHZ, 200 * MHZ, 270 * MHZ, 320 * MHZ, 390 * MHZ, 450 * MHZ, 510 * MHZ, 560 * MHZ, 640 * MHZ, 690 * MHZ, 770 * MHZ, 870 * MHZ, 950 * MHZ, }; int band; for (band = 0; band < ARRAY_SIZE(freq_bands); ++band) if (fout < freq_bands[band]) break; dev_dbg(dsi->dev, "band %d\n", band); reg |= DSIM_FREQ_BAND(band); } writel(reg, dsi->reg_base + DSIM_PLLCTRL_REG); timeout = 1000; do { if (timeout-- == 0) { dev_err(dsi->dev, "PLL failed to stabilize\n"); return 0; } reg = readl(dsi->reg_base + DSIM_STATUS_REG); } while ((reg & DSIM_PLL_STABLE) == 0); return fout; } static int exynos_dsi_enable_clock(struct exynos_dsi *dsi) { unsigned long hs_clk, byte_clk, esc_clk; unsigned long esc_div; u32 reg; hs_clk = exynos_dsi_set_pll(dsi, dsi->burst_clk_rate); if (!hs_clk) { dev_err(dsi->dev, "failed to configure DSI PLL\n"); return -EFAULT; } byte_clk = hs_clk / 8; esc_div = DIV_ROUND_UP(byte_clk, dsi->esc_clk_rate); esc_clk = byte_clk / esc_div; if (esc_clk > 20 * MHZ) { ++esc_div; esc_clk = byte_clk / esc_div; } dev_dbg(dsi->dev, "hs_clk = %lu, byte_clk = %lu, esc_clk = %lu\n", hs_clk, byte_clk, esc_clk); reg = readl(dsi->reg_base + DSIM_CLKCTRL_REG); reg &= ~(DSIM_ESC_PRESCALER_MASK | DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_PLL_BYPASS | DSIM_BYTE_CLK_SRC_MASK); reg |= DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN | DSIM_ESC_PRESCALER(esc_div) | DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA(BIT(dsi->lanes) - 1) | DSIM_BYTE_CLK_SRC(0) | DSIM_TX_REQUEST_HSCLK; writel(reg, dsi->reg_base + DSIM_CLKCTRL_REG); return 0; } static void exynos_dsi_set_phy_ctrl(struct exynos_dsi *dsi) { struct exynos_dsi_driver_data *driver_data = dsi->driver_data; u32 reg; if (driver_data->has_freqband) return; /* B D-PHY: D-PHY Master & Slave Analog Block control */ reg = DSIM_PHYCTRL_ULPS_EXIT(0x0af); writel(reg, dsi->reg_base + DSIM_PHYCTRL_REG); /* * T LPX: Transmitted length of any Low-Power state period * T HS-EXIT: Time that the transmitter drives LP-11 following a HS * burst */ reg = DSIM_PHYTIMING_LPX(0x06) | DSIM_PHYTIMING_HS_EXIT(0x0b); writel(reg, dsi->reg_base + DSIM_PHYTIMING_REG); /* * T CLK-PREPARE: Time that the transmitter drives the Clock Lane LP-00 * Line state immediately before the HS-0 Line state starting the * HS transmission * T CLK-ZERO: Time that the transmitter drives the HS-0 state prior to * transmitting the Clock. * T CLK_POST: Time that the transmitter continues to send HS clock * after the last associated Data Lane has transitioned to LP Mode * Interval is defined as the period from the end of T HS-TRAIL to * the beginning of T CLK-TRAIL * T CLK-TRAIL: Time that the transmitter drives the HS-0 state after * the last payload clock bit of a HS transmission burst */ reg = DSIM_PHYTIMING1_CLK_PREPARE(0x07) | DSIM_PHYTIMING1_CLK_ZERO(0x27) | DSIM_PHYTIMING1_CLK_POST(0x0d) | DSIM_PHYTIMING1_CLK_TRAIL(0x08); writel(reg, dsi->reg_base + DSIM_PHYTIMING1_REG); /* * T HS-PREPARE: Time that the transmitter drives the Data Lane LP-00 * Line state immediately before the HS-0 Line state starting the * HS transmission * T HS-ZERO: Time that the transmitter drives the HS-0 state prior to * transmitting the Sync sequence. * T HS-TRAIL: Time that the transmitter drives the flipped differential * state after last payload data bit of a HS transmission burst */ reg = DSIM_PHYTIMING2_HS_PREPARE(0x09) | DSIM_PHYTIMING2_HS_ZERO(0x0d) | DSIM_PHYTIMING2_HS_TRAIL(0x0b); writel(reg, dsi->reg_base + DSIM_PHYTIMING2_REG); } static void exynos_dsi_disable_clock(struct exynos_dsi *dsi) { u32 reg; reg = readl(dsi->reg_base + DSIM_CLKCTRL_REG); reg &= ~(DSIM_LANE_ESC_CLK_EN_CLK | DSIM_LANE_ESC_CLK_EN_DATA_MASK | DSIM_ESC_CLKEN | DSIM_BYTE_CLKEN); writel(reg, dsi->reg_base + DSIM_CLKCTRL_REG); reg = readl(dsi->reg_base + DSIM_PLLCTRL_REG); reg &= ~DSIM_PLL_EN; writel(reg, dsi->reg_base + DSIM_PLLCTRL_REG); } static