// SPDX-License-Identifier: GPL-2.0-only #include #include #include #include #include #include #include #include /* * Total register block size is 0x1C for one bank of four ports (A, B, C, D). * An optional second bank, with ports E, F, G, and H, may be present, starting * at register offset 0x1C. */ /* * Pin select: (0) "normal", (1) "dedicate peripheral" * Not used on RTL8380/RTL8390, peripheral selection is managed by control bits * in the peripheral registers. */ #define REALTEK_GPIO_REG_CNR 0x00 /* Clear bit (0) for input, set bit (1) for output */ #define REALTEK_GPIO_REG_DIR 0x08 #define REALTEK_GPIO_REG_DATA 0x0C /* Read bit for IRQ status, write 1 to clear IRQ */ #define REALTEK_GPIO_REG_ISR 0x10 /* Two bits per GPIO in IMR registers */ #define REALTEK_GPIO_REG_IMR 0x14 #define REALTEK_GPIO_REG_IMR_AB 0x14 #define REALTEK_GPIO_REG_IMR_CD 0x18 #define REALTEK_GPIO_IMR_LINE_MASK GENMASK(1, 0) #define REALTEK_GPIO_IRQ_EDGE_FALLING 1 #define REALTEK_GPIO_IRQ_EDGE_RISING 2 #define REALTEK_GPIO_IRQ_EDGE_BOTH 3 #define REALTEK_GPIO_MAX 32 #define REALTEK_GPIO_PORTS_PER_BANK 4 /** * realtek_gpio_ctrl - Realtek Otto GPIO driver data * * @gc: Associated gpio_chip instance * @base: Base address of the register block for a GPIO bank * @lock: Lock for accessing the IRQ registers and values * @intr_mask: Mask for interrupts lines * @intr_type: Interrupt type selection * * Because the interrupt mask register (IMR) combines the function of IRQ type * selection and masking, two extra values are stored. @intr_mask is used to * mask/unmask the interrupts for a GPIO port, and @intr_type is used to store * the selected interrupt types. The logical AND of these values is written to * IMR on changes. */ struct realtek_gpio_ctrl { struct gpio_chip gc; void __iomem *base; void __iomem *cpumask_base; struct cpumask cpu_irq_maskable; raw_spinlock_t lock; u16 intr_mask[REALTEK_GPIO_PORTS_PER_BANK]; u16 intr_type[REALTEK_GPIO_PORTS_PER_BANK]; unsigned int (*port_offset_u8)(unsigned int port); unsigned int (*port_offset_u16)(unsigned int port); }; /* Expand with more flags as devices with other quirks are added */ enum realtek_gpio_flags { /* * Allow disabling interrupts, for cases where the port order is * unknown. This may result in a port mismatch between ISR and IMR. * An interrupt would appear to come from a different line than the * line the IRQ handler was assigned to, causing uncaught interrupts. */ GPIO_INTERRUPTS_DISABLED = BIT(0), /* * Port order is reversed, meaning DCBA register layout for 1-bit * fields, and [BA, DC] for 2-bit fields. */ GPIO_PORTS_REVERSED = BIT(1), /* * Interrupts can be enabled per cpu. This requires a secondary IO * range, where the per-cpu enable masks are located. */ GPIO_INTERRUPTS_PER_CPU = BIT(2), }; static struct realtek_gpio_ctrl *irq_data_to_ctrl(struct irq_data *data) { struct gpio_chip *gc = irq_data_get_irq_chip_data(data); return container_of(gc, struct realtek_gpio_ctrl, gc); } /* * Normal port order register access * * Port information is stored with the first port at offset 0, followed by the * second, etc. Most registers store one bit per GPIO and use a u8 value per * port. The two interrupt mask registers store two bits per GPIO, so use u16 * values. */ static unsigned int realtek_gpio_port_offset_u8(unsigned int port) { return port; } static unsigned int realtek_gpio_port_offset_u16(unsigned int port) { return 2 * port; } /* * Reversed port order register access * * For registers with one bit per GPIO, all ports are stored as u8-s in one * register in reversed order. The two interrupt mask registers store two bits * per GPIO, so use u16 values. The first register contains ports 1 and 0, the * second ports 3 and 2. */ static unsigned int realtek_gpio_port_offset_u8_rev(unsigned int port) { return 3 - port; } static unsigned int realtek_gpio_port_offset_u16_rev(unsigned int port) { return 2 * (port ^ 1); } static void realtek_gpio_write_imr(struct realtek_gpio_ctrl *ctrl, unsigned int port, u16 irq_type, u16 irq_mask) { iowrite16(irq_type & irq_mask, ctrl->base + REALTEK_GPIO_REG_IMR + ctrl->port_offset_u16(port)); } static void realtek_gpio_clear_isr(struct realtek_gpio_ctrl *ctrl, unsigned int port, u8 mask) { iowrite8(mask, ctrl->base + REALTEK_GPIO_REG_ISR + ctrl->port_offset_u8(port)); } static u8 realtek_gpio_read_isr(struct realtek_gpio_ctrl *ctrl, unsigned int port) { return ioread8(ctrl->base + REALTEK_GPIO_REG_ISR + ctrl->port_offset_u8(port)); } /* Set the rising and falling edge mask bits for a GPIO port pin */ static u16 realtek_gpio_imr_bits(unsigned int pin, u16 value) { return (value & REALTEK_GPIO_IMR_LINE_MASK) << 2 * pin; } static void realtek_gpio_irq_ack(struct irq_data *data) { struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data); irq_hw_number_t line = irqd_to_hwirq(data); unsigned int port = line / 8; unsigned int port_pin = line % 8; realtek_gpio_clear_isr(ctrl, port, BIT(port_pin)); } static void realtek_gpio_irq_unmask(struct irq_data *data) { struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data); unsigned int line = irqd_to_hwirq(data); unsigned int port = line / 8; unsigned int port_pin = line % 8; unsigned long flags; u16 m; raw_spin_lock_irqsave(&ctrl->lock, flags); m = ctrl->intr_mask[port]; m |= realtek_gpio_imr_bits(port_pin, REALTEK_GPIO_IMR_LINE_MASK); ctrl->intr_mask[port] = m; realtek_gpio_write_imr(ctrl, port, ctrl->intr_type[port], m); raw_spin_unlock_irqrestore(&ctrl->lock, flags); } static void realtek_gpio_irq_mask(struct irq_data *data) { struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data); unsigned int line = irqd_to_hwirq(data); unsigned int port = line / 8; unsigned int port_pin = line % 8; unsigned long flags; u16 m; raw_spin_lock_irqsave(&ctrl->lock, flags); m = ctrl->intr_mask[port]; m &= ~realtek_gpio_imr_bits(port_pin, REALTEK_GPIO_IMR_LINE_MASK); ctrl->intr_mask[port] = m; realtek_gpio_write_imr(ctrl, port, ctrl->intr_type[port], m); raw_spin_unlock_irqrestore(&ctrl->lock, flags); } static int realtek_gpio_irq_set_type(struct irq_data *data, unsigned int flow_type) { struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data); unsigned int line = irqd_to_hwirq(data); unsigned int port = line / 8; unsigned int port_pin = line % 8; unsigned long flags; u16 type, t; switch (flow_type & IRQ_TYPE_SENSE_MASK) { case IRQ_TYPE_EDGE_FALLING: type = REALTEK_GPIO_IRQ_EDGE_FALLING; break; case IRQ_TYPE_EDGE_RISING: type = REALTEK_GPIO_IRQ_EDGE_RISING; break; case IRQ_TYPE_EDGE_BOTH: type = REALTEK_GPIO_IRQ_EDGE_BOTH; break; default: return -EINVAL; } irq_set_handler_locked(data, handle_edge_irq); raw_spin_lock_irqsave(&ctrl->lock, flags); t = ctrl->intr_type[port]; t &= ~realtek_gpio_imr_bits(port_pin, REALTEK_GPIO_IMR_LINE_MASK); t |= realtek_gpio_imr_bits(port_pin, type); ctrl->intr_type[port] = t; realtek_gpio_write_imr(ctrl, port, t, ctrl->intr_mask[port]); raw_spin_unlock_irqrestore(&ctrl->lock, flags); return 0; } static void realtek_gpio_irq_handler(struct irq_desc *desc) { struct gpio_chip *gc = irq_desc_get_handler_data(desc); struct realtek_gpio_ctrl *ctrl = gpiochip_get_data(gc); struct irq_chip *irq_chip = irq_desc_get_chip(desc); unsigned int lines_done; unsigned int port_pin_count; unsigned long status; int offset; chained_irq_enter(irq_chip, desc); for (lines_done = 0; lines_done < gc->ngpio; lines_done += 8) { status = realtek_gpio_read_isr(ctrl, lines_done / 8); port_pin_count = min(gc->ngpio - lines_done, 8U); for_each_set_bit(offset, &status, port_pin_count) generic_handle_domain_irq(gc->irq.domain, offset + lines_done); } chained_irq_exit(irq_chip, desc); } static inline void __iomem *realtek_gpio_irq_cpu_mask(struct realtek_gpio_ctrl *ctrl, unsigned int port, int cpu) { return ctrl->cpumask_base + ctrl->port_offset_u8(port) + REALTEK_GPIO_PORTS_PER_BANK * cpu; } static int realtek_gpio_irq_set_affinity(struct irq_data *data, const struct cpumask *dest, bool force) { struct realtek_gpio_ctrl *ctrl = irq_data_to_ctrl(data); unsigned int line = irqd_to_hwirq(data); unsigned int port = line / 8; unsigned int port_pin = line % 8; void __iomem *irq_cpu_mask; unsigned long