/* * AMD64 class Memory Controller kernel module * * Copyright (c) 2009 SoftwareBitMaker. * Copyright (c) 2009 Advanced Micro Devices, Inc. * * This file may be distributed under the terms of the * GNU General Public License. * * Originally Written by Thayne Harbaugh * * Changes by Douglas "norsk" Thompson : * - K8 CPU Revision D and greater support * * Changes by Dave Peterson : * - Module largely rewritten, with new (and hopefully correct) * code for dealing with node and chip select interleaving, * various code cleanup, and bug fixes * - Added support for memory hoisting using DRAM hole address * register * * Changes by Douglas "norsk" Thompson : * -K8 Rev (1207) revision support added, required Revision * specific mini-driver code to support Rev F as well as * prior revisions * * Changes by Douglas "norsk" Thompson : * -Family 10h revision support added. New PCI Device IDs, * indicating new changes. Actual registers modified * were slight, less than the Rev E to Rev F transition * but changing the PCI Device ID was the proper thing to * do, as it provides for almost automactic family * detection. The mods to Rev F required more family * information detection. * * Changes/Fixes by Borislav Petkov : * - misc fixes and code cleanups * * This module is based on the following documents * (available from http://www.amd.com/): * * Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD * Opteron Processors * AMD publication #: 26094 *` Revision: 3.26 * * Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh * Processors * AMD publication #: 32559 * Revision: 3.00 * Issue Date: May 2006 * * Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h * Processors * AMD publication #: 31116 * Revision: 3.00 * Issue Date: September 07, 2007 * * Sections in the first 2 documents are no longer in sync with each other. * The Family 10h BKDG was totally re-written from scratch with a new * presentation model. * Therefore, comments that refer to a Document section might be off. */ #include #include #include #include #include #include #include #include #include #include "edac_core.h" #include "mce_amd.h" #define amd64_debug(fmt, arg...) \ edac_printk(KERN_DEBUG, "amd64", fmt, ##arg) #define amd64_info(fmt, arg...) \ edac_printk(KERN_INFO, "amd64", fmt, ##arg) #define amd64_notice(fmt, arg...) \ edac_printk(KERN_NOTICE, "amd64", fmt, ##arg) #define amd64_warn(fmt, arg...) \ edac_printk(KERN_WARNING, "amd64", fmt, ##arg) #define amd64_err(fmt, arg...) \ edac_printk(KERN_ERR, "amd64", fmt, ##arg) #define amd64_mc_warn(mci, fmt, arg...) \ edac_mc_chipset_printk(mci, KERN_WARNING, "amd64", fmt, ##arg) #define amd64_mc_err(mci, fmt, arg...) \ edac_mc_chipset_printk(mci, KERN_ERR, "amd64", fmt, ##arg) /* * Throughout the comments in this code, the following terms are used: * * SysAddr, DramAddr, and InputAddr * * These terms come directly from the amd64 documentation * (AMD publication #26094). They are defined as follows: * * SysAddr: * This is a physical address generated by a CPU core or a device * doing DMA. If generated by a CPU core, a SysAddr is the result of * a virtual to physical address translation by the CPU core's address * translation mechanism (MMU). * * DramAddr: * A DramAddr is derived from a SysAddr by subtracting an offset that * depends on which node the SysAddr maps to and whether the SysAddr * is within a range affected by memory hoisting. The DRAM Base * (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers * determine which node a SysAddr maps to. * * If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr * is within the range of addresses specified by this register, then * a value x from the DHAR is subtracted from the SysAddr to produce