/* * CPU frequency scaling for OMAP using OPP information * * Copyright (C) 2005 Nokia Corporation * Written by Tony Lindgren <tony@atomide.com> * * Based on cpu-sa1110.c, Copyright (C) 2001 Russell King * * Copyright (C) 2007-2011 Texas Instruments, Inc. * - OMAP3/4 support by Rajendra Nayak, Santosh Shilimkar * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/cpufreq.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/opp.h> #include <linux/cpu.h> #include <linux/module.h> #include <linux/regulator/consumer.h> #include <asm/system.h> #include <asm/smp_plat.h> #include <asm/cpu.h> #include <plat/clock.h> #include <plat/omap-pm.h> #include <plat/common.h> #include <plat/omap_device.h> #include <mach/hardware.h> /* OPP tolerance in percentage */ #define OPP_TOLERANCE 4 #ifdef CONFIG_SMP struct lpj_info { unsigned long ref; unsigned int freq; }; static DEFINE_PER_CPU(struct lpj_info, lpj_ref); static struct lpj_info global_lpj_ref; #endif static struct cpufreq_frequency_table *freq_table; static atomic_t freq_table_users = ATOMIC_INIT(0); static struct clk *mpu_clk; static char *mpu_clk_name; static struct device *mpu_dev; static struct regulator *mpu_reg; static int omap_verify_speed(struct cpufreq_policy *policy) { if (!freq_table) return -EINVAL; return cpufreq_frequency_table_verify(policy, freq_table); } static unsigned int omap_getspeed(unsigned int cpu) { unsigned long rate; if (cpu >= NR_CPUS) return 0; rate = clk_get_rate(mpu_clk) / 1000; return rate; } static int omap_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { unsigned int i; int r, ret = 0; struct cpufreq_freqs freqs; struct opp *opp; unsigned long freq, volt = 0, volt_old = 0, tol = 0; if (!freq_table) { dev_err(mpu_dev, "%s: cpu%d: no freq table!\n", __func__, policy->cpu); return -EINVAL; } ret = cpufreq_frequency_table_target(policy, freq_table, target_freq, relation, &i); if (ret) { dev_dbg(mpu_dev, "%s: cpu%d: no freq match for %d(ret=%d)\n", __func__, policy->cpu, target_freq, ret); return ret; } freqs.new = freq_table[i].frequency; if (!freqs.new) { dev_err(mpu_dev, "%s: cpu%d: no match for freq %d\n", __func__, policy->cpu, target_freq); return -EINVAL; } freqs.old = omap_getspeed(policy->cpu); freqs.cpu = policy->cpu; if (freqs.old == freqs.new && policy->cur == freqs.new) return ret; /* notifiers */ for_each_cpu(i, policy->cpus) { freqs.cpu = i; cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); } freq = freqs.new * 1000; if (mpu_reg) { opp = opp_find_freq_ceil(mpu_dev, &freq); if (IS_ERR(opp)) { dev_err(mpu_dev, "%s: unable to find MPU OPP for %d\n", __func__, freqs.new); return -EINVAL; } volt = opp_get_voltage(opp); tol = volt * OPP_TOLERANCE / 100; volt_old = regulator_get_voltage(mpu_reg); } dev_dbg(mpu_dev, "cpufreq-omap: %u MHz, %ld mV --> %u MHz, %ld mV\n", freqs.old / 1000, volt_old ? volt_old / 1000 : -1, freqs.new / 1000, volt ? volt / 1000 : -1); /* scaling up? scale voltage before frequency */ if (mpu_reg && (freqs.new > freqs.old)) { r = regulator_set_voltage(mpu_reg, volt - tol, volt + tol); if (r < 0) { dev_warn(mpu_dev, "%s: unable to scale voltage up.\n", __func__); freqs.new = freqs.old; goto done; } } ret = clk_set_rate(mpu_clk, freqs.new * 1000); /* scaling down? scale voltage after frequency */ if (mpu_reg && (freqs.new < freqs.old)) { r = regulator_set_voltage(mpu_reg, volt - tol, volt + tol); if (r < 0) { dev_warn(mpu_dev, "%s: unable to scale voltage down.