// SPDX-License-Identifier: GPL-2.0-or-later /* * Core IEEE1394 transaction logic * * Copyright (C) 2004-2006 Kristian Hoegsberg */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "packet-header-definitions.h" #include "phy-packet-definitions.h" #include #define HEADER_DESTINATION_IS_BROADCAST(header) \ ((async_header_get_destination(header) & 0x3f) == 0x3f) /* returns 0 if the split timeout handler is already running */ static int try_cancel_split_timeout(struct fw_transaction *t) { if (t->is_split_transaction) return del_timer(&t->split_timeout_timer); else return 1; } static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode, u32 response_tstamp) { struct fw_transaction *t = NULL, *iter; unsigned long flags; spin_lock_irqsave(&card->lock, flags); list_for_each_entry(iter, &card->transaction_list, link) { if (iter == transaction) { if (!try_cancel_split_timeout(iter)) { spin_unlock_irqrestore(&card->lock, flags); goto timed_out; } list_del_init(&iter->link); card->tlabel_mask &= ~(1ULL << iter->tlabel); t = iter; break; } } spin_unlock_irqrestore(&card->lock, flags); if (t) { if (!t->with_tstamp) { t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data); } else { t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp, NULL, 0, t->callback_data); } return 0; } timed_out: return -ENOENT; } /* * Only valid for transactions that are potentially pending (ie have * been sent). */ int fw_cancel_transaction(struct fw_card *card, struct fw_transaction *transaction) { u32 tstamp; /* * Cancel the packet transmission if it's still queued. That * will call the packet transmission callback which cancels * the transaction. */ if (card->driver->cancel_packet(card, &transaction->packet) == 0) return 0; /* * If the request packet has already been sent, we need to see * if the transaction is still pending and remove it in that case. */ if (transaction->packet.ack == 0) { // The timestamp is reused since it was just read now. tstamp = transaction->packet.timestamp; } else { u32 curr_cycle_time = 0; (void)fw_card_read_cycle_time(card, &curr_cycle_time); tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); } return close_transaction(transaction, card, RCODE_CANCELLED, tstamp); } EXPORT_SYMBOL(fw_cancel_transaction); static void split_transaction_timeout_callback(struct timer_list *timer) { struct fw_transaction *t = from_timer(t, timer, split_timeout_timer); struct fw_card *card = t->card; unsigned long flags; spin_lock_irqsave(&card->lock, flags); if (list_empty(&t->link)) { spin_unlock_irqrestore(&card->lock, flags); return; } list_del(&t->link); card->tlabel_mask &= ~(1ULL << t->tlabel); spin_unlock_irqrestore(&card->lock, flags); if (!t->with_tstamp) { t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data); } else { t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp, t->split_timeout_cycle, NULL, 0, t->callback_data); } } static void start_split_transaction_timeout(struct fw_transaction *t, struct fw_card *card) { unsigned long flags; spin_lock_irqsave(&card->lock, flags); if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) { spin_unlock_irqrestore(&card->lock, flags); return; } t->is_split_transaction = true; mod_timer(&t->split_timeout_timer, jiffies + card->split_timeout_jiffies); spin_unlock_irqrestore(&card->lock, flags); } static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp); static void transmit_complete_callback(struct fw_packet *packet, struct fw_card *card, int status) { struct fw_transaction *t = container_of(packet, struct fw_transaction, packet); trace_async_request_outbound_complete((uintptr_t)t, card->index, packet->generation, packet->speed, status, packet->timestamp); switch (status) { case ACK_COMPLETE: close_transaction(t, card, RCODE_COMPLETE, packet->timestamp); break; case ACK_PENDING: { t->split_timeout_cycle = compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff; start_split_transaction_timeout(t, card); break; } case ACK_BUSY_X: case ACK_BUSY_A: case ACK_BUSY_B: close_transaction(t, card, RCODE_BUSY, packet->timestamp); break; case ACK_DATA_ERROR: close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp); break; case ACK_TYPE_ERROR: close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp); break; default: /* * In this case the ack is really a juju specific * rcode, so just forward that to the callback. */ close_transaction(t, card, status, packet->timestamp); break; } } static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel, int destination_id, int source_id, int generation, int speed, unsigned long long offset, void *payload, size_t length) { int ext_tcode; if (tcode == TCODE_STREAM_DATA) { // The value of destination_id argument should include tag, channel, and sy fields // as isochronous packet header has. packet->header[0] = destination_id; isoc_header_set_data_length(packet->header, length); isoc_header_set_tcode(packet->header, TCODE_STREAM_DATA); packet->header_length = 4; packet->payload = payload; packet->payload_length = length; goto common; } if (tcode > 0x10) { ext_tcode = tcode & ~0x10; tcode = TCODE_LOCK_REQUEST; } else ext_tcode = 0; async_header_set_retry(packet->header, RETRY_X); async_header_set_tlabel(packet->header, tlabel); async_header_set_tcode(packet->header, tcode); async_header_set_destination(packet->header, destination_id); async_header_set_source(packet->header, source_id); async_header_set_offset(packet->header, offset); switch (tcode) { case TCODE_WRITE_QUADLET_REQUEST: async_header_set_quadlet_data(packet->header, *(u32 *)payload); packet->header_length = 16; packet->payload_length = 0; break; case TCODE_LOCK_REQUEST: case TCODE_WRITE_BLOCK_REQUEST: async_header_set_data_length(packet->header, length); async_header_set_extended_tcode(packet->header, ext_tcode); packet->header_length = 16; packet->payload = payload; packet->payload_length = length; break; case TCODE_READ_QUADLET_REQUEST: packet->header_length = 12; packet->payload_length = 0; break; case TCODE_READ_BLOCK_REQUEST: async_header_set_data_length(packet->header, length); async_header_set_extended_tcode(packet->header, ext_tcode); packet->header_length = 16; packet->payload_length = 0; break; default: WARN(1, "wrong tcode %d\n", tcode); } common: packet->speed = speed; packet->generation = generation; packet->ack = 0; packet->payload_mapped = false; } static int allocate_tlabel(struct fw_card *card) { int tlabel; tlabel = card->current_tlabel; while (card->tlabel_mask & (1ULL << tlabel)) { tlabel = (tlabel + 1) & 0x3f; if (tlabel == card->current_tlabel) return -EBUSY; } card->current_tlabel = (tlabel + 1) & 0x3f; card->tlabel_mask |= 1ULL << tlabel; return tlabel; } /** * __fw_send_request() - submit a request packet for transmission to generate callback for response * subaction with or without time stamp. * @card: interface to send the request at * @t: transaction instance to which the request belongs * @tcode: transaction code * @destination_id: destination node ID, consisting of bus_ID and phy_ID * @generation: bus generation in which request and response are valid * @speed: transmission speed * @offset: 48bit wide offset into destination's address space * @payload: data payload for the request subaction * @length: length of the payload, in bytes * @callback: union of two functions whether to receive time stamp or not for response * subaction. * @with_tstamp: Whether to receive time stamp or not for response subaction. * @callback_data: data to be passed to the transaction completion callback * * Submit a request packet into the asynchronous request transmission queue. * Can be called from atomic context. If you prefer a blocking API, use * fw_run_transaction() in a context that can sleep. * * In case of lock requests, specify one of the firewire-core specific %TCODE_ * constants instead of %TCODE_LOCK_REQUEST in @tcode. * * Make sure that the value in @destination_id is not older than the one in * @generation. Otherwise the request is in danger to be sent to a wrong node. * * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller * needs to synthesize @destination_id with fw_stream_packet_destination_id(). * It will contain tag, channel, and sy data instead of a node ID then. * * The payload buffer at @data is going to be DMA-mapped except in case of * @length <= 8 or of local (loopback) requests. Hence make sure that the * buffer complies with the restrictions of the streaming DMA mapping API. * @payload must not be freed before the @callback is called. * * In case of request types without payload, @data is NULL and @length is 0. * * After the transaction is completed successfully or unsuccessfully, the * @callback will be called. Among its parameters is the response code which * is either one of the rcodes per IEEE 1394 or, in case of internal errors, * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION, * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request * generation, or missing ACK respectively. * * Note some timing corner cases: fw_send_request() may complete much earlier * than when the request packet actually hits the wire. On the other hand, * transaction completion and hence execution of @callback may happen even * before fw_send_request() returns. */ void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, int destination_id, int generation, int speed, unsigned long long offset, void *payload, size_t length, union fw_transaction_callback callback, bool with_tstamp, void *callback_data) { unsigned long flags; int tlabel; /* * Allocate tlabel from the bitmap and put the transaction on * the list while holding the card spinlock. */ spin_lock_irqsave(&card->lock, flags); tlabel = allocate_tlabel(card); if (tlabel < 0) { spin_unlock_irqrestore(&card->lock, flags); if (!with_tstamp) { callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data); } else { // Timestamping on behalf of hardware. u32 curr_cycle_time = 0; u32 tstamp; (void)fw_card_read_cycle_time(card, &curr_cycle_time); tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time); callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0, callback_data); } return; } t->node_id = destination_id; t->tlabel = tlabel; t->card = card; t->is_split_transaction = false; timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0); t->callback = callback; t->with_tstamp = with_tstamp; t->callback_data = callback_data; fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation, speed, offset, payload, length); t->packet.callback = transmit_complete_callback; list_add_tail(&t->link, &card->transaction_list); spin_unlock_irqrestore(&card->lock, flags); trace_async_request_outbound_initiate((uintptr_t)t, card->index, generation, speed, t->packet.header, payload, tcode_is_read_request(tcode) ? 0 : length / 4); card->driver->send_request(card, &t->packet); } EXPORT_SYMBOL_GPL(__fw_send_request); struct transaction_callback_data { struct completion done; void *payload; int rcode; }; static void transaction_callback(struct fw_card *card, int rcode, void *payload, size_t length, void *data) { struct transaction_callback_data *d = data; if (rcode == RCODE_COMPLETE) memcpy(d->payload, payload, length); d->rcode = rcode; complete(&d->done); } /** * fw_run_transaction() - send request and sleep until transaction is completed * @card: card interface for this request * @tcode: transaction code * @destination_id: destination node ID, consisting of bus_ID and phy_ID * @generation: bus generation in which request and response are valid * @speed: transmission speed * @offset: 48bit wide offset into destination's address space * @payload: data payload for the request subaction * @length: length of the payload, in bytes * * Returns the RCODE. See fw_send_request() for parameter documentation. * Unlike fw_send_request(), @data points to the payload of the request or/and * to the payload of the response. DMA mapping restrictions apply to outbound * request payloads of >= 8 bytes but not to inbound response payloads. */ int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, int generation, int speed, unsigned long long offset, void *payload, size_t length) { struct transaction_callback_data d; struct fw_transaction t; timer_setup_on_stack(&t.split_timeout_timer, NULL, 0); init_completion(&d.done); d.payload = payload; fw_send_request(card, &t, tcode, destination_id, generation, speed, offset, payload, length, transaction_callback, &d); wait_for_completion(&d.done); destroy_timer_on_stack(&t.split_timeout_timer); return d.rcode; } EXPORT_SYMBOL(fw_run_transaction); static DEFINE_MUTEX(phy_config_mutex); static DECLARE_COMPLETION(phy_config_done); static void transmit_phy_packet_callback(struct fw_packet *packet, struct fw_card *card, int status) { trace_async_phy_outbound_complete((uintptr_t)packet, card->index, packet->generation, status, packet->timestamp); complete(&phy_config_done); } static struct fw_packet phy_config_packet = { .header_length = 12, .header[0] = TCODE_LINK_INTERNAL << 4, .payload_length = 0, .speed = SCODE_100, .callback = transmit_phy_packet_callback, }; void fw_send_phy_config(struct fw_card *card, int node_id, int generation, int gap_count) { long timeout = DIV_ROUND_UP(HZ, 10); u32 data = 0; phy_packet_set_packet_identifier(&data, PHY_PACKET_PACKET_IDENTIFIER_PHY_CONFIG); if (node_id != FW_PHY_CONFIG_NO_NODE_ID) { phy_packet_phy_config_set_root_id(&data, node_id); phy_packet_phy_config_set_force_root_node(&data, true); } if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) { gap_count = card->driver->read_phy_reg(card, 1); if (gap_count < 0) return; gap_count &= 63; if (gap_count == 63) return; } phy_packet_phy_config_set_gap_count(&data, gap_count); phy_packet_phy_config_set_gap_count_optimization(&data, true); mutex_lock(&phy_config_mutex); phy_config_packet.header[1] = data; phy_config_packet.header[2] = ~data; phy_config_packet.generation = generation; reinit_completion(&phy_config_done); trace_async_phy_outbound_initiate((uintptr_t)&phy_config_packet, card->index, phy_config_packet.generation, phy_config_packet.header[1], phy_config_packet.header[2]); card->driver->send_request(card, &phy_config_packet); wait_for_completion_timeout(&phy_config_done, timeout); mutex_unlock(&phy_config_mutex); } static struct fw_address_handler *lookup_overlapping_address_handler( struct list_head *list, unsigned long long offset, size_t length) { struct fw_address_handler *handler; list_for_each_entry_rcu(handler, list, link) { if (handler->offset < offset + length && offset < handler->offset + handler->length) return handler; } return NULL; } static bool is_enclosing_handler(struct fw_address_handler *handler, unsigned long long offset, size_t length) { return handler->offset <= offset && offset + length <= handler->offset + handler->length; } static struct fw_address_handler *lookup_enclosing_address_handler( struct list_head *list, unsigned long long offset, size_t length) { struct fw_address_handler *handler; list_for_each_entry_rcu(handler, list, link) { if (is_enclosing_handler(handler, offset, length)) return handler; } return NULL; } static DEFINE_SPINLOCK(address_handler_list_lock); static LIST_HEAD(address_handler_list); const struct fw_address_region fw_high_memory_region = { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, }; EXPORT_SYMBOL(fw_high_memory_region); static const struct fw_address_region low_memory_region = { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, }; #if 0 const struct fw_address_region fw_private_region = { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, }; const struct fw_address_region fw_csr_region = { .start = CSR_REGISTER_BASE, .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, }; const struct fw_address_region fw_unit_space_region = { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, }; #endif /* 0 */ /** * fw_core_add_address_handler() - register for incoming requests * @handler: callback * @region: region in the IEEE 1212 node space address range * * region->start, ->end, and handler->length have to be quadlet-aligned. * * When a request is received that falls within the specified address range, * the specified callback is invoked. The parameters passed to the callback * give the details of the particular request. * * To be called in process context. * Return value: 0 on success, non-zero otherwise. * * The start offset of the handler's address region is determined by * fw_core_add_address_handler() and is returned in handler->offset. * * Address allocations are exclusive, except for the FCP registers. */ int fw_core_add_address_handler(struct fw_address_handler *handler, const struct fw_address_region *region) { struct fw_address_handler *other; int ret = -EBUSY; if (region->start & 0xffff000000000003ULL || region->start >= region->end || region->end > 0x0001000000000000ULL || handler->length & 3 || handler->length == 0) return -EINVAL; spin_lock(&address_handler_list_lock); handler->offset = region->start; while (handler->offset + handler->length <= region->end) { if (is_in_fcp_region(handler->offset, handler->length)) other = NULL; else other = lookup_overlapping_address_handler (&address_handler_list, handler->offset, handler->length); if (other != NULL) { handler->offset += other->length; } else { list_add_tail_rcu(&handler->link, &address_handler_list); ret = 0; break; } } spin_unlock(&address_handler_list_lock); return ret; } EXPORT_SYMBOL(fw_core_add_address_handler); /** * fw_core_remove_address_handler() - unregister an address handler * @handler: callback * * To be called in process context. * * When fw_core_remove_address_handler() returns, @handler->callback() is * guaranteed to not run on any CPU anymore. */ void fw_core_remove_address_handler(struct fw_address_handler *handler) { spin_lock(&address_handler_list_lock); list_del_rcu(&handler->link); spin_unlock(&address_handler_list_lock); synchronize_rcu(); } EXPORT_SYMBOL(fw_core_remove_address_handler); struct fw_request { struct kref kref; struct fw_packet response; u32 request_header[ASYNC_HEADER_QUADLET_COUNT]; int ack; u32 timestamp; u32 length; u32 data[]; }; void fw_request_get(struct fw_request *request) { kref_get(&request->kref); } static void release_request(struct kref *kref) { struct fw_request *request = container_of(kref, struct fw_request, kref); kfree(request); } void fw_request_put(struct fw_request *request) { kref_put(&request->kref, release_request); } static void free_response_callback(struct fw_packet *packet, struct fw_card *card, int status) { struct fw_request *request = container_of(packet, struct fw_request, response); trace_async_response_outbound_complete((uintptr_t)request, card->index, packet->generation, packet->speed, status, packet->timestamp); // Decrease the reference count since not at in-flight. fw_request_put(request); // Decrease the reference count to release the object. fw_request_put(request); } int fw_get_response_length(struct fw_request *r) { int tcode, ext_tcode, data_length; tcode = async_header_get_tcode(r->request_header); switch (tcode) { case TCODE_WRITE_QUADLET_REQUEST: case TCODE_WRITE_BLOCK_REQUEST: return 0; case TCODE_READ_QUADLET_REQUEST: return 4; case TCODE_READ_BLOCK_REQUEST: data_length = async_header_get_data_length(r->request_header); return data_length; case TCODE_LOCK_REQUEST: ext_tcode = async_header_get_extended_tcode(r->request_header); data_length = async_header_get_data_length(r->request_header); switch (ext_tcode) { case EXTCODE_FETCH_ADD: case EXTCODE_LITTLE_ADD: return data_length; default: return data_length / 2; } default: WARN(1, "wrong tcode %d\n", tcode); return 0; } } void fw_fill_response(struct fw_packet *response, u32 *request_header, int rcode, void *payload, size_t length) { int tcode, tlabel, extended_tcode, source, destination; tcode = async_header_get_tcode(request_header); tlabel = async_header_get_tlabel(request_header); source = async_header_get_destination(request_header); // Exchange. destination = async_header_get_source(request_header); // Exchange. extended_tcode = async_header_get_extended_tcode(request_header); async_header_set_retry(response->header, RETRY_1); async_header_set_tlabel(response->header, tlabel); async_header_set_destination(response->header, destination); async_header_set_source(response->header, source); async_header_set_rcode(response->header, rcode); response->header[2] = 0; // The field is reserved. switch (tcode) { case TCODE_WRITE_QUADLET_REQUEST: case TCODE_WRITE_BLOCK_REQUEST: async_header_set_tcode(response->header, TCODE_WRITE_RESPONSE); response->header_length = 12; response->payload_length = 0; break; case TCODE_READ_QUADLET_REQUEST: async_header_set_tcode(response->header, TCODE_READ_QUADLET_RESPONSE); if (payload != NULL) async_header_set_quadlet_data(response->header, *(u32 *)payload); else async_header_set_quadlet_data(response->header, 0); response->header_length = 16; response->payload_length = 0; break; case TCODE_READ_BLOCK_REQUEST: case TCODE_LOCK_REQUEST: async_header_set_tcode(response->header, tcode + 2); async_header_set_data_length(response->header, length); async_header_set_extended_tcode(response->header, extended_tcode); response->header_length = 16; response->payload = payload; response->payload_length = length; break; default: WARN(1, "wrong tcode %d\n", tcode); } response->payload_mapped = false; } EXPORT_SYMBOL(fw_fill_response); static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp) { unsigned int cycles; u32 timestamp; cycles = card->split_timeout_cycles; cycles += request_timestamp & 0x1fff; timestamp = request_timestamp & ~0x1fff; timestamp += (cycles / 8000) << 13; timestamp |= cycles % 8000; return timestamp; } static struct fw_request *allocate_request(struct fw_card *card, struct fw_packet *p) { struct fw_request *request; u32 *data, length; int request_tcode; request_tcode = async_header_get_tcode(p->header); switch (request_tcode) { case TCODE_WRITE_QUADLET_REQUEST: data = &p->header[3]; length = 4; break; case TCODE_WRITE_BLOCK_REQUEST: case TCODE_LOCK_REQUEST: data = p->payload; length = async_header_get_data_length(p->header); break; case TCODE_READ_QUADLET_REQUEST: data = NULL; length = 4; break; case TCODE_READ_BLOCK_REQUEST: data = NULL; length = async_header_get_data_length(p->header); break; default: fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n", p->header[0], p->header[1], p->header[2]); return NULL; } request = kmalloc(sizeof(*request) + length, GFP_ATOMIC); if (request == NULL) return NULL; kref_init(&request->kref); request->response.speed = p->speed; request->response.timestamp = compute_split_timeout_timestamp(card, p->timestamp); request->response.generation = p->generation; request->response.ack = 0; request->response.callback = free_response_callback; request->ack = p->ack; request->timestamp = p->timestamp; request->length = length; if (data) memcpy(request->data, data, length); memcpy(request->request_header, p->header, sizeof(p->header)); return request; } /** * fw_send_response: - send response packet for asynchronous transaction. * @card: interface to send