/* * linux/arch/arm/plat-pxa/gpio.c * * Generic PXA GPIO handling * * Author: Nicolas Pitre * Created: Jun 15, 2001 * Copyright: MontaVista Software Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include int pxa_last_gpio; struct pxa_gpio_chip { struct gpio_chip chip; void __iomem *regbase; char label[10]; unsigned long irq_mask; unsigned long irq_edge_rise; unsigned long irq_edge_fall; #ifdef CONFIG_PM unsigned long saved_gplr; unsigned long saved_gpdr; unsigned long saved_grer; unsigned long saved_gfer; #endif }; enum { PXA25X_GPIO = 0, PXA26X_GPIO, PXA27X_GPIO, PXA3XX_GPIO, PXA93X_GPIO, MMP_GPIO = 0x10, MMP2_GPIO, }; static DEFINE_SPINLOCK(gpio_lock); static struct pxa_gpio_chip *pxa_gpio_chips; static int gpio_type; #define for_each_gpio_chip(i, c) \ for (i = 0, c = &pxa_gpio_chips[0]; i <= pxa_last_gpio; i += 32, c++) static inline void __iomem *gpio_chip_base(struct gpio_chip *c) { return container_of(c, struct pxa_gpio_chip, chip)->regbase; } static inline struct pxa_gpio_chip *gpio_to_pxachip(unsigned gpio) { return &pxa_gpio_chips[gpio_to_bank(gpio)]; } static inline int gpio_is_pxa_type(int type) { return (type & MMP_GPIO) == 0; } static inline int gpio_is_mmp_type(int type) { return (type & MMP_GPIO) != 0; } #ifdef CONFIG_ARCH_PXA static inline int __pxa_gpio_to_irq(int gpio) { if (gpio_is_pxa_type(gpio_type)) return PXA_GPIO_TO_IRQ(gpio); return -1; } static inline int __pxa_irq_to_gpio(int irq) { if (gpio_is_pxa_type(gpio_type)) return irq - PXA_GPIO_TO_IRQ(0); return -1; } #else static inline int __pxa_gpio_to_irq(int gpio) { return -1; } static inline int __pxa_irq_to_gpio(int irq) { return -1; } #endif #ifdef CONFIG_ARCH_MMP static inline int __mmp_gpio_to_irq(int gpio) { if (gpio_is_mmp_type(gpio_type)) return MMP_GPIO_TO_IRQ(gpio); return -1; } static inline int __mmp_irq_to_gpio(int irq) { if (gpio_is_mmp_type(gpio_type)) return irq - MMP_GPIO_TO_IRQ(0); return -1; } #else static inline int __mmp_gpio_to_irq(int gpio) { return -1; } static inline int __mmp_irq_to_gpio(int irq) { return -1; } #endif static int pxa_gpio_to_irq(struct gpio_chip *chip, unsigned offset) { int gpio, ret; gpio = chip->base + offset; ret = __pxa_gpio_to_irq(gpio); if (ret >= 0) return ret; return __mmp_gpio_to_irq(gpio); } int pxa_irq_to_gpio(int irq) { int ret; ret = __pxa_irq_to_gpio(irq); if (ret >= 0) return ret; return __mmp_irq_to_gpio(irq); } static int pxa_gpio_direction_input(struct gpio_chip *chip, unsigned offset) { void __iomem *base = gpio_chip_base(chip); uint32_t value, mask = 1 << offset; unsigned long flags; spin_lock_irqsave(&gpio_lock, flags); value = __raw_readl(base + GPDR_OFFSET); if (__gpio_is_inverted(chip->base + offset)) value |= mask; else value &= ~mask; __raw_writel(value, base + GPDR_OFFSET); spin_unlock_irqrestore(&gpio_lock, flags); return 0; } static int pxa_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value) { void __iomem *base = gpio_chip_base(chip); uint32_t tmp, mask = 1 << offset; unsigned long flags; __raw_writel(mask, base + (value ? GPSR_OFFSET : GPCR_OFFSET)); spin_lock_irqsave(&gpio_lock, flags); tmp = __raw_readl(base + GPDR_OFFSET); if (__gpio_is_inverted(chip->base + offset)) tmp &= ~mask; else tmp |= mask; __raw_writel(tmp, base + GPDR_OFFSET); spin_unlock_irqrestore(&gpio_lock, flags); return 0; } static int pxa_gpio_get(struct gpio_chip *chip, unsigned offset) { return __raw_readl(gpio_chip_base(chip) + GPLR_OFFSET) & (1 << offset); } static void pxa_gpio_set(struct gpio_chip *chip, unsigned offset, int value) { __raw_writel(1 << offset, gpio_chip_base(chip) + (value ? GPSR_OFFSET : GPCR_OFFSET)); } static int __init pxa_init_gpio_chip(int gpio_end) { int i, gpio, nbanks = gpio_to_bank(gpio_end) + 1; struct pxa_gpio_chip *chips; chips = kzalloc(nbanks * sizeof(struct pxa_gpio_chip), GFP_KERNEL); if (chips == NULL) { pr_err("%s: failed to allocate GPIO chips\n", __func__); return -ENOMEM; } for (i = 0, gpio = 0; i < nbanks; i++, gpio += 32) { struct gpio_chip *c = &chips[i].chip; sprintf(chips[i].label, "gpio-%d", i); chips[i].regbase = GPIO_BANK(i); c->base = gpio; c->label = chips[i].label; c->direction_input = pxa_gpio_direction_input; c->direction_output = pxa_gpio_direction_output; c->get = pxa_gpio_get; c->set = pxa_gpio_set; c->to_irq = pxa_gpio_to_irq; /* number of GPIOs on last bank may be less than 32 */ c->ngpio = (gpio + 31 > gpio_end) ? (gpio_end - gpio + 1) : 32; gpiochip_add(c); } pxa_gpio_chips = chips; return 0; } /* Update only those GRERx and GFERx edge detection register bits if those * bits are set in c->irq_mask */ static inline void update_edge_detect(struct pxa_gpio_chip *c) { uint32_t grer, gfer; grer = __raw_readl(c->regbase + GRER_OFFSET) & ~c->irq_mask; gfer = __raw_readl(c->regbase + GFER_OFFSET) & ~c->irq_mask; grer |= c->irq_edge_rise & c->irq_mask; gfer |= c->irq_edge_fall & c->irq_mask; __raw_writel(grer, c->regbase + GRER_OFFSET); __raw_writel(gfer, c->regbase + GFER_OFFSET); } static int pxa_gpio_irq_type(struct irq_data *d, unsigned int type) { struct pxa_gpio_chip *c; int gpio = pxa_irq_to_gpio(d->irq); unsigned long gpdr, mask = GPIO_bit(gpio); c = gpio_to_pxachip(gpio); if (type == IRQ_TYPE_PROBE) { /* Don't mess with enabled GPIOs using preconfigured edges or * GPIOs set to alternate function or to output during probe */ if ((c->irq_edge_rise | c->irq_edge_fall) & GPIO_bit(gpio)) return 0; if (__gpio_is_occupied(gpio)) return 0; type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING; } gpdr = __raw_readl(c->regbase + GPDR_OFFSET); if (__gpio_is_inverted(gpio)) __raw_writel(gpdr | mask, c->regbase + GPDR_OFFSET); else __raw_writel(gpdr & ~mask, c->regbase + GPDR_OFFSET); if (type & IRQ_TYPE_EDGE_RISING) c->irq_edge_rise |= mask; else c->irq_edge_rise &= ~mask; if (type & IRQ_TYPE_EDGE_FALLING) c->irq_edge_fall |= mask; else c->irq_edge_fall &= ~mask; update_edge_detect(c); pr_debug("%s: IRQ%d (GPIO%d) - edge%s%s\n", __func__, d->irq, gpio, ((type & IRQ_TYPE_EDGE_RISING) ? " rising" : ""), ((type & IRQ_TYPE_EDGE_FALLING) ? " falling" : "")); return 0; } static void pxa_gpio_demux_handler(unsigned int irq, struct irq_desc *desc) { struct pxa_gpio_chip *c; int loop, gpio, gpio_base, n; unsigned long gedr; do { loop = 0; for_each_gpio_chip(gpio, c) { gpio_base = c->chip.base; gedr = __raw_readl(c->regbase + GEDR_OFFSET); gedr = gedr & c->irq_mask; __raw_writel(gedr, c->regbase + GEDR_OFFSET); n = find_first_bit(&gedr, BITS_PER_LONG); while (n < BITS_PER_LONG) { loop = 1; generic_handle_irq(gpio_to_irq(gpio_base + n)); n = find_next_bit(&gedr, BITS_PER_LONG, n + 1); } } } while (loop); } static void pxa_ack_muxed_gpio(struct irq_data *d) { int gpio = pxa_irq_to_gpio(d->irq); struct pxa_gpio_chip *c = gpio_to_pxachip(gpio); __raw_writel(GPIO_bit(gpio), c->regbase + GEDR_OFFSET); } static void pxa_mask_muxed_gpio(struct irq_data *d) { int gpio = pxa_irq_to_gpio(d->irq); struct pxa_gpio_chip *c = gpio_to_pxachip(gpio); uint32_t grer, gfer; c->irq_mask &= ~GPIO_bit(gpio); grer = __raw_readl(c->regbase + GRER_OFFSET) & ~GPIO_bit(gpio); gfer = __raw_readl(c->regbase + GFER_OFFSET) & ~GPIO_bit(gpio); __raw_writel(grer, c->regbase + GRER_OFFSET); __raw_writel(gfer, c->regbase + GFER_OFFSET); } static void pxa_unmask_muxed_gpio(struct irq_data *d) { int gpio = pxa_irq_to_gpio(d->irq); struct pxa_gpio_chip *c = gpio_to_pxachip(gpio); c->irq_mask |= GPIO_bit(gpio); update_edge_detect(c); } static struct irq_chip pxa_muxed_gpio_chip = { .name = "GPIO", .irq_ack = pxa_ack_muxed_gpio, .irq_mask = pxa_mask_muxed_gpio, .irq_unmask = pxa_unmask_muxed_gpio, .irq_set_type = pxa_gpio_irq_type, }; void __init pxa_init_gpio(int mux_irq, int start, int end, set_wake_t fn) { struct pxa_gpio_chip *c; int gpio, irq; pxa_last_gpio = end; /* Initialize GPIO chips */ pxa_init_gpio_chip(end); /* clear all GPIO edge detects */ for_each_gpio_chip(gpio, c) { __raw_writel(0, c->regbase + GFER_OFFSET); __raw_writel(0, c->regbase + GRER_OFFSET); __raw_writel(~0,c->regbase + GEDR_OFFSET); } #ifdef CONFIG_ARCH_PXA irq = gpio_to_irq(0); irq_set_chip_and_handler(irq, &pxa_muxed_gpio_chip, handle_edge_irq); set_irq_flags(irq, IRQF_VALID | IRQF_PROBE); irq_set_chained_handler(IRQ_GPIO0, pxa_gpio_demux_handler); irq = gpio_to_irq(1); irq_set_chip_and_handler(irq, &pxa_muxed_gpio_chip, handle_edge_irq); set_irq_flags(irq, IRQF_VALID | IRQF_PROBE); irq_set_chained_handler(IRQ_GPIO1, pxa_gpio_demux_handler); #endif for (irq = gpio_to_irq(start); irq <= gpio_to_irq(end); irq++) { irq_set_chip_and_handler(irq, &pxa_muxed_gpio_chip, handle_edge_irq); set_irq_flags(irq, IRQF_VALID | IRQF_PROBE); } /* Install handler for GPIO>=2 edge detect interrupts */ irq_set_chained_handler(mux_irq, pxa_gpio_demux_handler); pxa_muxed_gpio_chip.irq_set_wake = fn; } #ifdef CONFIG_PM static int pxa_gpio_suspend(void) { struct pxa_gpio_chip *c; int gpio; for_each_gpio_chip(gpio, c) { c->saved_gplr = __raw_readl(c->regbase + GPLR_OFFSET); c->saved_gpdr = __raw_readl(c->regbase + GPDR_OFFSET); c->saved_grer = __raw_readl(c->regbase + GRER_OFFSET); c->saved_gfer = __raw_readl(c->regbase + GFER_OFFSET); /* Clear GPIO transition detect bits */ __raw_writel(0xffffffff, c->regbase + GEDR_OFFSET); } return 0; } static void pxa_gpio_resume(void) { struct pxa_gpio_chip *c; int gpio; for_each_gpio_chip(gpio, c) { /* restore level with set/clear */ __raw_writel( c->saved_gplr, c->regbase + GPSR_OFFSET); __raw_writel(~c->saved_gplr, c->regbase + GPCR_OFFSET); __raw_writel(c->saved_grer, c->regbase + GRER_OFFSET); __raw_writel(c->saved_gfer, c->regbase + GFER_OFFSET); __raw_writel(c->saved_gpdr, c->regbase + GPDR_OFFSET); } } #else #define pxa_gpio_suspend NULL #define pxa_gpio_resume NULL #endif struct syscore_ops pxa_gpio_syscore_ops = { .suspend = pxa_gpio_suspend, .resume = pxa_gpio_resume, };