int exynos_dsi_init_link(struct exynos_dsi *dsi) { struct exynos_dsi_driver_data *driver_data = dsi->driver_data; int timeout; u32 reg; u32 lanes_mask; /* Initialize FIFO pointers */ reg = readl(dsi->reg_base + DSIM_FIFOCTRL_REG); reg &= ~0x1f; writel(reg, dsi->reg_base + DSIM_FIFOCTRL_REG); usleep_range(9000, 11000); reg |= 0x1f; writel(reg, dsi->reg_base + DSIM_FIFOCTRL_REG); usleep_range(9000, 11000); /* DSI configuration */ reg = 0; /* * The first bit of mode_flags specifies display configuration. * If this bit is set[= MIPI_DSI_MODE_VIDEO], dsi will support video * mode, otherwise it will support command mode. */ if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { reg |= DSIM_VIDEO_MODE; /* * The user manual describes that following bits are ignored in * command mode. */ if (!(dsi->mode_flags & MIPI_DSI_MODE_VSYNC_FLUSH)) reg |= DSIM_MFLUSH_VS; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) reg |= DSIM_SYNC_INFORM; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_BURST) reg |= DSIM_BURST_MODE; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_AUTO_VERT) reg |= DSIM_AUTO_MODE; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSE) reg |= DSIM_HSE_MODE; if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HFP)) reg |= DSIM_HFP_MODE; if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HBP)) reg |= DSIM_HBP_MODE; if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO_HSA)) reg |= DSIM_HSA_MODE; } if (!(dsi->mode_flags & MIPI_DSI_MODE_EOT_PACKET)) reg |= DSIM_EOT_DISABLE; switch (dsi->format) { case MIPI_DSI_FMT_RGB888: reg |= DSIM_MAIN_PIX_FORMAT_RGB888; break; case MIPI_DSI_FMT_RGB666: reg |= DSIM_MAIN_PIX_FORMAT_RGB666; break; case MIPI_DSI_FMT_RGB666_PACKED: reg |= DSIM_MAIN_PIX_FORMAT_RGB666_P; break; case MIPI_DSI_FMT_RGB565: reg |= DSIM_MAIN_PIX_FORMAT_RGB565; break; default: dev_err(dsi->dev, "invalid pixel format\n"); return -EINVAL; } reg |= DSIM_NUM_OF_DATA_LANE(dsi->lanes - 1); writel(reg, dsi->reg_base + DSIM_CONFIG_REG); reg |= DSIM_LANE_EN_CLK; writel(reg, dsi->reg_base + DSIM_CONFIG_REG); lanes_mask = BIT(dsi->lanes) - 1; reg |= DSIM_LANE_EN(lanes_mask); writel(reg, dsi->reg_base + DSIM_CONFIG_REG); /* * Use non-continuous clock mode if the periparal wants and * host controller supports * * In non-continous clock mode, host controller will turn off * the HS clock between high-speed transmissions to reduce * power consumption. */ if (driver_data->has_clklane_stop && dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) { reg |= DSIM_CLKLANE_STOP; writel(reg, dsi->reg_base + DSIM_CONFIG_REG); } /* Check clock and data lane state are stop state */ timeout = 100; do { if (timeout-- == 0) { dev_err(dsi->dev, "waiting for bus lanes timed out\n"); return -EFAULT; } reg = readl(dsi->reg_base + DSIM_STATUS_REG); if ((reg & DSIM_STOP_STATE_DAT(lanes_mask)) != DSIM_STOP_STATE_DAT(lanes_mask)) continue; } while (!(reg & (DSIM_STOP_STATE_CLK | DSIM_TX_READY_HS_CLK))); reg = readl(dsi->reg_base + DSIM_ESCMODE_REG); reg &= ~DSIM_STOP_STATE_CNT_MASK; reg |= DSIM_STOP_STATE_CNT(0xf); writel(reg, dsi->reg_base + DSIM_ESCMODE_REG); reg = DSIM_BTA_TIMEOUT(0xff) | DSIM_LPDR_TIMEOUT(0xffff); writel(reg, dsi->reg_base + DSIM_TIMEOUT_REG); return 0; } static void exynos_dsi_set_display_mode(struct exynos_dsi *dsi) { struct videomode *vm = &dsi->vm; u32 reg; if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { reg = DSIM_CMD_ALLOW(0xf) | DSIM_STABLE_VFP(vm->vfront_porch) | DSIM_MAIN_VBP(vm->vback_porch); writel(reg, dsi->reg_base + DSIM_MVPORCH_REG); reg = DSIM_MAIN_HFP(vm->hfront_porch) | DSIM_MAIN_HBP(vm->hback_porch); writel(reg, dsi->reg_base + DSIM_MHPORCH_REG); reg = DSIM_MAIN_VSA(vm->vsync_len) | DSIM_MAIN_HSA(vm->hsync_len); writel(reg, dsi->reg_base + DSIM_MSYNC_REG); } reg = DSIM_MAIN_HRESOL(vm->hactive) | DSIM_MAIN_VRESOL(vm->vactive); writel(reg, dsi->reg_base + DSIM_MDRESOL_REG); dev_dbg(dsi->dev, "LCD size = %dx%d\n", vm->hactive, vm->vactive); } static void exynos_dsi_set_display_enable(struct exynos_dsi *dsi, bool enable) { u32 reg; reg = readl(dsi->reg_base + DSIM_MDRESOL_REG); if (enable) reg |= DSIM_MAIN_STAND_BY; else reg &= ~DSIM_MAIN_STAND_BY; writel(reg, dsi->reg_base + DSIM_MDRESOL_REG); } static int exynos_dsi_wait_for_hdr_fifo(struct exynos_dsi *dsi) { int timeout = 2000; do { u32 reg = readl(dsi->reg_base + DSIM_FIFOCTRL_REG); if (!