the response at. * @request: firewire request data for the transaction. * @rcode: response code to send. * * Submit a response packet into the asynchronous response transmission queue. The @request * is going to be released when the transmission successfully finishes later. */ void fw_send_response(struct fw_card *card, struct fw_request *request, int rcode) { u32 *data = NULL; unsigned int data_length = 0; /* unified transaction or broadcast transaction: don't respond */ if (request->ack != ACK_PENDING || HEADER_DESTINATION_IS_BROADCAST(request->request_header)) { fw_request_put(request); return; } if (rcode == RCODE_COMPLETE) { data = request->data; data_length = fw_get_response_length(request); } fw_fill_response(&request->response, request->request_header, rcode, data, data_length); // Increase the reference count so that the object is kept during in-flight. fw_request_get(request); trace_async_response_outbound_initiate((uintptr_t)request, card->index, request->response.generation, request->response.speed, request->response.header, data, data ? data_length / 4 : 0); card->driver->send_response(card, &request->response); } EXPORT_SYMBOL(fw_send_response); /** * fw_get_request_speed() - returns speed at which the @request was received * @request: firewire request data */ int fw_get_request_speed(struct fw_request *request) { return request->response.speed; } EXPORT_SYMBOL(fw_get_request_speed); /** * fw_request_get_timestamp: Get timestamp of the request. * @request: The opaque pointer to request structure. * * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The * timestamp consists of the low order 3 bits of second field and the full 13 bits of count * field of isochronous cycle time register. * * Returns: timestamp of the request. */ u32 fw_request_get_timestamp(const struct fw_request *request) { return request->timestamp; } EXPORT_SYMBOL_GPL(fw_request_get_timestamp); static void handle_exclusive_region_request(struct fw_card *card, struct fw_packet *p, struct fw_request *request, unsigned long long offset) { struct fw_address_handler *handler; int tcode, destination, source; destination = async_header_get_destination(p->header); source = async_header_get_source(p->header); tcode = async_header_get_tcode(p->header); if (tcode == TCODE_LOCK_REQUEST) tcode = 0x10 + async_header_get_extended_tcode(p->header); rcu_read_lock(); handler = lookup_enclosing_address_handler(&address_handler_list, offset, request->length); if (handler) handler->address_callback(card, request, tcode, destination, source, p->generation, offset, request->data, request->length, handler->callback_data); rcu_read_unlock(); if (!handler) fw_send_response(card, request, RCODE_ADDRESS_ERROR); } static void handle_fcp_region_request(struct fw_card *card, struct fw_packet *p, struct fw_request *request, unsigned long long offset) { struct fw_address_handler *handler; int tcode, destination, source; if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) && offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) || request->length > 0x200) { fw_send_response(card, request, RCODE_ADDRESS_ERROR); return; } tcode = async_header_get_tcode(p->header); destination = async_header_get_destination(p->header); source = async_header_get_source(p->header); if (tcode != TCODE_WRITE_QUADLET_REQUEST && tcode != TCODE_WRITE_BLOCK_REQUEST) { fw_send_response(card, request, RCODE_TYPE_ERROR); return; } rcu_read_lock(); list_for_each_entry_rcu(handler, &address_handler_list, link) { if (is_enclosing_handler(handler, offset, request->length)) handler->address_callback(card, request, tcode, destination, source, p->generation, offset, request->data, request->length, handler->callback_data); } rcu_read_unlock(); fw_send_response(card, request, RCODE_COMPLETE); } void fw_core_handle_request(struct fw_card *card, struct fw_packet *p) { struct fw_request *request; unsigned long long offset; unsigned int tcode; if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE) return; tcode = async_header_get_tcode(p->header); if (tcode_is_link_internal(tcode)) { trace_async_phy_inbound((uintptr_t)p, card->index, p->generation, p->ack, p->timestamp, p->header[1], p->header[2]); fw_cdev_handle_phy_packet(card, p); return; } request = allocate_request(card, p); if (request == NULL) { /* FIXME: send statically allocated busy packet. */ return; } trace_async_request_inbound((uintptr_t)request, card->index, p->generation, p->speed, p->ack, p->timestamp, p->header, request->data, tcode_is_read_request(tcode) ? 