/* * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <crypto/aead.h> #include <crypto/aes.h> #include <crypto/algapi.h> #include <crypto/authenc.h> #include <crypto/des.h> #include <crypto/md5.h> #include <crypto/sha.h> #include <crypto/internal/skcipher.h> #include <linux/clk.h> #include <linux/crypto.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/list.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/rtnetlink.h> #include <linux/scatterlist.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/timer.h> #include "picoxcell_crypto_regs.h" /* * The threshold for the number of entries in the CMD FIFO available before * the CMD0_CNT interrupt is raised. Increasing this value will reduce the * number of interrupts raised to the CPU. */ #define CMD0_IRQ_THRESHOLD 1 /* * The timeout period (in jiffies) for a PDU. When the the number of PDUs in * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled. * When there are packets in flight but lower than the threshold, we enable * the timer and at expiry, attempt to remove any processed packets from the * queue and if there are still packets left, schedule the timer again. */ #define PACKET_TIMEOUT 1 /* The priority to register each algorithm with. */ #define SPACC_CRYPTO_ALG_PRIORITY 10000 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64 #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32 #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64 #define SPACC_CRYPTO_L2_HASH_PG_SZ 64 #define SPACC_CRYPTO_L2_MAX_CTXS 128 #define SPACC_CRYPTO_L2_FIFO_SZ 128 #define MAX_DDT_LEN 16 /* DDT format. This must match the hardware DDT format exactly. */ struct spacc_ddt { dma_addr_t p; u32 len; }; /* * Asynchronous crypto request structure. * * This structure defines a request that is either queued for processing or * being processed. */ struct spacc_req { struct list_head list; struct spacc_engine *engine; struct crypto_async_request *req; int result; bool is_encrypt; unsigned ctx_id; dma_addr_t src_addr, dst_addr; struct spacc_ddt *src_ddt, *dst_ddt; void (*complete)(struct spacc_req *req); /* AEAD specific bits. */ u8 *giv; size_t giv_len; dma_addr_t giv_pa; }; struct spacc_engine { void __iomem *regs; struct list_head pending; int next_ctx; spinlock_t hw_lock; int in_flight; struct list_head completed; struct list_head in_progress; struct tasklet_struct complete; unsigned long fifo_sz; void __iomem *cipher_ctx_base; void __iomem *hash_key_base; struct spacc_alg *algs; unsigned num_algs; struct list_head registered_algs; size_t cipher_pg_sz; size_t hash_pg_sz; const char *name; struct clk *clk; struct device *dev; unsigned max_ctxs; struct timer_list packet_timeout; unsigned stat_irq_thresh; struct dma_pool *req_pool; }; /* Algorithm type mask. */ #define SPACC_CRYPTO_ALG_MASK 0x7 /* SPACC definition of a crypto algorithm. */ struct spacc_alg { unsigned long ctrl_default; unsigned long type; struct crypto_alg alg; struct spacc_engine *engine; struct list_head entry; int key_offs; int iv_offs; }; /* Generic context structure for any algorithm type. */ struct spacc_generic_ctx { struct spacc_engine *engine; int flags; int key_offs; int iv_offs; }; /* Block cipher context. */ struct spacc_ablk_ctx { struct spacc_generic_ctx generic; u8 key[AES_MAX_KEY_SIZE]; u8 key_len; /* * The fallback cipher. If the operation can't be done in hardware, * fallback to a software version. */ struct crypto_ablkcipher *sw_cipher; }; /* AEAD cipher context. */ struct spacc_aead_ctx { struct spacc_generic_ctx generic; u8 cipher_key[AES_MAX_KEY_SIZE]; u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ]; u8 cipher_key_len; u8 hash_key_len; struct crypto_aead *sw_cipher; size_t auth_size; u8 salt[AES_BLOCK_SIZE]; }; static int spacc_ablk_submit(struct spacc_req *req); static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg) { return alg ? container_of(alg, struct spacc_alg, alg) : NULL; } static inline int spacc_fifo_cmd_full(struct spacc_engine *engine) { u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET); return fifo_stat & SPA_FIFO_CMD_FULL; } /* * Given a cipher context, and a context number, get the base address of the * context page. * * Returns the address of the context page where the key/context may * be written. */ static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx, unsigned indx, bool is_cipher_ctx) { return is_cipher_ctx ? ctx->engine->cipher_ctx_base + (indx * ctx->engine->cipher_pg_sz) : ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz); } /* The context pages can only be written with 32-bit accesses. */ static inline void memcpy_toio32(u32 __iomem *dst, const void *src, unsigned count) { const u32 *src32 = (const u32 *) src; while (count--) writel(*src32++, dst++); } static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx, void __iomem *page_addr, const u8 *key, size_t key_len, const u8 *iv, size_t iv_len) { void __iomem *key_ptr = page_addr + ctx->key_offs; void __iomem *iv_ptr = page_addr + ctx->iv_offs; memcpy_toio32(key_ptr, key, key_len / 4); memcpy_toio32(iv_ptr, iv, iv_len / 4); } /* * Load a context into the engines context memory. * * Returns the index of the context page where the context was loaded. */ static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx, const u8 *ciph_key, size_t ciph_len, const u8 *iv, size_t ivlen, const u8 *hash_key, size_t hash_len) { unsigned indx = ctx->engine->next_ctx++; void __iomem *ciph_page_addr, *hash_page_addr; ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1); hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0); ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1; spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv, ivlen); writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) | (1 << SPA_KEY_SZ_CIPHER_OFFSET), ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET); if (hash_key) { memcpy_toio32(hash_page_addr, hash_key, hash_len / 4); writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET), ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET); } return indx; } /* Count the number of scatterlist entries in a scatterlist. */ static int sg_count(struct scatterlist *sg_list, int nbytes) { struct scatterlist *sg = sg_list; int sg_nents = 0; while (nbytes > 0) { ++sg_nents; nbytes -= sg->length; sg = sg_next(sg); } return sg_nents; } static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len) { ddt->p = phys; ddt->len = len; } /* * Take a crypto request and scatterlists for the data and turn them into DDTs * for passing to the crypto engines. This also DMA maps the data so that the * crypto engines can DMA to/from them. */ static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine, struct scatterlist *payload, unsigned nbytes, enum dma_data_direction dir, dma_addr_t *ddt_phys) { unsigned nents, mapped_ents; struct scatterlist *cur; struct spacc_ddt *ddt; int i; nents = sg_count(payload, nbytes); mapped_ents = dma_map_sg(engine->dev, payload, nents, dir); if (mapped_ents + 1 > MAX_DDT_LEN) goto out; ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys); if (!ddt) goto out; for_each_sg(payload, cur, mapped_ents, i) ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur)); ddt_set(&ddt[mapped_ents], 0, 0); return ddt; out: dma_unmap_sg(engine->dev, payload, nents, dir); return NULL; } static int spacc_aead_make_ddts(struct spacc_req *req, u8 *giv) { struct aead_request *areq = container_of(req->req, struct aead_request, base); struct spacc_engine *engine = req->engine; struct spacc_ddt *src_ddt, *dst_ddt; unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(areq)); unsigned nents = sg_count(areq->src, areq->cryptlen); dma_addr_t iv_addr; struct scatterlist *cur; int i, dst_ents, src_ents, assoc_ents; u8 *iv = giv ? giv : areq->iv; src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr); if (!src_ddt) return -ENOMEM; dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr); if (!dst_ddt) { dma_pool_free(engine->req_pool, src_ddt, req->src_addr); return -ENOMEM; } req->src_ddt = src_ddt; req->dst_ddt = dst_ddt; assoc_ents = dma_map_sg(engine->dev, areq->assoc, sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE); if (areq->src != areq->dst) { src_ents = dma_map_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE); dst_ents = dma_map_sg(engine->dev, areq->dst, nents, DMA_FROM_DEVICE); } else { src_ents = dma_map_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL); dst_ents = 0; } /* * Map the IV/GIV. For the GIV it needs to be bidirectional as it is * formed by the crypto block and sent as the ESP IV for IPSEC. */ iv_addr = dma_map_single(engine->dev, iv, ivsize, giv ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); req->giv_pa = iv_addr; /* * Map the associated data. For decryption we don't copy the * associated data. */ for_each_sg(areq->assoc, cur, assoc_ents, i) { ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur)); if (req->is_encrypt) ddt_set(dst_ddt++, sg_dma_address(cur), sg_dma_len(cur)); } ddt_set(src_ddt++, iv_addr, ivsize); if (giv || req->is_encrypt) ddt_set(dst_ddt++, iv_addr, ivsize); /* * Now map in the payload for the source and destination and terminate * with the NULL pointers. */ for_each_sg(areq->src, cur, src_ents, i) { ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur)); if (areq->src == areq->dst) ddt_set(dst_ddt++, sg_dma_address(cur), sg_dma_len(cur)); } for_each_sg(areq->dst, cur, dst_ents, i) ddt_set(dst_ddt++, sg_dma_address(cur), sg_dma_len(cur)); ddt_set(src_ddt, 0, 0); ddt_set(dst_ddt, 0, 0); return 0; } static void spacc_aead_free_ddts(struct spacc_req *req) { struct aead_request *areq = container_of(req->req, struct aead_request, base); struct spacc_alg *alg = to_spacc_alg(req->req->tfm->__crt_alg); struct spacc_ablk_ctx *aead_ctx = crypto_tfm_ctx(req->req->tfm); struct spacc_engine *engine = aead_ctx->generic.engine; unsigned ivsize = alg->alg.cra_aead.ivsize; unsigned nents = sg_count(areq->src, areq->cryptlen); if (areq->src != areq->dst) { dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE); dma_unmap_sg(engine->dev, areq->dst, sg_count(areq->dst, areq->cryptlen), DMA_FROM_DEVICE); } else dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL); dma_unmap_sg(engine->dev, areq->assoc, sg_count(areq->assoc, areq->assoclen), DMA_TO_DEVICE); dma_unmap_single(engine->dev, req->giv_pa, ivsize, DMA_BIDIRECTIONAL); dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr); dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr); } static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt, dma_addr_t ddt_addr, struct scatterlist *payload, unsigned nbytes, enum dma_data_direction dir) { unsigned nents = sg_count(payload, nbytes); dma_unmap_sg(req->engine->dev, payload, nents, dir); dma_pool_free(req->engine->req_pool, ddt, ddt_addr); } /* * Set key for a DES operation in an AEAD cipher. This also performs weak key * checking if required. */ static int spacc_aead_des_setkey(struct crypto_aead *aead, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); u32 tmp[DES_EXPKEY_WORDS]; if (unlikely(!des_ekey(tmp, key)) && (crypto_aead_get_flags(aead)) & CRYPTO_TFM_REQ_WEAK_KEY) { tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; return -EINVAL; } memcpy(ctx->cipher_key, key, len); ctx->cipher_key_len = len; return 0; } /* Set the key for the AES block cipher component of the AEAD transform. */ static int spacc_aead_aes_setkey(struct crypto_aead *aead, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); /* * IPSec engine only supports 128 and 256 bit AES keys. If we get a * request for any other size (192 bits) then we need to do a software * fallback. */ if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) { /* * Set the fallback transform to use the same request flags as * the hardware transform. */ ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; ctx->sw_cipher->base.crt_flags |= tfm->crt_flags & CRYPTO_TFM_REQ_MASK; return crypto_aead_setkey(ctx->sw_cipher, key, len); } memcpy(ctx->cipher_key, key, len); ctx->cipher_key_len = len; return 0; } static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key, unsigned int keylen) { struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm); struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg); struct rtattr *rta = (void *)key; struct crypto_authenc_key_param *param; unsigned int authkeylen, enckeylen; int err = -EINVAL; if (!RTA_OK(rta, keylen)) goto badkey; if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) goto badkey; if (RTA_PAYLOAD(rta) < sizeof(*param)) goto badkey; param = RTA_DATA(rta); enckeylen = be32_to_cpu(param->enckeylen); key += RTA_ALIGN(rta->rta_len); keylen -= RTA_ALIGN(rta->rta_len); if (keylen < enckeylen) goto badkey; authkeylen = keylen - enckeylen; if (enckeylen > AES_MAX_KEY_SIZE) goto badkey; if ((alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) == SPA_CTRL_CIPH_ALG_AES) err = spacc_aead_aes_setkey(tfm, key + authkeylen, enckeylen); else err = spacc_aead_des_setkey(tfm, key + authkeylen, enckeylen); if (err) goto badkey; memcpy(ctx->hash_ctx, key, authkeylen); ctx->hash_key_len = authkeylen; return 0; badkey: crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } static int spacc_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm)); ctx->auth_size = authsize; return 0; } /* * Check if an AEAD request requires a fallback operation. Some requests can't * be completed in hardware because the hardware may not support certain key * sizes. In these cases we need to complete the request in software. */ static int spacc_aead_need_fallback(struct spacc_req *req) { struct aead_request *aead_req; struct crypto_tfm *tfm = req->req->tfm; struct crypto_alg *alg = req->req->tfm->__crt_alg; struct spacc_alg *spacc_alg = to_spacc_alg(alg); struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); aead_req = container_of(req->req, struct aead_request, base); /* * If we have a non-supported key-length, then we need to do a * software fallback. */ if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) == SPA_CTRL_CIPH_ALG_AES && ctx->cipher_key_len != AES_KEYSIZE_128 && ctx->cipher_key_len != AES_KEYSIZE_256) return 1; return 0; } static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type, bool is_encrypt) { struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req)); struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm); int err; if (ctx->sw_cipher) { /* * Change the request to use the software fallback transform, * and once the ciphering has completed, put the old transform * back into the request. */ aead_request_set_tfm(req, ctx->sw_cipher); err = is_encrypt ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); aead_request_set_tfm(req, __crypto_aead_cast(old_tfm)); } else err = -EINVAL; return err; } static void spacc_aead_complete(struct spacc_req *req) { spacc_aead_free_ddts(req); req->req->complete(req->req, req->result); } static int spacc_aead_submit(struct spacc_req *req) { struct crypto_tfm *tfm = req->req->tfm; struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_alg *alg = req->req->tfm->__crt_alg; struct spacc_alg *spacc_alg = to_spacc_alg(alg); struct spacc_engine *engine = ctx->generic.engine; u32 ctrl, proc_len, assoc_len; struct aead_request *aead_req = container_of(req->req, struct aead_request, base); req->result = -EINPROGRESS; req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key, ctx->cipher_key_len, aead_req->iv, alg->cra_aead.ivsize, ctx->hash_ctx, ctx->hash_key_len); /* Set the source and destination DDT pointers. */ writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET); writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET); writel(0, engine->regs + SPA_OFFSET_REG_OFFSET); assoc_len = aead_req->assoclen; proc_len = aead_req->cryptlen + assoc_len; /* * If we aren't generating an IV, then we need to include the IV in the * associated data so that it is included in the hash. */ if (!req->giv) { assoc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req)); proc_len += crypto_aead_ivsize(crypto_aead_reqtfm(aead_req)); } else proc_len += req->giv_len; /* * If we are decrypting, we need to take the length of the ICV out of * the processing length. */ if (!req->is_encrypt) proc_len -= ctx->auth_size; writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET); writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET); writel(ctx->auth_size, engine->regs + SPA_ICV_LEN_REG_OFFSET); writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET); writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET); ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) | (1 << SPA_CTRL_ICV_APPEND); if (req->is_encrypt) ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY); else ctrl |= (1 << SPA_CTRL_KEY_EXP); mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT); writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET); return -EINPROGRESS; } static int spacc_req_submit(struct spacc_req *req); static void spacc_push(struct spacc_engine *engine) { struct spacc_req *req; while (!list_empty(&engine->pending) && engine->in_flight + 1 <= engine->fifo_sz) { ++engine->in_flight; req = list_first_entry(&engine->pending, struct spacc_req, list); list_move_tail(&req->list, &engine->in_progress); req->result = spacc_req_submit(req); } } /* * Setup an AEAD request for processing. This will configure the engine, load * the context and then start the packet processing. * * @giv Pointer to