(reg & DSIM_SFR_HEADER_FULL)) return 0; if (!cond_resched()) usleep_range(950, 1050); } while (--timeout); return -ETIMEDOUT; } static void exynos_dsi_set_cmd_lpm(struct exynos_dsi *dsi, bool lpm) { u32 v = readl(dsi->reg_base + DSIM_ESCMODE_REG); if (lpm) v |= DSIM_CMD_LPDT_LP; else v &= ~DSIM_CMD_LPDT_LP; writel(v, dsi->reg_base + DSIM_ESCMODE_REG); } static void exynos_dsi_force_bta(struct exynos_dsi *dsi) { u32 v = readl(dsi->reg_base + DSIM_ESCMODE_REG); v |= DSIM_FORCE_BTA; writel(v, dsi->reg_base + DSIM_ESCMODE_REG); } static void exynos_dsi_send_to_fifo(struct exynos_dsi *dsi, struct exynos_dsi_transfer *xfer) { struct device *dev = dsi->dev; const u8 *payload = xfer->tx_payload + xfer->tx_done; u16 length = xfer->tx_len - xfer->tx_done; bool first = !xfer->tx_done; u32 reg; dev_dbg(dev, "< xfer %p: tx len %u, done %u, rx len %u, done %u\n", xfer, xfer->tx_len, xfer->tx_done, xfer->rx_len, xfer->rx_done); if (length > DSI_TX_FIFO_SIZE) length = DSI_TX_FIFO_SIZE; xfer->tx_done += length; /* Send payload */ while (length >= 4) { reg = (payload[3] << 24) | (payload[2] << 16) | (payload[1] << 8) | payload[0]; writel(reg, dsi->reg_base + DSIM_PAYLOAD_REG); payload += 4; length -= 4; } reg = 0; switch (length) { case 3: reg |= payload[2] << 16; /* Fall through */ case 2: reg |= payload[1] << 8; /* Fall through */ case 1: reg |= payload[0]; writel(reg, dsi->reg_base + DSIM_PAYLOAD_REG); break; case 0: /* Do nothing */ break; } /* Send packet header */ if (!first) return; reg = (xfer->data[1] << 16) | (xfer->data[0] << 8) | xfer->data_id; if (exynos_dsi_wait_for_hdr_fifo(dsi)) { dev_err(dev, "waiting for header FIFO timed out\n"); return; } if (NEQV(xfer->flags & MIPI_DSI_MSG_USE_LPM, dsi->state & DSIM_STATE_CMD_LPM)) { exynos_dsi_set_cmd_lpm(dsi, xfer->flags & MIPI_DSI_MSG_USE_LPM); dsi->state ^= DSIM_STATE_CMD_LPM; } writel(reg, dsi->reg_base + DSIM_PKTHDR_REG); if (xfer->flags & MIPI_DSI_MSG_REQ_ACK) exynos_dsi_force_bta(dsi); } static void exynos_dsi_read_from_fifo(struct exynos_dsi *dsi, struct exynos_dsi_transfer *xfer) { u8 *payload = xfer->rx_payload + xfer->rx_done; bool first = !xfer->rx_done; struct device *dev = dsi->dev; u16 length; u32 reg; if (first) { reg = readl(dsi->reg_base + DSIM_RXFIFO_REG); switch (reg & 0x3f) { case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE: if (xfer->rx_len >= 2) { payload[1] = reg >> 16; ++xfer->rx_done; } /* Fall through */ case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE: case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE: payload[0] = reg >> 8; ++xfer->rx_done; xfer->rx_len = xfer->rx_done; xfer->result = 0; goto clear_fifo; case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT: dev_err(dev, "DSI Error Report: 0x%04x\n", (reg >> 8) & 0xffff); xfer->result = 0; goto clear_fifo; } length = (reg >> 8) & 0xffff; if (length > xfer->rx_len) { dev_err(dev, "response too long (%u > %u bytes), stripping\n", xfer->rx_len, length); length = xfer->rx_len; } else if (length < xfer->rx_len) xfer->rx_len = length; } length = xfer->rx_len - xfer->rx_done; xfer->rx_done += length; /* Receive payload */ while (length >= 4) { reg = readl(dsi->reg_base + DSIM_RXFIFO_REG); payload[0] = (reg >> 0) & 0xff; payload[1] = (reg >> 8) & 0xff; payload[2] = (reg >> 16) & 0xff; payload[3] = (reg >> 24) & 0xff; payload += 4; length -= 4; } if (length) { reg = readl(dsi->reg_base + DSIM_RXFIFO_REG); switch (length) { case 3: payload[2] = (reg >> 16) & 0xff; /* Fall through */ case 2: payload[1] = (reg >> 8) & 0xff; /* Fall through */ case 1: payload[0] = reg & 0xff; } } if (xfer->rx_done == xfer->rx_len) xfer->result = 0; clear_fifo: length = DSI_RX_FIFO_SIZE / 4; do { reg = readl(dsi->reg_base + DSIM_RXFIFO_REG); if (reg == DSI_RX_FIFO_EMPTY) break; } while (--length); } static void exynos_dsi_transfer_start(struct exynos_dsi *dsi) { unsigned long flags; struct exynos_dsi_transfer *xfer; bool start = false; again: spin_lock_irqsave(&dsi->transfer_lock, flags); if (list_empty(&dsi->transfer_list)) { spin_unlock_irqrestore(&dsi->transfer_lock, flags); return; } xfer = list_first_entry(&dsi->transfer_list, struct exynos_dsi_transfer, list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); if (xfer->tx_len && xfer->tx_done == xfer->tx_len) /* waiting for RX */ return; exynos_dsi_send_to_fifo(dsi, xfer); if (xfer->tx_len || xfer->rx_len) return; xfer->result = 0; complete(&xfer->completed); spin_lock_irqsave(&dsi->transfer_lock, flags); list_del_init(&xfer->list); start = !list_empty(&dsi->transfer_list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); if (start) goto again; } static bool exynos_dsi_transfer_finish(struct exynos_dsi *dsi) { struct exynos_dsi_transfer *xfer; unsigned long flags; bool start = true; spin_lock_irqsave(&dsi->transfer_lock, flags); if (list_empty(&dsi->transfer_list)) { spin_unlock_irqrestore(&dsi->transfer_lock, flags); return false; } xfer = list_first_entry(&dsi->transfer_list, struct exynos_dsi_transfer, list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); dev_dbg(dsi->dev, "> xfer %p, tx_len %u, tx_done %u, rx_len %u, rx_done %u\n", xfer, xfer->tx_len, xfer->tx_done, xfer->rx_len, xfer->rx_done); if (xfer->tx_done != xfer->tx_len) return true; if (xfer->rx_done != xfer->rx_len) exynos_dsi_read_from_fifo(dsi, xfer); if (xfer->rx_done != xfer->rx_len) return true; spin_lock_irqsave(&dsi->transfer_lock, flags); list_del_init(&xfer->list); start = !list_empty(&dsi->transfer_list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); if (!xfer->rx_len) xfer->result = 0; complete(&xfer->completed); return start; } static void exynos_dsi_remove_transfer(struct exynos_dsi *dsi, struct exynos_dsi_transfer *xfer) { unsigned long flags; bool start; spin_lock_irqsave(&dsi->transfer_lock, flags); if (!list_empty(&dsi->transfer_list) && xfer == list_first_entry(&dsi->transfer_list, struct exynos_dsi_transfer, list)) { list_del_init(&xfer->list); start = !list_empty(&dsi->transfer_list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); if (start) exynos_dsi_transfer_start(dsi); return; } list_del_init(&xfer->list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); } static int exynos_dsi_transfer(struct exynos_dsi *dsi, struct exynos_dsi_transfer *xfer) { unsigned long flags; bool stopped; xfer->tx_done = 0; xfer->rx_done = 0; xfer->result = -ETIMEDOUT; init_completion(&xfer->completed); spin_lock_irqsave(&dsi->transfer_lock, flags); stopped = list_empty(&dsi->transfer_list); list_add_tail(&xfer->list, &dsi->transfer_list); spin_unlock_irqrestore(&dsi->transfer_lock, flags); if (stopped) exynos_dsi_transfer_start(dsi); wait_for_completion_timeout(&xfer->completed, msecs_to_jiffies(DSI_XFER_TIMEOUT_MS)); if (xfer->result == -ETIMEDOUT) { exynos_dsi_remove_transfer(dsi, xfer); dev_err(dsi->dev, "xfer timed out: %*ph %*ph\n", 2, xfer->data, xfer->tx_len, xfer->tx_payload); return -ETIMEDOUT; } /* Also covers hardware timeout condition */ return xfer->result; } static irqreturn_t exynos_dsi_irq(int irq, void *dev_id) { struct exynos_dsi *dsi = dev_id; u32 status; status = readl(dsi->reg_base + DSIM_INTSRC_REG); if (!status) { static unsigned long int j; if (printk_timed_ratelimit(&j, 500)) dev_warn(dsi->dev, "spurious interrupt\n"); return IRQ_HANDLED; } writel(status, dsi->reg_base + DSIM_INTSRC_REG); if (status & DSIM_INT_SW_RST_RELEASE) { u32 mask = ~(DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY); writel(mask, dsi->reg_base + DSIM_INTMSK_REG); complete(&dsi->completed); return IRQ_HANDLED; } if (!