/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: monk liu */ #include #include #include "amdgpu.h" #include "amdgpu_sched.h" #define to_amdgpu_ctx_entity(e) \ container_of((e), struct amdgpu_ctx_entity, entity) const unsigned int amdgpu_ctx_num_entities[AMDGPU_HW_IP_NUM] = { [AMDGPU_HW_IP_GFX] = 1, [AMDGPU_HW_IP_COMPUTE] = 4, [AMDGPU_HW_IP_DMA] = 2, [AMDGPU_HW_IP_UVD] = 1, [AMDGPU_HW_IP_VCE] = 1, [AMDGPU_HW_IP_UVD_ENC] = 1, [AMDGPU_HW_IP_VCN_DEC] = 1, [AMDGPU_HW_IP_VCN_ENC] = 1, }; static int amdgput_ctx_total_num_entities(void) { unsigned i, num_entities = 0; for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) num_entities += amdgpu_ctx_num_entities[i]; return num_entities; } static int amdgpu_ctx_priority_permit(struct drm_file *filp, enum drm_sched_priority priority) { /* NORMAL and below are accessible by everyone */ if (priority <= DRM_SCHED_PRIORITY_NORMAL) return 0; if (capable(CAP_SYS_NICE)) return 0; if (drm_is_current_master(filp)) return 0; return -EACCES; } static int amdgpu_ctx_init(struct amdgpu_device *adev, enum drm_sched_priority priority, struct drm_file *filp, struct amdgpu_ctx *ctx) { unsigned num_entities = amdgput_ctx_total_num_entities(); unsigned i, j; int r; if (priority < 0 || priority >= DRM_SCHED_PRIORITY_MAX) return -EINVAL; r = amdgpu_ctx_priority_permit(filp, priority); if (r) return r; memset(ctx, 0, sizeof(*ctx)); ctx->adev = adev; ctx->fences = kcalloc(amdgpu_sched_jobs * num_entities, sizeof(struct dma_fence*), GFP_KERNEL); if (!ctx->fences) return -ENOMEM; ctx->entities[0] = kcalloc(num_entities, sizeof(struct amdgpu_ctx_entity), GFP_KERNEL); if (!ctx->entities[0]) { r = -ENOMEM; goto error_free_fences; } for (i = 0; i < num_entities; ++i) { struct amdgpu_ctx_entity *entity = &ctx->entities[0][i]; entity->sequence = 1; entity->fences = &ctx->fences[amdgpu_sched_jobs * i]; } for (i = 1; i < AMDGPU_HW_IP_NUM; ++i) ctx->entities[i] = ctx->entities[i - 1] + amdgpu_ctx_num_entities[i - 1]; kref_init(&ctx->refcount); spin_lock_init(&ctx->ring_lock); mutex_init(&ctx->lock); ctx->reset_counter = atomic_read(&adev->gpu_reset_counter); ctx->reset_counter_query = ctx->reset_counter; ctx->vram_lost_counter = atomic_read(&adev->vram_lost_counter); ctx->init_priority = priority; ctx->override_priority = DRM_SCHED_PRIORITY_UNSET; for (i = 0; i < AMDGPU_HW_IP_NUM; ++i) { struct amdgpu_ring *rings[AMDGPU_MAX_RINGS]; struct drm_sched_rq *rqs[AMDGPU_MAX_RINGS]; unsigned num_rings; switch (i) { case AMDGPU_HW_IP_GFX: rings[0] = &adev->gfx.gfx_ring[0]; num_rings = 1; break; case AMDGPU_HW_IP_COMPUTE: for (j = 0; j < adev->gfx.num_compute_rings; ++j) rings[j] = &adev->gfx.compute_ring[j]; num_rings = adev->gfx.num_compute_rings; break; case AMDGPU_HW_IP_DMA: for (j = 0; j < adev->sdma.num_instances; ++j) rings[j] = &adev->sdma.instance[j].ring; num_rings = adev->sdma.num_instances; break; case AMDGPU_HW_IP_UVD: rings[0] = &adev->uvd.inst[0].ring; num_rings = 1; break; case AMDGPU_HW_IP_VCE: rings[0] = &adev->vce.ring[0]; num_rings = 1; break; case AMDGPU_HW_IP_UVD_ENC: rings[0] = &adev->uvd.inst[0].ring_enc[0]; num_rings = 1; break; case AMDGPU_HW_IP_VCN_DEC: rings[0] = &adev->vcn.ring_dec; num_rings = 1; break; case AMDGPU_HW_IP_VCN_ENC: rings[0] = &adev->vcn.ring_enc[0]; num_rings = 1; break; case AMDGPU_HW_IP_VCN_JPEG: rings[0] = &adev->vcn.ring_jpeg; num_rings = 1; break; } for (j = 0; j < num_rings; ++j) rqs[j] = &rings[j]->sched.sched_rq[priority]; for (j = 0; j < amdgpu_ctx_num_entities[i]; ++j) r = drm_sched_entity_init(&ctx->entities[i][j].entity, rqs, num_rings, &ctx->guilty); if (r) goto error_cleanup_entities; } return 0; error_cleanup_entities: for (i = 0; i < num_entities; ++i) drm_sched_entity_destroy(&ctx->entities[0][i].entity); kfree(ctx->entities[0]); error_free_fences: kfree(ctx->fences); ctx->fences = NULL; return r; } static void amdgpu_ctx_fini(struct kref *ref) { struct amdgpu_ctx *ctx = container_of(ref, struct amdgpu_ctx, refcount); unsigned num_entities = amdgput_ctx_total_num_entities(); struct amdgpu_device *adev = ctx->adev; unsigned i, j; if (!adev) return; for (i = 0; i < num_entities; ++i) for (j = 0; j < amdgpu_sched_jobs; ++j) dma_fence_put(ctx->entities[0][i].fences[j]); kfree(ctx->fences); kfree(ctx->entities[0]); mutex_destroy(&ctx->lock); kfree(ctx); } int amdgpu_ctx_get_entity(struct amdgpu_ctx *ctx, u32 hw_ip, u32 instance, u32 ring, struct drm_sched_entity **entity) { if (hw_ip >= AMDGPU_HW_IP_NUM) { DRM_ERROR("unknown HW IP type: %d\n", hw_ip); return -EINVAL; } /* Right now all IPs have only one instance - multiple rings. */ if (instance != 0) { DRM_DEBUG("invalid ip instance: %d\n", instance); return -EINVAL; } if (ring >= amdgpu_ctx_num_entities[hw_ip]) { DRM_DEBUG("invalid ring: %d %d\n", hw_ip, ring); return -EINVAL; } *entity = &ctx->entities[hw_ip][ring].entity; return 0; } static int amdgpu_ctx_alloc(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, struct drm_file *filp, enum drm_sched_priority priority, uint32_t *id) { struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr; struct amdgpu_ctx *ctx; int r; ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; mutex_lock(&mgr->lock); r = idr_alloc(&mgr->ctx_handles, ctx, 1, 0, GFP_KERNEL); if (r < 0) { mutex_unlock(&mgr->lock); kfree(ctx); return r; } *id = (uint32_t)r; r = amdgpu_ctx_init(adev, priority, filp, ctx); if (r) { idr_remove(&mgr->ctx_handles, *id); *id = 0; kfree(ctx); } mutex_unlock(&mgr->lock); return r; } static void amdgpu_ctx_do_release(struct kref *ref) { struct amdgpu_ctx *ctx; unsigned num_entities; u32 i; ctx = container_of(ref, struct amdgpu_ctx, refcount); num_entities = 0; for (i = 0; i < AMDGPU_HW_IP_NUM; i++) num_entities += amdgpu_ctx_num_entities[i]; for (i = 0; i < num_entities; i++) drm_sched_entity_destroy(&ctx->entities[0][i].entity); amdgpu_ctx_fini(ref); } static int amdgpu_ctx_free(struct amdgpu_fpriv *fpriv, uint32_t id) { struct amdgpu_ctx_mgr *mgr = &fpriv->ctx_mgr; struct amdgpu_ctx *ctx; mutex_lock(&mgr->lock); ctx = idr_remove(&mgr->ctx_handles, id); if (ctx) kref_put(&ctx->refcount, amdgpu_ctx_do_release); mutex_unlock(&mgr->lock); return ctx ? 