0 : request->length / 4); offset = async_header_get_offset(p->header); if (!is_in_fcp_region(offset, request->length)) handle_exclusive_region_request(card, p, request, offset); else handle_fcp_region_request(card, p, request, offset); } EXPORT_SYMBOL(fw_core_handle_request); void fw_core_handle_response(struct fw_card *card, struct fw_packet *p) { struct fw_transaction *t = NULL, *iter; unsigned long flags; u32 *data; size_t data_length; int tcode, tlabel, source, rcode; tcode = async_header_get_tcode(p->header); tlabel = async_header_get_tlabel(p->header); source = async_header_get_source(p->header); rcode = async_header_get_rcode(p->header); // FIXME: sanity check packet, is length correct, does tcodes // and addresses match to the transaction request queried later. // // For the tracepoints event, let us decode the header here against the concern. switch (tcode) { case TCODE_READ_QUADLET_RESPONSE: data = (u32 *) &p->header[3]; data_length = 4; break; case TCODE_WRITE_RESPONSE: data = NULL; data_length = 0; break; case TCODE_READ_BLOCK_RESPONSE: case TCODE_LOCK_RESPONSE: data = p->payload; data_length = async_header_get_data_length(p->header); break; default: /* Should never happen, this is just to shut up gcc. */ data = NULL; data_length = 0; break; } spin_lock_irqsave(&card->lock, flags); list_for_each_entry(iter, &card->transaction_list, link) { if (iter->node_id == source && iter->tlabel == tlabel) { if (!try_cancel_split_timeout(iter)) { spin_unlock_irqrestore(&card->lock, flags); goto timed_out; } list_del_init(&iter->link); card->tlabel_mask &= ~(1ULL << iter->tlabel); t = iter; break; } } spin_unlock_irqrestore(&card->lock, flags); trace_async_response_inbound((uintptr_t)t, card->index, p->generation, p->speed, p->ack, p->timestamp, p->header, data, data_length / 4); if (!t) { timed_out: fw_notice(card, "unsolicited response (source %x, tlabel %x)\n", source, tlabel); return; } /* * The response handler may be executed while the request handler * is still pending. Cancel the request handler. */ card->driver->cancel_packet(card, &t->packet); if (!t->with_tstamp) { t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data); } else { t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data, data_length, t->callback_data); } } EXPORT_SYMBOL(fw_core_handle_response); /** * fw_rcode_string - convert a firewire result code to an error description * @rcode: the result code */ const char *fw_rcode_string(int rcode) { static const char *const names[] = { [RCODE_COMPLETE] = "no error", [RCODE_CONFLICT_ERROR] = "conflict error", [RCODE_DATA_ERROR] = "data error", [RCODE_TYPE_ERROR] = "type error", [RCODE_ADDRESS_ERROR] = "address error", [RCODE_SEND_ERROR] = "send error", [RCODE_CANCELLED] = "timeout", [RCODE_BUSY] = "busy", [RCODE_GENERATION] = "bus reset", [RCODE_NO_ACK] = "no ack", }; if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode]) return names[rcode]; else return "unknown"; } EXPORT_SYMBOL(fw_rcode_string); static const struct fw_address_region topology_map_region = { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP, .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, }; static void handle_topology_map(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *payload, size_t length, void *callback_data) { int start; if (!tcode_is_read_request(tcode)) { fw_send_response(card, request, RCODE_TYPE_ERROR); return; } if ((offset & 3) > 0 || (length & 3) > 0) { fw_send_response(card, request, RCODE_ADDRESS_ERROR); return; } start = (offset - topology_map_region.start) / 4; memcpy(payload, &card->topology_map[start], length); fw_send_response(card, request, RCODE_COMPLETE); } static struct fw_address_handler topology_map = { .length = 0x400, .address_callback = handle_topology_map, }; static const struct fw_address_region registers_region = { .start = CSR_REGISTER_BASE, .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, }; static void update_split_timeout(struct fw_card *card) { unsigned int cycles; cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19); /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */ cycles = clamp(cycles, 800u, 3u * 8000u); card->split_timeout_cycles = cycles; card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000); } static void handle_registers(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *payload, size_t length, void *callback_data) { int reg = offset & ~CSR_REGISTER_BASE; __be32 *data = payload; int rcode = RCODE_COMPLETE; unsigned long flags; switch (reg) { case CSR_PRIORITY_BUDGET: if (!card->priority_budget_implemented) { rcode = RCODE_ADDRESS_ERROR; break; } fallthrough; case CSR_NODE_IDS: /* * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges */ fallthrough; case CSR_STATE_CLEAR: case CSR_STATE_SET: case CSR_CYCLE_TIME: case CSR_BUS_TIME: case CSR_BUSY_TIMEOUT: if (tcode == TCODE_READ_QUADLET_REQUEST) *data = cpu_to_be32(card->driver->read_csr(card, reg)); else if (tcode == TCODE_WRITE_QUADLET_REQUEST) card->driver->write_csr(card, reg, be32_to_cpu(*data)); else rcode = RCODE_TYPE_ERROR; break; case CSR_RESET_START: if (tcode == TCODE_WRITE_QUADLET_REQUEST) card->driver->write_csr(card, CSR_STATE_CLEAR, CSR_STATE_BIT_ABDICATE); else rcode = RCODE_TYPE_ERROR; break; case CSR_SPLIT_TIMEOUT_HI: if (tcode == TCODE_READ_QUADLET_REQUEST) { *data = cpu_to_be32(card->split_timeout_hi); } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { spin_lock_irqsave(&card->lock, flags); card->split_timeout_hi = be32_to_cpu(*data) & 7; update_split_timeout(card); spin_unlock_irqrestore(&card->lock, flags); } else { rcode = RCODE_TYPE_ERROR; } break; case CSR_SPLIT_TIMEOUT_LO: if (tcode == TCODE_READ_QUADLET_REQUEST) { *data = cpu_to_be32(card->split_timeout_lo); } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) { spin_lock_irqsave(&card->lock, flags); card->split_timeout_lo = be32_to_cpu(*data) & 0xfff80000; update_split_timeout(card); spin_unlock_irqrestore(&card->lock, flags); } else { rcode = RCODE_TYPE_ERROR; } break; case CSR_MAINT_UTILITY: if (tcode == TCODE_READ_QUADLET_REQUEST) *data = card->maint_utility_register; else if (tcode == TCODE_WRITE_QUADLET_REQUEST) card->maint_utility_register = *data; else rcode = RCODE_TYPE_ERROR; break; case CSR_BROADCAST_CHANNEL: if (tcode == TCODE_READ_QUADLET_REQUEST) *data = cpu_to_be32(card->broadcast_channel); else if (tcode == TCODE_WRITE_QUADLET_REQUEST) card->broadcast_channel = (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) | BROADCAST_CHANNEL_INITIAL; else rcode = RCODE_TYPE_ERROR; break; case CSR_BUS_MANAGER_ID: case CSR_BANDWIDTH_AVAILABLE: case CSR_CHANNELS_AVAILABLE_HI: case CSR_CHANNELS_AVAILABLE_LO: /* * FIXME: these are handled by the OHCI hardware and * the stack never sees these request. If we add * support for a new type of controller that doesn't * handle this in hardware we need to deal with these * transactions. */ BUG(); break; default: rcode = RCODE_ADDRESS_ERROR; break; } fw_send_response(card, request, rcode); } static struct fw_address_handler registers = { .length = 0x400, .address_callback = handle_registers, }; static void handle_low_memory(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *payload, size_t length, void *callback_data) { /* * This catches requests not handled by the physical DMA unit, * i.e., wrong transaction types or unauthorized source nodes. */ fw_send_response(card, request, RCODE_TYPE_ERROR); } static struct fw_address_handler low_memory = { .length = FW_MAX_PHYSICAL_RANGE, .address_callback = handle_low_memory, }; MODULE_AUTHOR("Kristian Hoegsberg "); MODULE_DESCRIPTION("Core IEEE1394 transaction logic"); MODULE_LICENSE("GPL"); static const u32 vendor_textual_descriptor[] = { /* textual descriptor leaf () */ 0x00060000, 0x00000000, 0x00000000, 0x4c696e75, /* L i n u */ 0x78204669, /* x F i */ 0x72657769, /* r e w i */ 0x72650000, /* r e */ }; static const u32 model_textual_descriptor[] = { /* model descriptor leaf () */ 0x00030000, 0x00000000, 0x00000000, 0x4a756a75, /* J u j u */ }; static struct fw_descriptor vendor_id_descriptor = { .length = ARRAY_SIZE(vendor_textual_descriptor), .immediate = 0x03001f11, .key = 0x81000000, .data = vendor_textual_descriptor, }; static struct fw_descriptor model_id_descriptor = { .length = ARRAY_SIZE(model_textual_descriptor), .immediate = 0x17023901, .key = 0x81000000, .data = model_textual_descriptor, }; static int __init fw_core_init(void) { int ret; fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0); if (!fw_workqueue) return -ENOMEM; ret = bus_register(&fw_bus_type); if (ret < 0) { destroy_workqueue(fw_workqueue); return ret; } fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops); if (fw_cdev_major < 0) { bus_unregister(&fw_bus_type); destroy_workqueue(fw_workqueue); return fw_cdev_major; } fw_core_add_address_handler(&topology_map, &topology_map_region); fw_core_add_address_handler(®isters, ®isters_region); fw_core_add_address_handler(&low_memory, &low_memory_region); fw_core_add_descriptor(&vendor_id_descriptor); fw_core_add_descriptor(&model_id_descriptor); return 0; } static void __exit fw_core_cleanup(void) { unregister_chrdev(fw_cdev_major, "firewire"); bus_unregister(&fw_bus_type); destroy_workqueue(fw_workqueue); idr_destroy(&fw_device_idr); } module_init(fw_core_init); module_exit(fw_core_cleanup);