destination address for a generated IV. If the * request does not need to generate an IV then this should be set to NULL. */ static int spacc_aead_setup(struct aead_request *req, u8 *giv, unsigned alg_type, bool is_encrypt) { struct crypto_alg *alg = req->base.tfm->__crt_alg; struct spacc_engine *engine = to_spacc_alg(alg)->engine; struct spacc_req *dev_req = aead_request_ctx(req); int err = -EINPROGRESS; unsigned long flags; unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); dev_req->giv = giv; dev_req->giv_len = ivsize; dev_req->req = &req->base; dev_req->is_encrypt = is_encrypt; dev_req->result = -EBUSY; dev_req->engine = engine; dev_req->complete = spacc_aead_complete; if (unlikely(spacc_aead_need_fallback(dev_req))) return spacc_aead_do_fallback(req, alg_type, is_encrypt); spacc_aead_make_ddts(dev_req, dev_req->giv); err = -EINPROGRESS; spin_lock_irqsave(&engine->hw_lock, flags); if (unlikely(spacc_fifo_cmd_full(engine)) || engine->in_flight + 1 > engine->fifo_sz) { if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { err = -EBUSY; spin_unlock_irqrestore(&engine->hw_lock, flags); goto out_free_ddts; } list_add_tail(&dev_req->list, &engine->pending); } else { list_add_tail(&dev_req->list, &engine->pending); spacc_push(engine); } spin_unlock_irqrestore(&engine->hw_lock, flags); goto out; out_free_ddts: spacc_aead_free_ddts(dev_req); out: return err; } static int spacc_aead_encrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); return spacc_aead_setup(req, NULL, alg->type, 1); } static int spacc_aead_givencrypt(struct aead_givcrypt_request *req) { struct crypto_aead *tfm = aead_givcrypt_reqtfm(req); struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm); size_t ivsize = crypto_aead_ivsize(tfm); struct spacc_alg *alg = to_spacc_alg(tfm->base.__crt_alg); unsigned len; __be64 seq; memcpy(req->areq.iv, ctx->salt, ivsize); len = ivsize; if (ivsize > sizeof(u64)) { memset(req->giv, 0, ivsize - sizeof(u64)); len = sizeof(u64); } seq = cpu_to_be64(req->seq); memcpy(req->giv + ivsize - len, &seq, len); return spacc_aead_setup(&req->areq, req->giv, alg->type, 1); } static int spacc_aead_decrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct crypto_tfm *tfm = crypto_aead_tfm(aead); struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); return spacc_aead_setup(req, NULL, alg->type, 0); } /* * Initialise a new AEAD context. This is responsible for allocating the * fallback cipher and initialising the context. */ static int spacc_aead_cra_init(struct crypto_tfm *tfm) { struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_alg *alg = tfm->__crt_alg; struct spacc_alg *spacc_alg = to_spacc_alg(alg); struct spacc_engine *engine = spacc_alg->engine; ctx->generic.flags = spacc_alg->type; ctx->generic.engine = engine; ctx->sw_cipher = crypto_alloc_aead(alg->cra_name, 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->sw_cipher)) { dev_warn(engine->dev, "failed to allocate fallback for %s\n", alg->cra_name); ctx->sw_cipher = NULL; } ctx->generic.key_offs = spacc_alg->key_offs; ctx->generic.iv_offs = spacc_alg->iv_offs; get_random_bytes(ctx->salt, sizeof(ctx->salt)); tfm->crt_aead.reqsize = sizeof(struct spacc_req); return 0; } /* * Destructor for an AEAD context. This is called when the transform is freed * and must free the fallback cipher. */ static void spacc_aead_cra_exit(struct crypto_tfm *tfm) { struct spacc_aead_ctx *ctx = crypto_tfm_ctx(tfm); if (ctx->sw_cipher) crypto_free_aead(ctx->sw_cipher); ctx->sw_cipher = NULL; } /* * Set the DES key for a block cipher transform. This also performs weak key * checking if the transform has requested it. */ static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); u32 tmp[DES_EXPKEY_WORDS]; if (len > DES3_EDE_KEY_SIZE) { crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } if (unlikely(!des_ekey(tmp, key)) && (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) { tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY; return -EINVAL; } memcpy(ctx->key, key, len); ctx->key_len = len; return 0; } /* * Set the key for an AES block cipher. Some key lengths are not supported in * hardware so this must also check whether a fallback is needed. */ static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); int err = 0; if (len > AES_MAX_KEY_SIZE) { crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } /* * IPSec engine only supports 128 and 256 bit AES keys. If we get a * request for any other size (192 bits) then we need to do a software * fallback. */ if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 && ctx->sw_cipher) { /* * Set the fallback transform to use the same request flags as * the hardware transform. */ ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK; ctx->sw_cipher->base.crt_flags |= cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK; err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len); if (err) goto sw_setkey_failed; } else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 && !ctx->sw_cipher) err = -EINVAL; memcpy(ctx->key, key, len); ctx->key_len = len; sw_setkey_failed: if (err && ctx->sw_cipher) { tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK; tfm->crt_flags |= ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK; } return err; } static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); int err = 0; if (len > AES_MAX_KEY_SIZE) { crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); err = -EINVAL; goto out; } memcpy(ctx->key, key, len); ctx->key_len = len; out: return err; } static int spacc_ablk_need_fallback(struct spacc_req *req) { struct spacc_ablk_ctx *ctx; struct crypto_tfm *tfm = req->req->tfm; struct crypto_alg *alg = req->req->tfm->__crt_alg; struct spacc_alg *spacc_alg = to_spacc_alg(alg); ctx = crypto_tfm_ctx(tfm); return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) == SPA_CTRL_CIPH_ALG_AES && ctx->key_len != AES_KEYSIZE_128 && ctx->key_len != AES_KEYSIZE_256; } static void spacc_ablk_complete(struct spacc_req *req) { struct ablkcipher_request *ablk_req = container_of(req->req, struct ablkcipher_request, base); if (ablk_req->src != ablk_req->dst) { spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src, ablk_req->nbytes, DMA_TO_DEVICE); spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst, ablk_req->nbytes, DMA_FROM_DEVICE); } else spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst, ablk_req->nbytes, DMA_BIDIRECTIONAL); req->req->complete(req->req, req->result); } static int spacc_ablk_submit(struct spacc_req *req) { struct crypto_tfm *tfm = req->req->tfm; struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req); struct crypto_alg *alg = req->req->tfm->__crt_alg; struct spacc_alg *spacc_alg = to_spacc_alg(alg); struct spacc_engine *engine = ctx->generic.engine; u32 ctrl; req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key, ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize, NULL, 0); writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET); writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET); writel(0, engine->regs + SPA_OFFSET_REG_OFFSET); writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET); writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET); writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET); writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET); ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) | (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) : (1 << SPA_CTRL_KEY_EXP)); mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT); writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET); return -EINPROGRESS; } static int spacc_ablk_do_fallback(struct ablkcipher_request *req, unsigned alg_type, bool is_encrypt) { struct crypto_tfm *old_tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req)); struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm); int err; if (!ctx->sw_cipher) return -EINVAL; /* * Change the request to use the software fallback transform, and once * the ciphering has completed, put the old transform back into the * request. */ ablkcipher_request_set_tfm(req, ctx->sw_cipher); err = is_encrypt ? crypto_ablkcipher_encrypt(req) : crypto_ablkcipher_decrypt(req); ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm)); return err; } static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type, bool is_encrypt) { struct crypto_alg *alg = req->base.tfm->__crt_alg; struct spacc_engine *engine = to_spacc_alg(alg)->engine; struct spacc_req *dev_req = ablkcipher_request_ctx(req); unsigned long flags; int err = -ENOMEM; dev_req->req = &req->base; dev_req->is_encrypt = is_encrypt; dev_req->engine = engine; dev_req->complete = spacc_ablk_complete; dev_req->result = -EINPROGRESS; if (unlikely(spacc_ablk_need_fallback(dev_req))) return spacc_ablk_do_fallback(req, alg_type, is_encrypt); /* * Create the DDT's for the engine. If we share the same source and * destination then we can optimize by reusing the DDT's. */ if (req->src != req->dst) { dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src, req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr); if (!dev_req->src_ddt) goto out; dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst, req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr); if (!dev_req->dst_ddt) goto out_free_src; } else { dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst, req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr); if (!dev_req->dst_ddt) goto out; dev_req->src_ddt = NULL; dev_req->src_addr = dev_req->dst_addr; } err = -EINPROGRESS; spin_lock_irqsave(&engine->hw_lock, flags); /* * Check if the engine will accept the operation now. If it won't then * we either stick it on the end of a pending list if we can backlog, * or bailout with an error if not. */ if (unlikely(spacc_fifo_cmd_full(engine)) || engine->in_flight + 1 > engine->fifo_sz) { if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { err = -EBUSY; spin_unlock_irqrestore(&engine->hw_lock, flags); goto out_free_ddts; } list_add_tail(&dev_req->list, &engine->pending); } else { list_add_tail(&dev_req->list, &engine->pending); spacc_push(engine); } spin_unlock_irqrestore(&engine->hw_lock, flags); goto out; out_free_ddts: spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst, req->nbytes, req->src == req->dst ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE); out_free_src: if (req->src != req->dst) spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr, req->src, req->nbytes, DMA_TO_DEVICE); out: return err; } static int spacc_ablk_cra_init(struct crypto_tfm *tfm) { struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); struct crypto_alg *alg = tfm->__crt_alg; struct spacc_alg *spacc_alg = to_spacc_alg(alg); struct spacc_engine *engine = spacc_alg->engine; ctx->generic.flags = spacc_alg->type; ctx->generic.engine = engine; if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) { ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0, CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK); if (IS_ERR(ctx->sw_cipher)) { dev_warn(engine->dev, "failed to allocate fallback for %s\n", alg->cra_name); ctx->sw_cipher = NULL; } } ctx->generic.key_offs = spacc_alg->key_offs; ctx->generic.iv_offs = spacc_alg->iv_offs; tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req); return 0; } static void spacc_ablk_cra_exit(struct crypto_tfm *tfm) { struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm); if (ctx->sw_cipher) crypto_free_ablkcipher(ctx->sw_cipher); ctx->sw_cipher = NULL; } static int spacc_ablk_encrypt(struct ablkcipher_request *req) { struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req); struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); return spacc_ablk_setup(req, alg->type, 1); } static int spacc_ablk_decrypt(struct ablkcipher_request *req) { struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req); struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg); return spacc_ablk_setup(req, alg->type, 0); } static inline int spacc_fifo_stat_empty(struct spacc_engine *engine) { return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) & SPA_FIFO_STAT_EMPTY; } static void spacc_process_done(struct spacc_engine *engine) { struct spacc_req *req; unsigned long flags; spin_lock_irqsave(&engine->hw_lock, flags); while (!spacc_fifo_stat_empty(engine)) { req = list_first_entry(&engine->in_progress, struct spacc_req, list); list_move_tail(&req->list, &engine->completed); --engine->in_flight; /* POP the status register. */ writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET); req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) & SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET; /* * Convert the SPAcc error status into the standard POSIX error * codes. */ if (unlikely(req->result)) { switch (req->result) { case SPA_STATUS_ICV_FAIL: req->result = -EBADMSG; break; case SPA_STATUS_MEMORY_ERROR: dev_warn(engine->dev, "memory error triggered\n"); req->result = -EFAULT; break; case SPA_STATUS_BLOCK_ERROR: dev_warn(engine->dev, "block error triggered\n"); req->result = -EIO; break; } } } tasklet_schedule(&engine->complete); spin_unlock_irqrestore(&engine->hw_lock, flags); } static irqreturn_t spacc_spacc_irq(int irq, void *dev) { struct spacc_engine *engine = (struct spacc_engine *)dev; u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET); writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET); spacc_process_done(engine); return IRQ_HANDLED; } static void spacc_packet_timeout(unsigned long data) { struct spacc_engine *engine = (struct spacc_engine *)data; spacc_process_done(engine); } static int spacc_req_submit(struct spacc_req *req) { struct crypto_alg *alg = req->req->tfm->__crt_alg; if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags)) return spacc_aead_submit(req); else return spacc_ablk_submit(req); } static void spacc_spacc_complete(unsigned long data) { struct spacc_engine *engine = (struct spacc_engine *)data; struct spacc_req *req, *tmp; unsigned long flags; LIST_HEAD(completed); spin_lock_irqsave(&engine->hw_lock, flags); list_splice_init(&engine->completed, &completed); spacc_push(engine); if (engine->in_flight) mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT); spin_unlock_irqrestore(&engine->hw_lock, flags); list_for_each_entry_safe(req, tmp, &completed, list) { list_del(&req->list); req->complete(req); } } #ifdef CONFIG_PM static int spacc_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct spacc_engine *engine = platform_get_drvdata(pdev); /* * We only support standby mode. All we have to do is gate the clock to * the spacc. The hardware will preserve state until we turn it back * on again. */ clk_disable(engine->clk); return 0; } static int spacc_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct spacc_engine *engine = platform_get_drvdata(pdev); return clk_enable(engine->clk); } static const struct dev_pm_ops spacc_pm_ops = { .suspend = spacc_suspend, .resume = spacc_resume, }; #endif /* CONFIG_PM */ static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev) { return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL; } static ssize_t spacc_stat_irq_thresh_show(struct device *dev, struct device_attribute *attr, char *buf) { struct spacc_engine *engine = spacc_dev_to_engine(dev); return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh); } static ssize_t spacc_stat_irq_thresh_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct spacc_engine *engine = spacc_dev_to_engine(dev); unsigned long thresh; if (strict_strtoul(buf, 0, &thresh)) return -EINVAL; thresh = clamp(thresh, 1UL, engine->fifo_sz - 1); engine->stat_irq_thresh = thresh; writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET, engine->regs + SPA_IRQ_CTRL_REG_OFFSET); return len; } static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show, spacc_stat_irq_thresh_store); static struct spacc_alg ipsec_engine_algs[] = { { .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC, .key_offs = 0, .iv_offs = AES_MAX_KEY_SIZE, .alg = { .cra_name = "cbc(aes)", .cra_driver_name = "cbc-aes-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct spacc_ablk_ctx), .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_ablkcipher = { .setkey = spacc_aes_setkey, .encrypt = spacc_ablk_encrypt, .decrypt = spacc_ablk_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, }, .cra_init = spacc_ablk_cra_init, .cra_exit = spacc_ablk_cra_exit, }, }, { .key_offs = 0, .iv_offs = AES_MAX_KEY_SIZE, .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB, .alg = { .cra_name = "ecb(aes)", .cra_driver_name = "ecb-aes-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct spacc_ablk_ctx), .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_ablkcipher = { .setkey = spacc_aes_setkey, .encrypt = spacc_ablk_encrypt, .decrypt = spacc_ablk_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, }, .cra_init = spacc_ablk_cra_init, .cra_exit = spacc_ablk_cra_exit, }, }, { .key_offs = DES_BLOCK_SIZE, .iv_offs = 0, .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC, .alg = { .cra_name = "cbc(des)", .cra_driver_name = "cbc-des-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct spacc_ablk_ctx), .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_ablkcipher = { .setkey = spacc_des_setkey, .encrypt = spacc_ablk_encrypt, .decrypt = spacc_ablk_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, }, .cra_init = spacc_ablk_cra_init, .cra_exit = spacc_ablk_cra_exit, }, }, { .key_offs = DES_BLOCK_SIZE, .iv_offs = 0, .