/* * A FSI master controller, using a simple GPIO bit-banging interface */ #include #include #include #include #include #include #include #include #include #include #include "fsi-master.h" #define FSI_GPIO_STD_DLY 1 /* Standard pin delay in nS */ #define FSI_ECHO_DELAY_CLOCKS 16 /* Number clocks for echo delay */ #define FSI_PRE_BREAK_CLOCKS 50 /* Number clocks to prep for break */ #define FSI_BREAK_CLOCKS 256 /* Number of clocks to issue break */ #define FSI_POST_BREAK_CLOCKS 16000 /* Number clocks to set up cfam */ #define FSI_INIT_CLOCKS 5000 /* Clock out any old data */ #define FSI_GPIO_STD_DELAY 10 /* Standard GPIO delay in nS */ /* todo: adjust down as low as */ /* possible or eliminate */ #define FSI_GPIO_CMD_DPOLL 0x2 #define FSI_GPIO_CMD_TERM 0x3f #define FSI_GPIO_CMD_ABS_AR 0x4 #define FSI_GPIO_DPOLL_CLOCKS 100 /* < 21 will cause slave to hang */ /* Bus errors */ #define FSI_GPIO_ERR_BUSY 1 /* Slave stuck in busy state */ #define FSI_GPIO_RESP_ERRA 2 /* Any (misc) Error */ #define FSI_GPIO_RESP_ERRC 3 /* Slave reports master CRC error */ #define FSI_GPIO_MTOE 4 /* Master time out error */ #define FSI_GPIO_CRC_INVAL 5 /* Master reports slave CRC error */ /* Normal slave responses */ #define FSI_GPIO_RESP_BUSY 1 #define FSI_GPIO_RESP_ACK 0 #define FSI_GPIO_RESP_ACKD 4 #define FSI_GPIO_MAX_BUSY 100 #define FSI_GPIO_MTOE_COUNT 1000 #define FSI_GPIO_DRAIN_BITS 20 #define FSI_GPIO_CRC_SIZE 4 #define FSI_GPIO_MSG_ID_SIZE 2 #define FSI_GPIO_MSG_RESPID_SIZE 2 #define FSI_GPIO_PRIME_SLAVE_CLOCKS 100 struct fsi_master_gpio { struct fsi_master master; struct device *dev; spinlock_t cmd_lock; /* Lock for commands */ struct gpio_desc *gpio_clk; struct gpio_desc *gpio_data; struct gpio_desc *gpio_trans; /* Voltage translator */ struct gpio_desc *gpio_enable; /* FSI enable */ struct gpio_desc *gpio_mux; /* Mux control */ }; #define to_fsi_master_gpio(m) container_of(m, struct fsi_master_gpio, master) struct fsi_gpio_msg { uint64_t msg; uint8_t bits; }; static void clock_toggle(struct fsi_master_gpio *master, int count) { int i; for (i = 0; i < count; i++) { ndelay(FSI_GPIO_STD_DLY); gpiod_set_value(master->gpio_clk, 0); ndelay(FSI_GPIO_STD_DLY); gpiod_set_value(master->gpio_clk, 1); } } static int sda_in(struct fsi_master_gpio *master) { int in; ndelay(FSI_GPIO_STD_DLY); in = gpiod_get_value(master->gpio_data); return in ? 1 : 0; } static void sda_out(struct fsi_master_gpio *master, int value) { gpiod_set_value(master->gpio_data, value); } static void set_sda_input(struct fsi_master_gpio *master) { gpiod_direction_input(master->gpio_data); gpiod_set_value(master->gpio_trans, 0); } static void set_sda_output(struct fsi_master_gpio *master, int value) { gpiod_set_value(master->gpio_trans, 1); gpiod_direction_output(master->gpio_data, value); } static void clock_zeros(struct fsi_master_gpio *master, int count) { set_sda_output(master, 1); clock_toggle(master, count); } static void serial_in(struct fsi_master_gpio *master, struct fsi_gpio_msg *msg, uint8_t num_bits) { uint8_t bit, in_bit; set_sda_input(master); for (bit = 0; bit < num_bits; bit++) { clock_toggle(master, 1); in_bit = sda_in(master); msg->msg <<= 1; msg->msg |= ~in_bit & 0x1; /* Data is active low */ } msg->bits += num_bits; } static void serial_out(struct fsi_master_gpio *master, const struct fsi_gpio_msg *cmd) { uint8_t bit; uint64_t msg = ~cmd->msg; /* Data is active low */ uint64_t