(status & (DSIM_INT_RX_DONE | DSIM_INT_SFR_FIFO_EMPTY))) return IRQ_HANDLED; if (exynos_dsi_transfer_finish(dsi)) exynos_dsi_transfer_start(dsi); return IRQ_HANDLED; } static irqreturn_t exynos_dsi_te_irq_handler(int irq, void *dev_id) { struct exynos_dsi *dsi = (struct exynos_dsi *)dev_id; struct drm_encoder *encoder = dsi->display.encoder; if (dsi->state & DSIM_STATE_ENABLED) exynos_drm_crtc_te_handler(encoder->crtc); return IRQ_HANDLED; } static void exynos_dsi_enable_irq(struct exynos_dsi *dsi) { enable_irq(dsi->irq); if (gpio_is_valid(dsi->te_gpio)) enable_irq(gpio_to_irq(dsi->te_gpio)); } static void exynos_dsi_disable_irq(struct exynos_dsi *dsi) { if (gpio_is_valid(dsi->te_gpio)) disable_irq(gpio_to_irq(dsi->te_gpio)); disable_irq(dsi->irq); } static int exynos_dsi_init(struct exynos_dsi *dsi) { exynos_dsi_reset(dsi); exynos_dsi_enable_irq(dsi); exynos_dsi_enable_clock(dsi); exynos_dsi_wait_for_reset(dsi); exynos_dsi_set_phy_ctrl(dsi); exynos_dsi_init_link(dsi); return 0; } static int exynos_dsi_register_te_irq(struct exynos_dsi *dsi) { int ret; int te_gpio_irq; dsi->te_gpio = of_get_named_gpio(dsi->panel_node, "te-gpios", 0); if (!gpio_is_valid(dsi->te_gpio)) { dev_err(dsi->dev, "no te-gpios specified\n"); ret = dsi->te_gpio; goto out; } ret = gpio_request_one(dsi->te_gpio, GPIOF_IN, "te_gpio"); if (ret) { dev_err(dsi->dev, "gpio request failed with %d\n", ret); goto out; } te_gpio_irq = gpio_to_irq(dsi->te_gpio); irq_set_status_flags(te_gpio_irq, IRQ_NOAUTOEN); ret = request_threaded_irq(te_gpio_irq, exynos_dsi_te_irq_handler, NULL, IRQF_TRIGGER_RISING, "TE", dsi); if (ret) { dev_err(dsi->dev, "request interrupt failed with %d\n", ret); gpio_free(dsi->te_gpio); goto out; } out: return ret; } static void exynos_dsi_unregister_te_irq(struct exynos_dsi *dsi) { if (gpio_is_valid(dsi->te_gpio)) { free_irq(gpio_to_irq(dsi->te_gpio), dsi); gpio_free(dsi->te_gpio); dsi->te_gpio = -ENOENT; } } static int exynos_dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct exynos_dsi *dsi = host_to_dsi(host); dsi->lanes = device->lanes; dsi->format = device->format; dsi->mode_flags = device->mode_flags; dsi->panel_node = device->dev.of_node; /* * This is a temporary solution and should be made by more generic way. * * If attached panel device is for command mode one, dsi should register * TE interrupt handler. */ if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { int ret = exynos_dsi_register_te_irq(dsi); if (ret) return ret; } if (dsi->connector.dev) drm_helper_hpd_irq_event(dsi->connector.dev); return 0; } static int exynos_dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *device) { struct exynos_dsi *dsi = host_to_dsi(host); exynos_dsi_unregister_te_irq(dsi); dsi->panel_node = NULL; if (dsi->connector.dev) drm_helper_hpd_irq_event(dsi->connector.dev); return 0; } /* distinguish between short and long DSI packet types */ static bool exynos_dsi_is_short_dsi_type(u8 type) { return (type & 0x0f) <= 8; } static ssize_t exynos_dsi_host_transfer(struct mipi_dsi_host *host, const struct mipi_dsi_msg *msg) { struct exynos_dsi *dsi = host_to_dsi(host); struct exynos_dsi_transfer xfer; int ret; if (!