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB, .alg = { .cra_name = "ecb(des)", .cra_driver_name = "ecb-des-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct spacc_ablk_ctx), .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_ablkcipher = { .setkey = spacc_des_setkey, .encrypt = spacc_ablk_encrypt, .decrypt = spacc_ablk_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, }, .cra_init = spacc_ablk_cra_init, .cra_exit = spacc_ablk_cra_exit, }, }, { .key_offs = DES_BLOCK_SIZE, .iv_offs = 0, .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC, .alg = { .cra_name = "cbc(des3_ede)", .cra_driver_name = "cbc-des3-ede-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct spacc_ablk_ctx), .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_ablkcipher = { .setkey = spacc_des_setkey, .encrypt = spacc_ablk_encrypt, .decrypt = spacc_ablk_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, }, .cra_init = spacc_ablk_cra_init, .cra_exit = spacc_ablk_cra_exit, }, }, { .key_offs = DES_BLOCK_SIZE, .iv_offs = 0, .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB, .alg = { .cra_name = "ecb(des3_ede)", .cra_driver_name = "ecb-des3-ede-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct spacc_ablk_ctx), .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_ablkcipher = { .setkey = spacc_des_setkey, .encrypt = spacc_ablk_encrypt, .decrypt = spacc_ablk_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, }, .cra_init = spacc_ablk_cra_init, .cra_exit = spacc_ablk_cra_exit, }, }, { .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC, .key_offs = 0, .iv_offs = AES_MAX_KEY_SIZE, .alg = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "authenc-hmac-sha1-cbc-aes-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct spacc_aead_ctx), .cra_type = &crypto_aead_type, .cra_module = THIS_MODULE, .cra_aead = { .setkey = spacc_aead_setkey, .setauthsize = spacc_aead_setauthsize, .encrypt = spacc_aead_encrypt, .decrypt = spacc_aead_decrypt, .givencrypt = spacc_aead_givencrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .cra_init = spacc_aead_cra_init, .cra_exit = spacc_aead_cra_exit, }, }, { .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | SPA_CTRL_HASH_ALG_SHA256 | SPA_CTRL_HASH_MODE_HMAC, .key_offs = 0, .iv_offs = AES_MAX_KEY_SIZE, .alg = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "authenc-hmac-sha256-cbc-aes-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct spacc_aead_ctx), .cra_type = &crypto_aead_type, .cra_module = THIS_MODULE, .cra_aead = { .setkey = spacc_aead_setkey, .setauthsize = spacc_aead_setauthsize, .encrypt = spacc_aead_encrypt, .decrypt = spacc_aead_decrypt, .givencrypt = spacc_aead_givencrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .cra_init = spacc_aead_cra_init, .cra_exit = spacc_aead_cra_exit, }, }, { .key_offs = 0, .iv_offs = AES_MAX_KEY_SIZE, .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC, .alg = { .cra_name = "authenc(hmac(md5),cbc(aes))", .cra_driver_name = "authenc-hmac-md5-cbc-aes-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct spacc_aead_ctx), .cra_type = &crypto_aead_type, .cra_module = THIS_MODULE, .cra_aead = { .setkey = spacc_aead_setkey, .setauthsize = spacc_aead_setauthsize, .encrypt = spacc_aead_encrypt, .decrypt = spacc_aead_decrypt, .givencrypt = spacc_aead_givencrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .cra_init = spacc_aead_cra_init, .cra_exit = spacc_aead_cra_exit, }, }, { .key_offs = DES_BLOCK_SIZE, .iv_offs = 0, .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC | SPA_CTRL_HASH_ALG_SHA | SPA_CTRL_HASH_MODE_HMAC, .alg = { .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha1-cbc-3des-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct spacc_aead_ctx), .cra_type = &crypto_aead_type, .cra_module = THIS_MODULE, .cra_aead = { .setkey = spacc_aead_setkey, .setauthsize = spacc_aead_setauthsize, .encrypt = spacc_aead_encrypt, .decrypt = spacc_aead_decrypt, .givencrypt = spacc_aead_givencrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, }, .cra_init = spacc_aead_cra_init, .cra_exit = spacc_aead_cra_exit, }, }, { .key_offs = DES_BLOCK_SIZE, .iv_offs = 0, .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC | SPA_CTRL_HASH_ALG_SHA256 | SPA_CTRL_HASH_MODE_HMAC, .alg = { .cra_name = "authenc(hmac(sha256),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-sha256-cbc-3des-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct spacc_aead_ctx), .cra_type = &crypto_aead_type, .cra_module = THIS_MODULE, .cra_aead = { .setkey = spacc_aead_setkey, .setauthsize = spacc_aead_setauthsize, .encrypt = spacc_aead_encrypt, .decrypt = spacc_aead_decrypt, .givencrypt = spacc_aead_givencrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, }, .cra_init = spacc_aead_cra_init, .cra_exit = spacc_aead_cra_exit, }, }, { .key_offs = DES_BLOCK_SIZE, .iv_offs = 0, .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC | SPA_CTRL_HASH_ALG_MD5 | SPA_CTRL_HASH_MODE_HMAC, .alg = { .cra_name = "authenc(hmac(md5),cbc(des3_ede))", .cra_driver_name = "authenc-hmac-md5-cbc-3des-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct spacc_aead_ctx), .cra_type = &crypto_aead_type, .cra_module = THIS_MODULE, .cra_aead = { .setkey = spacc_aead_setkey, .setauthsize = spacc_aead_setauthsize, .encrypt = spacc_aead_encrypt, .decrypt = spacc_aead_decrypt, .givencrypt = spacc_aead_givencrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = MD5_DIGEST_SIZE, }, .cra_init = spacc_aead_cra_init, .cra_exit = spacc_aead_cra_exit, }, }, }; static struct spacc_alg l2_engine_algs[] = { { .key_offs = 0, .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN, .