a * DramAddr. Here, x represents the base address for the node that * the SysAddr maps to plus an offset due to memory hoisting. See * section 3.4.8 and the comments in amd64_get_dram_hole_info() and * sys_addr_to_dram_addr() below for more information. * * If the SysAddr is not affected by the DHAR then a value y is * subtracted from the SysAddr to produce a DramAddr. Here, y is the * base address for the node that the SysAddr maps to. See section * 3.4.4 and the comments in sys_addr_to_dram_addr() below for more * information. * * InputAddr: * A DramAddr is translated to an InputAddr before being passed to the * memory controller for the node that the DramAddr is associated * with. The memory controller then maps the InputAddr to a csrow. * If node interleaving is not in use, then the InputAddr has the same * value as the DramAddr. Otherwise, the InputAddr is produced by * discarding the bits used for node interleaving from the DramAddr. * See section 3.4.4 for more information. * * The memory controller for a given node uses its DRAM CS Base and * DRAM CS Mask registers to map an InputAddr to a csrow. See * sections 3.5.4 and 3.5.5 for more information. */ #define EDAC_AMD64_VERSION "3.4.0" #define EDAC_MOD_STR "amd64_edac" /* Extended Model from CPUID, for CPU Revision numbers */ #define K8_REV_D 1 #define K8_REV_E 2 #define K8_REV_F 4 /* Hardware limit on ChipSelect rows per MC and processors per system */ #define NUM_CHIPSELECTS 8 #define DRAM_RANGES 8 #define ON true #define OFF false /* * Create a contiguous bitmask starting at bit position @lo and ending at * position @hi. For example * * GENMASK(21, 39) gives us the 64bit vector 0x000000ffffe00000. */ #define GENMASK(lo, hi) (((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) /* * PCI-defined configuration space registers */ #define PCI_DEVICE_ID_AMD_15H_M30H_NB_F1 0x141b #define PCI_DEVICE_ID_AMD_15H_M30H_NB_F2 0x141c #define PCI_DEVICE_ID_AMD_15H_NB_F1 0x1601 #define PCI_DEVICE_ID_AMD_15H_NB_F2 0x1602 #define PCI_DEVICE_ID_AMD_16H_NB_F1 0x1531 #define PCI_DEVICE_ID_AMD_16H_NB_F2 0x1532 #define PCI_DEVICE_ID_AMD_16H_M30H_NB_F1 0x1581 #define PCI_DEVICE_ID_AMD_16H_M30H_NB_F2 0x1582 /* * Function 1 - Address Map */ #define DRAM_BASE_LO 0x40 #define DRAM_LIMIT_LO 0x44 /* * F15 M30h D18F1x2[1C:00] */ #define DRAM_CONT_BASE 0x200 #define DRAM_CONT_LIMIT 0x204 /* * F15 M30h D18F1x2[4C:40] */ #define DRAM_CONT_HIGH_OFF 0x240 #define dram_rw(pvt, i) ((u8)(pvt->ranges[i].base.lo & 0x3)) #define dram_intlv_sel(pvt, i) ((u8)((pvt->ranges[i].lim.lo >> 8) & 0x7)) #define dram_dst_node(pvt, i) ((u8)(pvt->ranges[i].lim.lo & 0x7)) #define DHAR 0xf0 #define dhar_mem_hoist_valid(pvt) ((pvt)->dhar & BIT(1)) #define dhar_base(pvt) ((pvt)->dhar & 0xff000000) #define k8_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff00) << 16) /* NOTE: Extra mask bit vs K8 */ #define f10_dhar_offset(pvt) (((pvt)->dhar & 0x0000ff80) << 16) #define DCT_CFG_SEL 0x10C #define DRAM_LOCAL_NODE_BASE 0x120 #define DRAM_LOCAL_NODE_LIM 0x124 #define DRAM_BASE_HI 0x140 #define DRAM_LIMIT_HI 0x144 /* * Function 2 - DRAM controller */ #define DCSB0 0x40 #define DCSB1 0x140 #define DCSB_CS_ENABLE BIT(0) #define DCSM0 0x60 #define DCSM1 0x160 #define csrow_enabled(i, dct, pvt) ((pvt)->csels[(dct)].csbases[(i)] & DCSB_CS_ENABLE) #define DBAM0 0x80 #define DBAM1 0x180 /* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */ #define DBAM_DIMM(i, reg) ((((reg) >> (4*(i)))) & 0xF) #define DBAM_MAX_VALUE 11 #define DCLR0 0x90 #define DCLR1 0x190 #define REVE_WIDTH_128 BIT(16) #define WIDTH_128 BIT(11) #define DCHR0 0x94 #define DCHR1 0x194 #define DDR3_MODE BIT(8) #define DCT_SEL_LO 0x110 #define dct_high_range_enabled(pvt) ((pvt)->dct_sel_lo & BIT(0)) #define dct_interleave_enabled(pvt) ((pvt)->dct_sel_lo & BIT(2)) #define dct_ganging_enabled(pvt) ((boot_cpu_data.x86 == 0x10) && ((pvt)->dct_sel_lo & BIT(4))) #define dct_data_intlv_enabled(pvt) ((pvt)->dct_sel_lo & BIT(5)) #define dct_memory_cleared(pvt) ((pvt)->dct_sel_lo & BIT(10)) #define SWAP_INTLV_REG 0x10c #define DCT_SEL_HI 0x114 /* * Function 3 - Misc Control */ #define NBCTL 0x40 #define NBCFG 0x44 #define NBCFG_CHIPKILL BIT(23) #define NBCFG_ECC_ENABLE BIT(22) /* F3x48: NBSL */ #define F10_NBSL_EXT_ERR_ECC 0x8 #define NBSL_PP_OBS 0x2 #define SCRCTRL 0x58 #define F10_ONLINE_SPARE 0xB0 #define online_spare_swap_done(pvt, c) (((pvt)->online_spare >> (1 + 2 * (c))) & 0x1) #define online_spare_bad_dramcs(pvt, c) (((pvt)->online_spare >> (4 + 4 * (c))) & 0x7) #define F10_NB_ARRAY_ADDR 0xB8 #define F10_NB_ARRAY_DRAM BIT(31) /* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline */ #define SET_NB_ARRAY_ADDR(section) (((section) & 0x3) << 1) #define F10_NB_ARRAY_DATA 0xBC #define F10_NB_ARR_ECC_WR_REQ BIT(17) #define SET_NB_DRAM_INJECTION_WRITE(inj) \ (BIT(((inj.word) & 0xF) + 20) | \ F10_NB_ARR_ECC_WR_REQ | inj.bit_map) #define SET_NB_DRAM_INJECTION_READ(inj) \ (BIT(((inj.word) & 0xF) + 20) | \ BIT(16) | inj.bit_map) #define NBCAP 0xE8 #define NBCAP_CHIPKILL BIT(4) #define NBCAP_SECDED BIT(3) #define NBCAP_DCT_DUAL BIT(0) #define EXT_NB_MCA_CFG 0x180 /* MSRs */ #define MSR_MCGCTL_NBE BIT(4) enum amd_families { K8_CPUS = 0, F10_CPUS, F15_CPUS, F15_M30H_CPUS, F16_CPUS, F16_M30H_CPUS, NUM_FAMILIES, }; /* Error injection control structure */ struct error_injection { u32 section; u32 word; u32 bit_map; }; /* low and high part of PCI config space regs */ struct reg_pair { u32 lo, hi; }; /* * See F1x[1, 0][7C:40] DRAM Base/Limit Registers */ struct dram_range { struct reg_pair base; struct reg_pair lim; }; /* A DCT chip selects collection */ struct chip_select { u32 csbases[NUM_CHIPSELECTS]; u8 b_cnt; u32 csmasks[NUM_CHIPSELECTS]; u8 m_cnt; }; struct amd64_pvt { struct low_ops *ops; /* pci_device handles which we utilize */ struct pci_dev *F1, *F2, *F3; u16 mc_node_id; /* MC index of this MC node */ u8 fam; /* CPU family */ u8 model; /* ... model */ u8 stepping; /* ... stepping */ int ext_model; /* extended model value of this node */ int channel_count; /* Raw registers */ u32 dclr0; /* DRAM Configuration Low DCT0 reg */ u32 dclr1; /* DRAM Configuration Low DCT1 reg */ u32 dchr0; /* DRAM Configuration High DCT0 reg */ u32 dchr1; /* DRAM Configuration High DCT1 reg */ u32 nbcap; /* North Bridge Capabilities */ u32 nbcfg; /* F10 North Bridge Configuration */ u32 ext_nbcfg; /* Extended F10 North Bridge Configuration */ u32 dhar; /* DRAM Hoist reg */ u32 dbam0; /* DRAM Base Address Mapping reg for DCT0 */ u32 dbam1; /* DRAM Base Address Mapping reg for DCT1 */ /* one for each DCT */ struct chip_select csels[2]; /* DRAM base and limit pairs F1x[78,70,68,60,58,50,48,40] */ struct dram_range ranges[DRAM_RANGES]; u64 top_mem; /* top of memory below 4GB */ u64 top_mem2; /* top of memory above 4GB */ u32 dct_sel_lo; /* DRAM Controller Select Low */ u32 dct_sel_hi; /* DRAM Controller Select High */ u32 online_spare; /* On-Line spare Reg */ /* x4 or x8 syndromes in use */ u8 ecc_sym_sz; /* place to store error injection parameters prior to issue */ struct error_injection injection; }; enum err_codes { DECODE_OK = 0, ERR_NODE = -1, ERR_CSROW = -2, ERR_CHANNEL = -3, }; struct err_info { int err_code; struct mem_ctl_info *src_mci; int csrow; int channel; u16 syndrome; u32 page; u32 offset; }; static inline u64 get_dram_base(struct amd64_pvt *pvt, u8 i) { u64 addr = ((u64)pvt->ranges[i].base.lo & 0xffff0000) << 8; if (boot_cpu_data.x86 == 0xf) return addr; return (((u64)pvt->ranges[i].base.hi & 0x000000ff) << 40) | addr; } static inline u64 get_dram_limit(struct amd64_pvt *pvt, u8 i) { u64 lim = (((u64)pvt->ranges[i].lim.lo & 0xffff0000) << 8) | 0x00ffffff; if (boot_cpu_data.x86 == 0xf) return lim; return (((u64)pvt->ranges[i].lim.hi & 0x000000ff) << 40) | lim; } static inline u16 extract_syndrome(u64 status) { return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00); } static inline u8 dct_sel_interleave_addr(struct amd64_pvt *pvt) { if (pvt->fam == 0x15 && pvt->model >= 0x30) return (((pvt->dct_sel_hi >> 9) & 0x1) << 2) | ((pvt->dct_sel_lo >> 6) & 0x3); return ((pvt)->dct_sel_lo >> 6) & 0x3; } /* * per-node ECC settings descriptor */ struct ecc_settings { u32 old_nbctl; bool nbctl_valid; struct flags { unsigned long nb_mce_enable:1; unsigned long nb_ecc_prev:1; } flags; }; #ifdef CONFIG_EDAC_DEBUG int amd64_create_sysfs_dbg_files(struct mem_ctl_info *mci); void amd64_remove_sysfs_dbg_files(struct mem_ctl_info *mci); #else static inline int amd64_create_sysfs_dbg_files(struct mem_ctl_info *mci) { return 0; } static void inline amd64_remove_sysfs_dbg_files(struct mem_ctl_info *mci) { } #endif #ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION int amd64_create_sysfs_inject_files(struct mem_ctl_info *mci); void amd64_remove_sysfs_inject_files(struct mem_ctl_info *mci); #else static inline int amd64_create_sysfs_inject_files(struct mem_ctl_info *mci) { return 0; } static inline void amd64_remove_sysfs_inject_files(struct mem_ctl_info *mci) { } #endif /* * Each of the PCI Device IDs types have their own set of hardware accessor * functions and per device encoding/decoding logic. */ struct low_ops { int (*early_channel_count) (struct amd64_pvt *pvt); void (*map_sysaddr_to_csrow) (struct mem_ctl_info *mci, u64 sys_addr, struct err_info *); int (*dbam_to_cs) (struct amd64_pvt *pvt, u8 dct, unsigned cs_mode); int (*read_dct_pci_cfg) (struct amd64_pvt *pvt, int offset, u32 *val, const char *func); }; struct amd64_family_type { const char *ctl_name; u16 f1_id, f3_id; struct low_ops ops; }; int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset, u32 *val, const char *func); int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset, u32 val, const char *func); #define amd64_read_pci_cfg(pdev, offset, val) \ __amd64_read_pci_cfg_dword(pdev, offset, val, __func__) #define amd64_write_pci_cfg(pdev, offset, val) \ __amd64_write_pci_cfg_dword(pdev, offset, val, __func__) #define amd64_read_dct_pci_cfg(pvt, offset, val) \ pvt->ops->read_dct_pci_cfg(pvt, offset, val, __func__) int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, u64 *hole_offset, u64 *hole_size); #define to_mci(k) container_of(k, struct mem_ctl_info, dev) /* Injection helpers */ static inline void disable_caches(void *dummy) { write_cr0(read_cr0() | X86_CR0_CD); wbinvd(); } static inline void enable_caches(void *dummy) { write_cr0(read_cr0() & ~X86_CR0_CD); } static inline u8 dram_intlv_en(struct amd64_pvt *pvt, unsigned int i) { if (pvt->fam == 0x15 && pvt->model >= 0x30) { u32 tmp; amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &tmp); return (u8) tmp & 0xF; } return (u8) (pvt->ranges[i].base.lo >> 8) & 0x7; } static inline u8 dhar_valid(struct amd64_pvt *pvt) { if (pvt->fam == 0x15 && pvt->model >= 0x30) { u32 tmp; amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &tmp); return (tmp >> 1) & BIT(0); } return (pvt)->dhar & BIT(0); } static inline u32 dct_sel_baseaddr(struct amd64_pvt *pvt) { if (pvt->fam == 0x15 && pvt->model >= 0x30) { u32 tmp; amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &tmp); return (tmp >> 11) & 0x1FFF; } return (pvt)->dct_sel_lo & 0xFFFFF800; }