(dsi->state & DSIM_STATE_INITIALIZED)) { ret = exynos_dsi_init(dsi); if (ret) return ret; dsi->state |= DSIM_STATE_INITIALIZED; } if (msg->tx_len == 0) return -EINVAL; xfer.data_id = msg->type | (msg->channel << 6); if (exynos_dsi_is_short_dsi_type(msg->type)) { const char *tx_buf = msg->tx_buf; if (msg->tx_len > 2) return -EINVAL; xfer.tx_len = 0; xfer.data[0] = tx_buf[0]; xfer.data[1] = (msg->tx_len == 2) ? tx_buf[1] : 0; } else { xfer.tx_len = msg->tx_len; xfer.data[0] = msg->tx_len & 0xff; xfer.data[1] = msg->tx_len >> 8; xfer.tx_payload = msg->tx_buf; } xfer.rx_len = msg->rx_len; xfer.rx_payload = msg->rx_buf; xfer.flags = msg->flags; ret = exynos_dsi_transfer(dsi, &xfer); return (ret < 0) ? ret : xfer.rx_done; } static const struct mipi_dsi_host_ops exynos_dsi_ops = { .attach = exynos_dsi_host_attach, .detach = exynos_dsi_host_detach, .transfer = exynos_dsi_host_transfer, }; static int exynos_dsi_poweron(struct exynos_dsi *dsi) { int ret; ret = regulator_bulk_enable(ARRAY_SIZE(dsi->supplies), dsi->supplies); if (ret < 0) { dev_err(dsi->dev, "cannot enable regulators %d\n", ret); return ret; } ret = clk_prepare_enable(dsi->bus_clk); if (ret < 0) { dev_err(dsi->dev, "cannot enable bus clock %d\n", ret); goto err_bus_clk; } ret = clk_prepare_enable(dsi->pll_clk); if (ret < 0) { dev_err(dsi->dev, "cannot enable pll clock %d\n", ret); goto err_pll_clk; } ret = phy_power_on(dsi->phy); if (ret < 0) { dev_err(dsi->dev, "cannot enable phy %d\n", ret); goto err_phy; } return 0; err_phy: clk_disable_unprepare(dsi->pll_clk); err_pll_clk: clk_disable_unprepare(dsi->bus_clk); err_bus_clk: regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies); return ret; } static void exynos_dsi_poweroff(struct exynos_dsi *dsi) { int ret; usleep_range(10000, 20000); if (dsi->state & DSIM_STATE_INITIALIZED) { dsi->state &= ~DSIM_STATE_INITIALIZED; exynos_dsi_disable_clock(dsi); exynos_dsi_disable_irq(dsi); } dsi->state &= ~DSIM_STATE_CMD_LPM; phy_power_off(dsi->phy); clk_disable_unprepare(dsi->pll_clk); clk_disable_unprepare(dsi->bus_clk); ret = regulator_bulk_disable(ARRAY_SIZE(dsi->supplies), dsi->supplies); if (ret < 0) dev_err(dsi->dev, "cannot disable regulators %d\n", ret); } static int exynos_dsi_enable(struct exynos_dsi *dsi) { int ret; if (dsi->state & DSIM_STATE_ENABLED) return 0; ret = exynos_dsi_poweron(dsi); if (ret < 0) return ret; ret = drm_panel_prepare(dsi->panel); if (ret < 0) { exynos_dsi_poweroff(dsi); return ret; } exynos_dsi_set_display_mode(dsi); exynos_dsi_set_display_enable(dsi, true); dsi->state |= DSIM_STATE_ENABLED; ret = drm_panel_enable(dsi->panel); if (ret < 0) { dsi->state &= ~DSIM_STATE_ENABLED; exynos_dsi_set_display_enable(dsi, false); drm_panel_unprepare(dsi->panel); exynos_dsi_poweroff(dsi); return ret; } return 0; } static void exynos_dsi_disable(struct exynos_dsi *dsi) { if (!(dsi->state & DSIM_STATE_ENABLED)) return; drm_panel_disable(dsi->panel); exynos_dsi_set_display_enable(dsi, false); drm_panel_unprepare(dsi->panel); exynos_dsi_poweroff(dsi); dsi->state &= ~DSIM_STATE_ENABLED; } static void exynos_dsi_dpms(struct exynos_drm_display *display, int mode) { struct exynos_dsi *dsi = display_to_dsi(display); if (dsi->panel) { switch (mode) { case DRM_MODE_DPMS_ON: exynos_dsi_enable(dsi); break; case DRM_MODE_DPMS_STANDBY: case DRM_MODE_DPMS_SUSPEND: case DRM_MODE_DPMS_OFF: exynos_dsi_disable(dsi); break; default: break; } } } static enum drm_connector_status exynos_dsi_detect(struct drm_connector *connector, bool force) { struct exynos_dsi *dsi = connector_to_dsi(connector); if (!dsi->panel) { dsi->panel = of_drm_find_panel(dsi->panel_node); if (dsi->panel) drm_panel_attach(dsi->panel, &dsi->connector); } else if (!dsi->panel_node) { struct exynos_drm_display *display; display = platform_get_drvdata(to_platform_device(dsi->dev)); exynos_dsi_dpms(display, DRM_MODE_DPMS_OFF); drm_panel_detach(dsi->panel); dsi->panel = NULL; } if (dsi->panel) return connector_status_connected; return connector_status_disconnected; } static void exynos_dsi_connector_destroy(struct drm_connector *connector) { drm_connector_unregister(connector); drm_connector_cleanup(connector); connector->dev = NULL; } static struct drm_connector_funcs exynos_dsi_connector_funcs = { .dpms = drm_helper_connector_dpms, .detect = exynos_dsi_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = exynos_dsi_connector_destroy, }; static int exynos_dsi_get_modes(struct drm_connector *connector) { struct exynos_dsi *dsi = connector_to_dsi(connector); if (dsi->panel) return dsi->panel->funcs->get_modes(dsi->panel); return 0; } static struct drm_encoder * exynos_dsi_best_encoder(struct drm_connector *connector) { struct exynos_dsi *dsi = connector_to_dsi(connector); return dsi->display.encoder; } static struct drm_connector_helper_funcs exynos_dsi_connector_helper_funcs = { .get_modes = exynos_dsi_get_modes, .best_encoder = exynos_dsi_best_encoder, }; static int exynos_dsi_create_connector(struct exynos_drm_display *display, struct drm_encoder *encoder) { struct exynos_dsi *dsi = display_to_dsi(display); struct drm_connector *connector = &dsi->connector; int ret; connector->polled = DRM_CONNECTOR_POLL_HPD; ret = drm_connector_init(encoder->dev, connector, &exynos_dsi_connector_funcs, DRM_MODE_CONNECTOR_DSI); if (ret) { DRM_ERROR("Failed to initialize connector with drm\n"); return ret; } drm_connector_helper_add(connector, &exynos_dsi_connector_helper_funcs); drm_connector_register(connector); drm_mode_connector_attach_encoder(connector, encoder); return 0; } static void exynos_dsi_mode_set(struct exynos_drm_display *display, struct drm_display_mode *mode) { struct exynos_dsi *dsi = display_to_dsi(display); struct videomode *vm = &dsi->vm; vm->hactive = mode->hdisplay; vm->vactive = mode->vdisplay; vm->vfront_porch = mode->vsync_start - mode->vdisplay; vm->vback_porch = mode->vtotal - mode->vsync_end; vm->vsync_len = mode->vsync_end - mode->vsync_start; vm->hfront_porch = mode->hsync_start - mode->hdisplay; vm->hback_porch = mode->htotal - mode->hsync_end; vm->hsync_len = mode->hsync_end - mode->hsync_start; } static struct exynos_drm_display_ops exynos_dsi_display_ops = { .create_connector = exynos_dsi_create_connector, .mode_set = exynos_dsi_mode_set, .dpms = exynos_dsi_dpms }; MODULE_DEVICE_TABLE(of, exynos_dsi_of_match); /* of_* functions will be removed after merge of of_graph patches */ static struct device_node * of_get_child_by_name_reg(struct device_node *parent, const char *name, u32 reg) { struct device_node *np; for_each_child_of_node(parent, np) { u32 r; if (!np->name || of_node_cmp(np->name, name)) continue; if (of_property_read_u32(np, "reg", &r) < 0) r = 0; if (reg == r) break; } return np; } static struct device_node *of_graph_get_port_by_reg(struct device_node *parent, u32 reg) { struct device_node *ports, *port; ports = of_get_child_by_name(parent, "ports"); if (ports) parent = ports; port = of_get_child_by_name_reg(parent, "port", reg); of_node_put(ports); return port; } static struct device_node * of_graph_get_endpoint_by_reg(struct device_node *port, u32 reg) { return of_get_child_by_name_reg(port, "endpoint", reg); } static int exynos_dsi_of_read_u32(const struct device_node *np, const char *propname, u32 *out_value) { int ret = of_property_read_u32(np, propname, out_value); if (ret < 0) pr_err("%s: failed to get '%s' property\n", np->full_name, propname); return ret; } enum { DSI_PORT_IN, DSI_PORT_OUT }; static int exynos_dsi_parse_dt(struct exynos_dsi *dsi) { struct device *dev = dsi->dev; struct device_node *node = dev->of_node; struct device_node *port, *ep; int ret; ret = exynos_dsi_of_read_u32(node, "samsung,pll-clock-frequency", &dsi->pll_clk_rate); if (ret < 0) return ret; port = of_graph_get_port_by_reg(node, DSI_PORT_OUT); if (!port) { dev_err(dev, "no output port specified\n"); return -EINVAL; } ep = of_graph_get_endpoint_by_reg(port, 0); of_node_put(port); if (!ep) { dev_err(dev, "no endpoint specified in output port\n"); return -EINVAL; } ret = exynos_dsi_of_read_u32(ep, "samsung,burst-clock-frequency", &dsi->burst_clk_rate); if (ret < 0) goto end; ret = exynos_dsi_of_read_u32(ep, "samsung,esc-clock-frequency", &dsi->esc_clk_rate); end: of_node_put(ep); return ret; } static int exynos_dsi_bind(struct device *dev, struct device *master, void *data) { struct exynos_drm_display *display = dev_get_drvdata(dev); struct exynos_dsi *dsi = display_to_dsi(display); struct drm_device *drm_dev = data; int ret; ret = exynos_drm_create_enc_conn(drm_dev, display); if (ret) { DRM_ERROR("Encoder create [%d] failed with %d\n", display->type, ret); return ret; } return mipi_dsi_host_register(&dsi->dsi_host); } static void exynos_dsi_unbind(struct device *dev, struct device *master, void *data) { struct exynos_drm_display *display = dev_get_drvdata(dev); struct exynos_dsi *dsi = display_to_dsi(display); exynos_dsi_dpms(display, DRM_MODE_DPMS_OFF); mipi_dsi_host_unregister(&dsi->dsi_host); } static const struct component_ops exynos_dsi_component_ops = { .bind = exynos_dsi_bind, .unbind = exynos_dsi_unbind, }; static int exynos_dsi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct resource *res; struct exynos_dsi *dsi; int ret; dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); if (!dsi) return -ENOMEM; dsi->display.type = EXYNOS_DISPLAY_TYPE_LCD; dsi->display.ops = &exynos_dsi_display_ops; ret = exynos_drm_component_add(dev, EXYNOS_DEVICE_TYPE_CONNECTOR, dsi->display.type); if (ret) return ret; /* To be checked as invalid one */ dsi->te_gpio = -ENOENT; init_completion(&dsi->completed); spin_lock_init(&dsi->transfer_lock); INIT_LIST_HEAD(&dsi->transfer_list); dsi->dsi_host.ops = &exynos_dsi_ops; dsi->dsi_host.dev = dev; dsi->dev = dev; dsi->driver_data = exynos_dsi_get_driver_data(pdev); ret = exynos_dsi_parse_dt(dsi); if (ret) goto err_del_component; dsi->supplies[0].supply = "vddcore"; dsi->supplies[1].supply = "vddio"; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dsi->supplies), dsi->supplies); if (ret) { dev_info(dev, "failed to get regulators: %d\n", ret); return -EPROBE_DEFER; } dsi->pll_clk = devm_clk_get(dev, "pll_clk"); if (IS_ERR(dsi->pll_clk)) { dev_info(dev, "failed to get dsi pll input clock\n"); ret = PTR_ERR(dsi->pll_clk); goto err_del_component; } dsi->bus_clk = devm_clk_get(dev, "bus_clk"); if (IS_ERR(dsi->bus_clk)) { dev_info(dev, "failed to get dsi bus clock\n"); ret = PTR_ERR(dsi->bus_clk); goto err_del_component; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); dsi->reg_base = devm_ioremap_resource(dev, res); if (IS_ERR(dsi->reg_base)) { dev_err(dev, "failed to remap io region\n"); ret = PTR_ERR(dsi->reg_base); goto err_del_component; } dsi->phy = devm_phy_get(dev, "dsim"); if (IS_ERR(dsi->phy)) { dev_info(dev, "failed to get dsim phy\n"); ret = PTR_ERR(dsi->phy); goto err_del_component; } dsi->irq = platform_get_irq(pdev, 0); if (dsi->irq < 0) { dev_err(dev, "failed to request dsi irq resource\n"); ret = dsi->irq; goto err_del_component; } irq_set_status_flags(dsi->irq, IRQ_NOAUTOEN); ret = devm_request_threaded_irq(dev, dsi->irq, NULL, exynos_dsi_irq, IRQF_ONESHOT, dev_name(dev), dsi); if (ret) { dev_err(dev, "failed to request dsi irq\n"); goto err_del_component; } platform_set_drvdata(pdev, &dsi->display); ret = component_add(dev, &exynos_dsi_component_ops); if (ret) goto err_del_component; return ret; err_del_component: exynos_drm_component_del(dev, EXYNOS_DEVICE_TYPE_CONNECTOR); return ret; } static int exynos_dsi_remove(struct platform_device *pdev) { component_del(&pdev->dev, &exynos_dsi_component_ops); exynos_drm_component_del(&pdev->dev, EXYNOS_DEVICE_TYPE_CONNECTOR); return 0; } struct platform_driver dsi_driver = { .probe = exynos_dsi_probe, .remove = exynos_dsi_remove, .driver = { .name = "exynos-dsi", .owner = THIS_MODULE, .of_match_table = exynos_dsi_of_match, }, }; MODULE_AUTHOR("Tomasz Figa <t.figa@samsung.com>"); MODULE_AUTHOR("Andrzej Hajda <a.hajda@samsung.com>"); MODULE_DESCRIPTION("Samsung SoC MIPI DSI Master"); MODULE_LICENSE("GPL v2");