sda_mask = 0x1ULL << (cmd->bits - 1); uint64_t last_bit = ~0; int next_bit; if (!cmd->bits) { dev_warn(master->dev, "trying to output 0 bits\n"); return; } set_sda_output(master, 0); /* Send the start bit */ sda_out(master, 0); clock_toggle(master, 1); /* Send the message */ for (bit = 0; bit < cmd->bits; bit++) { next_bit = (msg & sda_mask) >> (cmd->bits - 1); if (last_bit ^ next_bit) { sda_out(master, next_bit); last_bit = next_bit; } clock_toggle(master, 1); msg <<= 1; } } static void msg_push_bits(struct fsi_gpio_msg *msg, uint64_t data, int bits) { msg->msg <<= bits; msg->msg |= data & ((1ull << bits) - 1); msg->bits += bits; } static void msg_push_crc(struct fsi_gpio_msg *msg) { uint8_t crc; int top; top = msg->bits & 0x3; /* start bit, and any non-aligned top bits */ crc = crc4(0, 1 << top | msg->msg >> (msg->bits - top), top + 1); /* aligned bits */ crc = crc4(crc, msg->msg, msg->bits - top); msg_push_bits(msg, crc, 4); } /* * Encode an Absolute Address command */ static void build_abs_ar_command(struct fsi_gpio_msg *cmd, uint8_t id, uint32_t addr, size_t size, const void *data) { bool write = !!data; uint8_t ds; int i; cmd->bits = 0; cmd->msg = 0; msg_push_bits(cmd, id, 2); msg_push_bits(cmd, FSI_GPIO_CMD_ABS_AR, 3); msg_push_bits(cmd, write ? 0 : 1, 1); /* * The read/write size is encoded in the lower bits of the address * (as it must be naturally-aligned), and the following ds bit. * * size addr:1 addr:0 ds * 1 x x 0 * 2 x 0 1 * 4 0 1 1 * */ ds = size > 1 ? 1 : 0; addr &= ~(size - 1); if (size == 4) addr |= 1; msg_push_bits(cmd, addr & ((1 << 21) - 1), 21); msg_push_bits(cmd, ds, 1); for (i = 0; write && i < size; i++) msg_push_bits(cmd, ((uint8_t *)data)[i], 8); msg_push_crc(cmd); } static void build_dpoll_command(struct fsi_gpio_msg *cmd, uint8_t slave_id) { cmd->bits = 0; cmd->msg = 0; msg_push_bits(cmd, slave_id, 2); msg_push_bits(cmd, FSI_GPIO_CMD_DPOLL, 3); msg_push_crc(cmd); } static void echo_delay(struct fsi_master_gpio *master) { set_sda_output(master, 1); clock_toggle(master, FSI_ECHO_DELAY_CLOCKS); } static void build_term_command(struct fsi_gpio_msg *cmd, uint8_t slave_id) { cmd->bits = 0; cmd->msg = 0; msg_push_bits(cmd, slave_id, 2); msg_push_bits(cmd, FSI_GPIO_CMD_TERM, 6); msg_push_crc(cmd); } /* * Store information on master errors so handler can detect and clean * up the bus */ static void fsi_master_gpio_error(struct fsi_master_gpio *master, int error) { } static int read_one_response(struct fsi_master_gpio *master, uint8_t data_size, struct fsi_gpio_msg *msgp, uint8_t *tagp) { struct fsi_gpio_msg msg; uint8_t id, tag; uint32_t crc; int i; /* wait for the start bit */ for (i = 0; i < FSI_GPIO_MTOE_COUNT; i++) { msg.bits = 0; msg.msg = 0; serial_in(master, &msg, 1); if (msg.msg) break; } if (i == FSI_GPIO_MTOE_COUNT) { dev_dbg(master->dev, "Master time out waiting for response\n"); fsi_master_gpio_error(master, FSI_GPIO_MTOE); return -EIO; } msg.bits = 0; msg.msg = 0; /* Read slave ID & response tag */ serial_in(master, &msg, 4); id = (msg.msg >> FSI_GPIO_MSG_RESPID_SIZE) & 0x3; tag = msg.msg & 0x3; /* If we have an ACK and we're expecting data, clock the data in too */ if (tag == FSI_GPIO_RESP_ACK && data_size) serial_in(master, &msg, data_size * 8); /* read CRC */ serial_in(master, &msg, FSI_GPIO_CRC_SIZE); /* we have a whole message now; check CRC */ crc = crc4(0, 1, 1); crc = crc4(crc, msg.msg, msg.bits); if (crc) { dev_dbg(master->dev, "ERR response CRC\n"); fsi_master_gpio_error(master, FSI_GPIO_CRC_INVAL); return -EIO; } if (msgp) *msgp = msg; if (tagp) *tagp = tag; return 0; } static int issue_term(struct fsi_master_gpio *master, uint8_t slave) { struct fsi_gpio_msg cmd; uint8_t tag; int rc; build_term_command(&cmd, slave); serial_out(master, &cmd); echo_delay(master); rc = read_one_response(master, 0, NULL, &tag); if (rc < 0) { dev_err(master->dev, "TERM failed; lost communication with slave\n"); return -EIO; } else if (tag != FSI_GPIO_RESP_ACK) { dev_err(master->dev, "TERM failed; response %d\n", tag); return -EIO; } return 0; } static int poll_for_response(struct fsi_master_gpio *master, uint8_t slave, uint8_t size, void *data) { struct fsi_gpio_msg response, cmd; int busy_count = 0, rc, i; uint8_t tag; uint8_t *data_byte = data; retry: rc = read_one_response(master, size, &response, &tag); if (rc) return rc; switch (tag) { case FSI_GPIO_RESP_ACK: if (size && data) { uint64_t val = response.msg; /* clear crc & mask */ val >>= 4; val &= (1ull << (size * 8)) - 1; for (i = 0; i < size; i++) { data_byte[size-i-1] = val; val >>= 8; } } break; case FSI_GPIO_RESP_BUSY: /* * Its necessary to clock slave before issuing * d-poll, not indicated in the hardware protocol * spec. < 20 clocks causes slave to hang, 21 ok. */ clock_zeros(master, FSI_GPIO_DPOLL_CLOCKS); if (busy_count++ < FSI_GPIO_MAX_BUSY) { build_dpoll_command(&cmd, slave); serial_out(master, &cmd); echo_delay(master); goto retry; } dev_warn(master->dev, "ERR slave is stuck in busy state, issuing TERM\n"); issue_term(master, slave); rc = -EIO; break; case FSI_GPIO_RESP_ERRA: case FSI_GPIO_RESP_ERRC: dev_dbg(master->dev, "ERR%c received: 0x%x\n", tag == FSI_GPIO_RESP_ERRA ? 'A' : 'C', (int)response.msg); fsi_master_gpio_error(master, response.msg); rc = -EIO; break; } /* Clock the slave enough to be ready for next operation */ clock_zeros(master, FSI_GPIO_PRIME_SLAVE_CLOCKS); return rc; } static int fsi_master_gpio_xfer(struct fsi_master_gpio *master, uint8_t slave, struct fsi_gpio_msg *cmd, size_t resp_len, void *resp) { unsigned long flags; int rc; spin_lock_irqsave(&master->cmd_lock, flags); serial_out(master, cmd); echo_delay(master); rc = poll_for_response(master, slave, resp_len, resp); spin_unlock_irqrestore(&master->cmd_lock, flags); return rc; } static int fsi_master_gpio_read(struct fsi_master *_master, int link, uint8_t id, uint32_t addr, void *val, size_t size) { struct fsi_master_gpio *master = to_fsi_master_gpio(_master); struct fsi_gpio_msg cmd; if (link != 0) return -ENODEV; build_abs_ar_command(&cmd, id, addr, size, NULL); return fsi_master_gpio_xfer(master, id, &cmd, size, val); } static int fsi_master_gpio_write(struct fsi_master *_master, int link, uint8_t id, uint32_t addr, const void *val, size_t size) { struct fsi_master_gpio *master = to_fsi_master_gpio(_master); struct fsi_gpio_msg cmd; if (link != 0) return -ENODEV; build_abs_ar_command(&cmd, id, addr, size, val); return fsi_master_gpio_xfer(master, id, &cmd, 0, NULL); } static int fsi_master_gpio_term(struct fsi_master *_master, int link, uint8_t id) { struct fsi_master_gpio *master = to_fsi_master_gpio(_master); struct fsi_gpio_msg cmd; if (link != 0) return -ENODEV; build_term_command(&cmd, id); return fsi_master_gpio_xfer(master, id, &cmd, 0, NULL); } static int fsi_master_gpio_break(struct fsi_master *_master, int