0 : -EINVAL; } static int amdgpu_ctx_query(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, uint32_t id, union drm_amdgpu_ctx_out *out) { struct amdgpu_ctx *ctx; struct amdgpu_ctx_mgr *mgr; unsigned reset_counter; if (!fpriv) return -EINVAL; mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (!ctx) { mutex_unlock(&mgr->lock); return -EINVAL; } /* TODO: these two are always zero */ out->state.flags = 0x0; out->state.hangs = 0x0; /* determine if a GPU reset has occured since the last call */ reset_counter = atomic_read(&adev->gpu_reset_counter); /* TODO: this should ideally return NO, GUILTY, or INNOCENT. */ if (ctx->reset_counter_query == reset_counter) out->state.reset_status = AMDGPU_CTX_NO_RESET; else out->state.reset_status = AMDGPU_CTX_UNKNOWN_RESET; ctx->reset_counter_query = reset_counter; mutex_unlock(&mgr->lock); return 0; } static int amdgpu_ctx_query2(struct amdgpu_device *adev, struct amdgpu_fpriv *fpriv, uint32_t id, union drm_amdgpu_ctx_out *out) { struct amdgpu_ctx *ctx; struct amdgpu_ctx_mgr *mgr; if (!fpriv) return -EINVAL; mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (!ctx) { mutex_unlock(&mgr->lock); return -EINVAL; } out->state.flags = 0x0; out->state.hangs = 0x0; if (ctx->reset_counter != atomic_read(&adev->gpu_reset_counter)) out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_RESET; if (ctx->vram_lost_counter != atomic_read(&adev->vram_lost_counter)) out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_VRAMLOST; if (atomic_read(&ctx->guilty)) out->state.flags |= AMDGPU_CTX_QUERY2_FLAGS_GUILTY; mutex_unlock(&mgr->lock); return 0; } int amdgpu_ctx_ioctl(struct drm_device *dev, void *data, struct drm_file *filp) { int r; uint32_t id; enum drm_sched_priority priority; union drm_amdgpu_ctx *args = data; struct amdgpu_device *adev = dev->dev_private; struct amdgpu_fpriv *fpriv = filp->driver_priv; r = 0; id = args->in.ctx_id; priority = amdgpu_to_sched_priority(args->in.priority); /* For backwards compatibility reasons, we need to accept * ioctls with garbage in the priority field */ if (priority == DRM_SCHED_PRIORITY_INVALID) priority = DRM_SCHED_PRIORITY_NORMAL; switch (args->in.op) { case AMDGPU_CTX_OP_ALLOC_CTX: r = amdgpu_ctx_alloc(adev, fpriv, filp, priority, &id); args->out.alloc.ctx_id = id; break; case AMDGPU_CTX_OP_FREE_CTX: r = amdgpu_ctx_free(fpriv, id); break; case AMDGPU_CTX_OP_QUERY_STATE: r = amdgpu_ctx_query(adev, fpriv, id, &args->out); break; case AMDGPU_CTX_OP_QUERY_STATE2: r = amdgpu_ctx_query2(adev, fpriv, id, &args->out); break; default: return -EINVAL; } return r; } struct amdgpu_ctx *amdgpu_ctx_get(struct amdgpu_fpriv *fpriv, uint32_t id) { struct amdgpu_ctx *ctx; struct amdgpu_ctx_mgr *mgr; if (!fpriv) return NULL; mgr = &fpriv->ctx_mgr; mutex_lock(&mgr->lock); ctx = idr_find(&mgr->ctx_handles, id); if (ctx) kref_get(&ctx->refcount); mutex_unlock(&mgr->lock); return ctx; } int amdgpu_ctx_put(struct amdgpu_ctx *ctx) { if (ctx == NULL) return -EINVAL; kref_put(&ctx->refcount, amdgpu_ctx_do_release); return 0; } void amdgpu_ctx_add_fence(struct amdgpu_ctx *ctx, struct drm_sched_entity *entity, struct dma_fence *fence, uint64_t* handle) { struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity); uint64_t seq = centity->sequence; struct dma_fence *other = NULL; unsigned idx = 0; idx = seq & (amdgpu_sched_jobs - 1); other = centity->fences[idx]; if (other) BUG_ON(!dma_fence_is_signaled(other)); dma_fence_get(fence); spin_lock(&ctx->ring_lock); centity->fences[idx] = fence; centity->sequence++; spin_unlock(&ctx->ring_lock); dma_fence_put(other); if (handle) *handle = seq; } struct dma_fence *amdgpu_ctx_get_fence(struct amdgpu_ctx *ctx, struct drm_sched_entity *entity, uint64_t seq) { struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity); struct dma_fence *fence; spin_lock(&ctx->ring_lock); if (seq == ~0ull) seq = centity->sequence - 1; if (seq >= centity->sequence) { spin_unlock(&ctx->ring_lock); return ERR_PTR(-EINVAL); } if (seq + amdgpu_sched_jobs < centity->sequence) { spin_unlock(&ctx->ring_lock); return NULL; } fence = dma_fence_get(centity->fences[seq & (amdgpu_sched_jobs - 1)]); spin_unlock(&ctx->ring_lock); return fence; } void amdgpu_ctx_priority_override(struct amdgpu_ctx *ctx, enum drm_sched_priority priority) { unsigned num_entities = amdgput_ctx_total_num_entities(); enum drm_sched_priority ctx_prio; unsigned i; ctx->override_priority = priority; ctx_prio = (ctx->override_priority == DRM_SCHED_PRIORITY_UNSET) ? ctx->init_priority : ctx->override_priority; for (i = 0; i < num_entities; i++) { struct drm_sched_entity *entity = &ctx->entities[0][i].entity; drm_sched_entity_set_priority(entity, ctx_prio); } } int amdgpu_ctx_wait_prev_fence(struct amdgpu_ctx *ctx, struct drm_sched_entity *entity) { struct amdgpu_ctx_entity *centity = to_amdgpu_ctx_entity(entity); unsigned idx = centity->sequence & (amdgpu_sched_jobs - 1); struct dma_fence *other = centity->fences[idx]; if (other) { signed long r; r = dma_fence_wait(other, true); if (r < 0) { if (r != -ERESTARTSYS) DRM_ERROR("Error (%ld) waiting for fence!\n", r); return r; } } return 0; } void amdgpu_ctx_mgr_init(struct amdgpu_ctx_mgr *mgr) { mutex_init(&mgr->lock); idr_init(&mgr->ctx_handles); } void amdgpu_ctx_mgr_entity_flush(struct amdgpu_ctx_mgr *mgr) { unsigned num_entities = amdgput_ctx_total_num_entities(); struct amdgpu_ctx *ctx; struct idr *idp; uint32_t id, i; long max_wait = MAX_WAIT_SCHED_ENTITY_Q_EMPTY; idp = &mgr->ctx_handles; mutex_lock(&mgr->lock); idr_for_each_entry(idp, ctx, id) { if (!ctx->adev) { mutex_unlock(&mgr->lock); return; } for (i = 0; i < num_entities; i++) { struct drm_sched_entity *entity; entity = &ctx->entities[0][i].entity; max_wait = drm_sched_entity_flush(entity, max_wait); } } mutex_unlock(&mgr->lock); } void amdgpu_ctx_mgr_entity_fini(struct amdgpu_ctx_mgr *mgr) { unsigned num_entities = amdgput_ctx_total_num_entities(); struct amdgpu_ctx *ctx; struct idr *idp; uint32_t id, i; idp = &mgr->ctx_handles; idr_for_each_entry(idp, ctx, id) { if (!ctx->adev) return; if (kref_read(&ctx->refcount) != 1) { DRM_ERROR("ctx %p is still alive\n", ctx); continue; } for (i = 0; i < num_entities; i++) drm_sched_entity_fini(&ctx->entities[0][i].entity); } } void amdgpu_ctx_mgr_fini(struct amdgpu_ctx_mgr *mgr) { struct amdgpu_ctx *ctx; struct idr *idp; uint32_t id; amdgpu_ctx_mgr_entity_fini(mgr); idp = &mgr->ctx_handles; idr_for_each_entry(idp, ctx, id) { if (kref_put(&ctx->refcount, amdgpu_ctx_fini) != 1) DRM_ERROR("ctx %p is still alive\n", ctx); } idr_destroy(&mgr->ctx_handles); mutex_destroy(&mgr->lock); }