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI | SPA_CTRL_CIPH_MODE_F8, .alg = { .cra_name = "f8(kasumi)", .cra_driver_name = "f8-kasumi-picoxcell", .cra_priority = SPACC_CRYPTO_ALG_PRIORITY, .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER | CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 8, .cra_ctxsize = sizeof(struct spacc_ablk_ctx), .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_ablkcipher = { .setkey = spacc_kasumi_f8_setkey, .encrypt = spacc_ablk_encrypt, .decrypt = spacc_ablk_decrypt, .min_keysize = 16, .max_keysize = 16, .ivsize = 8, }, .cra_init = spacc_ablk_cra_init, .cra_exit = spacc_ablk_cra_exit, }, }, }; #ifdef CONFIG_OF static const struct of_device_id spacc_of_id_table[] = { { .compatible = "picochip,spacc-ipsec" }, { .compatible = "picochip,spacc-l2" }, {} }; #else /* CONFIG_OF */ #define spacc_of_id_table NULL #endif /* CONFIG_OF */ static bool spacc_is_compatible(struct platform_device *pdev, const char *spacc_type) { const struct platform_device_id *platid = platform_get_device_id(pdev); if (platid && !strcmp(platid->name, spacc_type)) return true; #ifdef CONFIG_OF if (of_device_is_compatible(pdev->dev.of_node, spacc_type)) return true; #endif /* CONFIG_OF */ return false; } static int spacc_probe(struct platform_device *pdev) { int i, err, ret = -EINVAL; struct resource *mem, *irq; struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine), GFP_KERNEL); if (!engine) return -ENOMEM; if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) { engine->max_ctxs = SPACC_CRYPTO_IPSEC_MAX_CTXS; engine->cipher_pg_sz = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ; engine->hash_pg_sz = SPACC_CRYPTO_IPSEC_HASH_PG_SZ; engine->fifo_sz = SPACC_CRYPTO_IPSEC_FIFO_SZ; engine->algs = ipsec_engine_algs; engine->num_algs = ARRAY_SIZE(ipsec_engine_algs); } else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) { engine->max_ctxs = SPACC_CRYPTO_L2_MAX_CTXS; engine->cipher_pg_sz = SPACC_CRYPTO_L2_CIPHER_PG_SZ; engine->hash_pg_sz = SPACC_CRYPTO_L2_HASH_PG_SZ; engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ; engine->algs = l2_engine_algs; engine->num_algs = ARRAY_SIZE(l2_engine_algs); } else { return -EINVAL; } engine->name = dev_name(&pdev->dev); mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); if (!mem || !irq) { dev_err(&pdev->dev, "no memory/irq resource for engine\n"); return -ENXIO; } if (!devm_request_mem_region(&pdev->dev, mem->start, resource_size(mem), engine->name)) return -ENOMEM; engine->regs = devm_ioremap(&pdev->dev, mem->start, resource_size(mem)); if (!engine->regs) { dev_err(&pdev->dev, "memory map failed\n"); return -ENOMEM; } if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0, engine->name, engine)) { dev_err(engine->dev, "failed to request IRQ\n"); return -EBUSY; } engine->dev = &pdev->dev; engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET; engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET; engine->req_pool = dmam_pool_create(engine->name, engine->dev, MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K); if (!engine->req_pool) return -ENOMEM; spin_lock_init(&engine->hw_lock); engine->clk = clk_get(&pdev->dev, "ref"); if (IS_ERR(engine->clk)) { dev_info(&pdev->dev, "clk unavailable\n"); device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh); return PTR_ERR(engine->clk); } if (clk_enable(engine->clk)) { dev_info(&pdev->dev, "unable to enable clk\n"); clk_put(engine->clk); return -EIO; } err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh); if (err) { clk_disable(engine->clk); clk_put(engine->clk); return err; } /* * Use an IRQ threshold of 50% as a default. This seems to be a * reasonable trade off of latency against throughput but can be * changed at runtime. */ engine->stat_irq_thresh = (engine->fifo_sz / 2); /* * Configure the interrupts. We only use the STAT_CNT interrupt as we * only submit a new packet for processing when we complete another in * the queue. This minimizes time spent in the interrupt handler. */ writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET, engine->regs + SPA_IRQ_CTRL_REG_OFFSET); writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN, engine->regs + SPA_IRQ_EN_REG_OFFSET); setup_timer(&engine->packet_timeout, spacc_packet_timeout, (unsigned long)engine); INIT_LIST_HEAD(&engine->pending); INIT_LIST_HEAD(&engine->completed); INIT_LIST_HEAD(&engine->in_progress); engine->in_flight = 0; tasklet_init(&engine->complete, spacc_spacc_complete, (unsigned long)engine); platform_set_drvdata(pdev, engine); INIT_LIST_HEAD(&engine->registered_algs); for (i = 0; i < engine->num_algs; ++i) { engine->algs[i].engine = engine; err = crypto_register_alg(&engine->algs[i].alg); if (!err) { list_add_tail(&engine->algs[i].entry, &engine->registered_algs); ret = 0; } if (err) dev_err(engine->dev, "failed to register alg \"%s\"\n", engine->algs[i].alg.cra_name); else dev_dbg(engine->dev, "registered alg \"%s\"\n", engine->algs[i].alg.cra_name); } return ret; } static int spacc_remove(struct platform_device *pdev) { struct spacc_alg *alg, *next; struct spacc_engine *engine = platform_get_drvdata(pdev); del_timer_sync(&engine->packet_timeout); device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh); list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) { list_del(&alg->entry); crypto_unregister_alg(&alg->alg); } clk_disable(engine->clk); clk_put(engine->clk); return 0; } static const struct platform_device_id spacc_id_table[] = { { "picochip,spacc-ipsec", }, { "picochip,spacc-l2", }, { } }; static struct platform_driver spacc_driver = { .probe = spacc_probe, .remove = spacc_remove, .driver = { .name = "picochip,spacc", #ifdef CONFIG_PM .pm = &spacc_pm_ops, #endif /* CONFIG_PM */ .of_match_table = spacc_of_id_table, }, .id_table = spacc_id_table, }; module_platform_driver(spacc_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Jamie Iles");