link) { struct fsi_master_gpio *master = to_fsi_master_gpio(_master); if (link != 0) return -ENODEV; set_sda_output(master, 1); sda_out(master, 1); clock_toggle(master, FSI_PRE_BREAK_CLOCKS); sda_out(master, 0); clock_toggle(master, FSI_BREAK_CLOCKS); echo_delay(master); sda_out(master, 1); clock_toggle(master, FSI_POST_BREAK_CLOCKS); /* Wait for logic reset to take effect */ udelay(200); return 0; } static void fsi_master_gpio_init(struct fsi_master_gpio *master) { gpiod_direction_output(master->gpio_mux, 1); gpiod_direction_output(master->gpio_trans, 1); gpiod_direction_output(master->gpio_enable, 1); gpiod_direction_output(master->gpio_clk, 1); gpiod_direction_output(master->gpio_data, 1); /* todo: evaluate if clocks can be reduced */ clock_zeros(master, FSI_INIT_CLOCKS); } static int fsi_master_gpio_link_enable(struct fsi_master *_master, int link) { struct fsi_master_gpio *master = to_fsi_master_gpio(_master); if (link != 0) return -ENODEV; gpiod_set_value(master->gpio_enable, 1); return 0; } static int fsi_master_gpio_probe(struct platform_device *pdev) { struct fsi_master_gpio *master; struct gpio_desc *gpio; master = devm_kzalloc(&pdev->dev, sizeof(*master), GFP_KERNEL); if (!master) return -ENOMEM; master->dev = &pdev->dev; master->master.dev.parent = master->dev; gpio = devm_gpiod_get(&pdev->dev, "clock", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get clock gpio\n"); return PTR_ERR(gpio); } master->gpio_clk = gpio; gpio = devm_gpiod_get(&pdev->dev, "data", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get data gpio\n"); return PTR_ERR(gpio); } master->gpio_data = gpio; /* Optional GPIOs */ gpio = devm_gpiod_get_optional(&pdev->dev, "trans", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get trans gpio\n"); return PTR_ERR(gpio); } master->gpio_trans = gpio; gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get enable gpio\n"); return PTR_ERR(gpio); } master->gpio_enable = gpio; gpio = devm_gpiod_get_optional(&pdev->dev, "mux", 0); if (IS_ERR(gpio)) { dev_err(&pdev->dev, "failed to get mux gpio\n"); return PTR_ERR(gpio); } master->gpio_mux = gpio; master->master.n_links = 1; master->master.read = fsi_master_gpio_read; master->master.write = fsi_master_gpio_write; master->master.term = fsi_master_gpio_term; master->master.send_break = fsi_master_gpio_break; master->master.link_enable = fsi_master_gpio_link_enable; platform_set_drvdata(pdev, master); spin_lock_init(&master->cmd_lock); fsi_master_gpio_init(master); return fsi_master_register(&master->master); } static int fsi_master_gpio_remove(struct platform_device *pdev) { struct fsi_master_gpio *master = platform_get_drvdata(pdev); devm_gpiod_put(&pdev->dev, master->gpio_clk); devm_gpiod_put(&pdev->dev, master->gpio_data); if (master->gpio_trans) devm_gpiod_put(&pdev->dev, master->gpio_trans); if (master->gpio_enable) devm_gpiod_put(&pdev->dev, master->gpio_enable); if (master->gpio_mux) devm_gpiod_put(&pdev->dev, master->gpio_mux); fsi_master_unregister(&master->master); return 0; } static const struct of_device_id fsi_master_gpio_match[] = { { .compatible = "fsi-master-gpio" }, { }, }; static struct platform_driver fsi_master_gpio_driver = { .driver = { .name = "fsi-master-gpio", .of_match_table = fsi_master_gpio_match, }, .probe = fsi_master_gpio_probe, .remove = fsi_master_gpio_remove, }; module_platform_driver(fsi_master_gpio_driver); MODULE_LICENSE("GPL");