flags; int cpu; u8 v; if (!ctrl->cpumask_base) return -ENXIO; raw_spin_lock_irqsave(&ctrl->lock, flags); for_each_cpu(cpu, &ctrl->cpu_irq_maskable) { irq_cpu_mask = realtek_gpio_irq_cpu_mask(ctrl, port, cpu); v = ioread8(irq_cpu_mask); if (cpumask_test_cpu(cpu, dest)) v |= BIT(port_pin); else v &= ~BIT(port_pin); iowrite8(v, irq_cpu_mask); } raw_spin_unlock_irqrestore(&ctrl->lock, flags); irq_data_update_effective_affinity(data, dest); return 0; } static int realtek_gpio_irq_init(struct gpio_chip *gc) { struct realtek_gpio_ctrl *ctrl = gpiochip_get_data(gc); unsigned int port; int cpu; for (port = 0; (port * 8) < gc->ngpio; port++) { realtek_gpio_write_imr(ctrl, port, 0, 0); realtek_gpio_clear_isr(ctrl, port, GENMASK(7, 0)); for_each_cpu(cpu, &ctrl->cpu_irq_maskable) iowrite8(GENMASK(7, 0), realtek_gpio_irq_cpu_mask(ctrl, port, cpu)); } return 0; } static struct irq_chip realtek_gpio_irq_chip = { .name = "realtek-otto-gpio", .irq_ack = realtek_gpio_irq_ack, .irq_mask = realtek_gpio_irq_mask, .irq_unmask = realtek_gpio_irq_unmask, .irq_set_type = realtek_gpio_irq_set_type, .irq_set_affinity = realtek_gpio_irq_set_affinity, }; static const struct of_device_id realtek_gpio_of_match[] = { { .compatible = "realtek,otto-gpio", .data = (void *)GPIO_INTERRUPTS_DISABLED, }, { .compatible = "realtek,rtl8380-gpio", }, { .compatible = "realtek,rtl8390-gpio", }, {} }; MODULE_DEVICE_TABLE(of, realtek_gpio_of_match); static int realtek_gpio_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; unsigned long bgpio_flags; unsigned int dev_flags; struct gpio_irq_chip *girq; struct realtek_gpio_ctrl *ctrl; struct resource *res; u32 ngpios; unsigned int nr_cpus; int cpu, err, irq; ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; dev_flags = (unsigned int) device_get_match_data(dev); ngpios = REALTEK_GPIO_MAX; device_property_read_u32(dev, "ngpios", &ngpios); if (ngpios > REALTEK_GPIO_MAX) { dev_err(&pdev->dev, "invalid ngpios (max. %d)\n", REALTEK_GPIO_MAX); return -EINVAL; } ctrl->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ctrl->base)) return PTR_ERR(ctrl->base); raw_spin_lock_init(&ctrl->lock); if (dev_flags & GPIO_PORTS_REVERSED) { bgpio_flags = 0; ctrl->port_offset_u8 = realtek_gpio_port_offset_u8_rev; ctrl->port_offset_u16 = realtek_gpio_port_offset_u16_rev; } else { bgpio_flags = BGPIOF_BIG_ENDIAN_BYTE_ORDER; ctrl->port_offset_u8 = realtek_gpio_port_offset_u8; ctrl->port_offset_u16 = realtek_gpio_port_offset_u16; } err = bgpio_init(&ctrl->gc, dev, 4, ctrl->base + REALTEK_GPIO_REG_DATA, NULL, NULL, ctrl->base + REALTEK_GPIO_REG_DIR, NULL, bgpio_flags); if (err) { dev_err(dev, "unable to init generic GPIO"); return err; } ctrl->gc.ngpio = ngpios; ctrl->gc.owner = THIS_MODULE; irq = platform_get_irq_optional(pdev, 0); if (!(dev_flags & GPIO_INTERRUPTS_DISABLED) && irq > 0) { girq = &ctrl->gc.irq; girq->chip = &realtek_gpio_irq_chip; girq->default_type = IRQ_TYPE_NONE; girq->handler = handle_bad_irq; girq->parent_handler = realtek_gpio_irq_handler; girq->num_parents = 1; girq->parents = devm_kcalloc(dev, girq->num_parents, sizeof(*girq->parents), GFP_KERNEL); if (!girq->parents) return -ENOMEM; girq->parents[0] = irq; girq->init_hw = realtek_gpio_irq_init; } cpumask_clear(&ctrl->cpu_irq_maskable); if ((dev_flags & GPIO_INTERRUPTS_PER_CPU) && irq > 0) { ctrl->cpumask_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res); if (IS_ERR(ctrl->cpumask_base)) return dev_err_probe(dev, PTR_ERR(ctrl->cpumask_base), "missing CPU IRQ mask registers"); nr_cpus = resource_size(res) / REALTEK_GPIO_PORTS_PER_BANK; nr_cpus = min(nr_cpus, num_present_cpus()); for (cpu = 0; cpu < nr_cpus; cpu++) cpumask_set_cpu(cpu, &ctrl->cpu_irq_maskable); } return devm_gpiochip_add_data(dev, &ctrl->gc, ctrl); } static struct platform_driver realtek_gpio_driver = { .driver = { .name = "realtek-otto-gpio", .of_match_table = realtek_gpio_of_match, }, .probe = realtek_gpio_probe, }; module_platform_driver(realtek_gpio_driver); MODULE_DESCRIPTION("Realtek Otto GPIO support"); MODULE_AUTHOR("Sander Vanheule "); MODULE_LICENSE("GPL v2");