\n", __func__); ret = clk_set_rate(mpu_clk, freqs.old * 1000); freqs.new = freqs.old; goto done; } } freqs.new = omap_getspeed(policy->cpu); #ifdef CONFIG_SMP /* * Note that loops_per_jiffy is not updated on SMP systems in * cpufreq driver. So, update the per-CPU loops_per_jiffy value * on frequency transition. We need to update all dependent CPUs. */ for_each_cpu(i, policy->cpus) { struct lpj_info *lpj = &per_cpu(lpj_ref, i); if (!lpj->freq) { lpj->ref = per_cpu(cpu_data, i).loops_per_jiffy; lpj->freq = freqs.old; } per_cpu(cpu_data, i).loops_per_jiffy = cpufreq_scale(lpj->ref, lpj->freq, freqs.new); } /* And don't forget to adjust the global one */ if (!global_lpj_ref.freq) { global_lpj_ref.ref = loops_per_jiffy; global_lpj_ref.freq = freqs.old; } loops_per_jiffy = cpufreq_scale(global_lpj_ref.ref, global_lpj_ref.freq, freqs.new); #endif done: /* notifiers */ for_each_cpu(i, policy->cpus) { freqs.cpu = i; cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); } return ret; } static inline void freq_table_free(void) { if (atomic_dec_and_test(&freq_table_users)) opp_free_cpufreq_table(mpu_dev, &freq_table); } static int __cpuinit omap_cpu_init(struct cpufreq_policy *policy) { int result = 0; mpu_clk = clk_get(NULL, mpu_clk_name); if (IS_ERR(mpu_clk)) return PTR_ERR(mpu_clk); if (policy->cpu >= NR_CPUS) { result = -EINVAL; goto fail_ck; } policy->cur = policy->min = policy->max = omap_getspeed(policy->cpu); if (atomic_inc_return(&freq_table_users) == 1) result = opp_init_cpufreq_table(mpu_dev, &freq_table); if (result) { dev_err(mpu_dev, "%s: cpu%d: failed creating freq table[%d]\n", __func__, policy->cpu, result); goto fail_ck; } result = cpufreq_frequency_table_cpuinfo(policy, freq_table); if (result) goto fail_table; cpufreq_frequency_table_get_attr(freq_table, policy->cpu); policy->min = policy->cpuinfo.min_freq; policy->max = policy->cpuinfo.max_freq; policy->cur = omap_getspeed(policy->cpu); /* * On OMAP SMP configuartion, both processors share the voltage * and clock. So both CPUs needs to be scaled together and hence * needs software co-ordination. Use cpufreq affected_cpus * interface to handle this scenario. Additional is_smp() check * is to keep SMP_ON_UP build working. */ if (is_smp()) { policy->shared_type = CPUFREQ_SHARED_TYPE_ANY; cpumask_setall(policy->cpus); } /* FIXME: what's the actual transition time? */ policy->cpuinfo.transition_latency = 300 * 1000; return 0; fail_table: freq_table_free(); fail_ck: clk_put(mpu_clk); return result; } static int omap_cpu_exit(struct cpufreq_policy *policy) { freq_table_free(); clk_put(mpu_clk); return 0; } static struct freq_attr *omap_cpufreq_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, NULL, }; static struct cpufreq_driver omap_driver = { .flags = CPUFREQ_STICKY, .verify = omap_verify_speed, .target = omap_target, .get = omap_getspeed, .init = omap_cpu_init, .exit = omap_cpu_exit, .name = "omap", .attr = omap_cpufreq_attr, }; static int __init omap_cpufreq_init(void) { if (cpu_is_omap24xx()) mpu_clk_name = "virt_prcm_set"; else if (cpu_is_omap34xx()) mpu_clk_name = "dpll1_ck"; else if (cpu_is_omap44xx()) mpu_clk_name = "dpll_mpu_ck"; if (!mpu_clk_name) { pr_err("%s: unsupported Silicon?\n", __func__); return -EINVAL; } mpu_dev = omap_device_get_by_hwmod_name("mpu"); if (!mpu_dev) { pr_warning("%s: unable to get the mpu device\n", __func__); return -EINVAL; } mpu_reg = regulator_get(mpu_dev, "vcc"); if (IS_ERR(mpu_reg)) { pr_warning("%s: unable to get MPU regulator\n", __func__); mpu_reg = NULL; } else { /* * Ensure physical regulator is present. * (e.g. could be dummy regulator.) */ if (regulator_get_voltage(mpu_reg) < 0) { pr_warn("%s: physical regulator not present for MPU\n", __func__); regulator_put(mpu_reg); mpu_reg = NULL; } } return cpufreq_register_driver(&omap_driver); } static void __exit omap_cpufreq_exit(void) { cpufreq_unregister_driver(&omap_driver); } MODULE_DESCRIPTION("cpufreq driver for OMAP SoCs"); MODULE_LICENSE("GPL"); module_init(omap_cpufreq_init); module_exit(omap_cpufreq_exit);