/* * intel_pstate.c: Native P state management for Intel processors * * (C) Copyright 2012 Intel Corporation * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; version 2 * of the License. */ #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/module.h> #include <linux/ktime.h> #include <linux/hrtimer.h> #include <linux/tick.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/list.h> #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/sysfs.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/debugfs.h> #include <linux/acpi.h> #include <trace/events/power.h> #include <asm/div64.h> #include <asm/msr.h> #include <asm/cpu_device_id.h> #include <asm/cpufeature.h> #define BYT_RATIOS 0x66a #define BYT_VIDS 0x66b #define BYT_TURBO_RATIOS 0x66c #define BYT_TURBO_VIDS 0x66d #define FRAC_BITS 8 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) #define fp_toint(X) ((X) >> FRAC_BITS) static inline int32_t mul_fp(int32_t x, int32_t y) { return ((int64_t)x * (int64_t)y) >> FRAC_BITS; } static inline int32_t div_fp(int32_t x, int32_t y) { return div_s64((int64_t)x << FRAC_BITS, y); } static inline int ceiling_fp(int32_t x) { int mask, ret; ret = fp_toint(x); mask = (1 << FRAC_BITS) - 1; if (x & mask) ret += 1; return ret; } struct sample { int32_t core_pct_busy; u64 aperf; u64 mperf; int freq; ktime_t time; }; struct pstate_data { int current_pstate; int min_pstate; int max_pstate; int scaling; int turbo_pstate; }; struct vid_data { int min; int max; int turbo; int32_t ratio; }; struct _pid { int setpoint; int32_t integral; int32_t p_gain; int32_t i_gain; int32_t d_gain; int deadband; int32_t last_err; }; struct cpudata { int cpu; struct timer_list timer; struct pstate_data pstate; struct vid_data vid; struct _pid pid; ktime_t last_sample_time; u64 prev_aperf; u64 prev_mperf; struct sample sample; }; static struct cpudata **all_cpu_data; struct pstate_adjust_policy { int sample_rate_ms; int deadband; int setpoint; int p_gain_pct; int d_gain_pct; int i_gain_pct; }; struct pstate_funcs { int (*get_max)(void); int (*get_min)(void); int (*get_turbo)(void); int (*get_scaling)(void); void (*set)(struct cpudata*, int pstate); void (*get_vid)(struct cpudata *); }; struct cpu_defaults { struct pstate_adjust_policy pid_policy; struct pstate_funcs funcs; }; static struct pstate_adjust_policy pid_params; static struct pstate_funcs pstate_funcs; static int hwp_active; struct perf_limits { int no_turbo; int turbo_disabled; int max_perf_pct; int min_perf_pct; int32_t max_perf; int32_t min_perf; int max_policy_pct; int max_sysfs_pct; int min_policy_pct; int min_sysfs_pct; }; static struct perf_limits limits = { .no_turbo = 0, .turbo_disabled = 0, .max_perf_pct = 100, .max_perf = int_tofp(1), .min_perf_pct = 0, .min_perf = 0, .max_policy_pct = 100, .max_sysfs_pct = 100, .min_policy_pct = 0, .min_sysfs_pct = 0, }; static inline void pid_reset(struct _pid *pid, int setpoint, int busy, int deadband, int integral) { pid->setpoint = setpoint; pid->deadband = deadband; pid->integral = int_tofp(integral); pid->last_err = int_tofp(setpoint) - int_tofp(busy); } static inline void pid_p_gain_set(struct _pid *pid, int percent) { pid->p_gain = div_fp(int_tofp(percent), int_tofp(100)); } static inline void pid_i_gain_set(struct _pid *pid, int percent) { pid->i_gain = div_fp(int_tofp(percent), int_tofp(100)); } static inline void pid_d_gain_set(struct _pid *pid, int percent) { pid->d_gain = div_fp(int_tofp(percent), int_tofp(100)); } static signed int pid_calc(struct _pid *pid, int32_t busy) { signed int result; int32_t pterm, dterm, fp_error; int32_t integral_limit; fp_error = int_tofp(pid->setpoint) - busy; if (abs(fp_error) <= int_tofp(pid->deadband)) return 0; pterm = mul_fp(pid->p_gain, fp_error); pid->integral += fp_error; /* * We limit the integral here so that it will never * get higher than 30. This prevents it from becoming * too large an input over long periods of time and allows * it to get factored out sooner. * * The value of 30 was chosen through experimentation. */ integral_limit = int_tofp(30); if (pid->integral > integral_limit) pid->integral = integral_limit; if (pid->integral < -integral_limit) pid->integral = -integral_limit; dterm = mul_fp(pid->d_gain, fp_error - pid->last_err); pid->last_err = fp_error; result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm; result = result + (1 << (FRAC_BITS-1)); return (signed int)fp_toint(result); } static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu) { pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct); pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct); pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct); pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0); } static inline void intel_pstate_reset_all_pid(void) { unsigned int cpu; for_each_online_cpu(cpu) { if (all_cpu_data[cpu]) intel_pstate_busy_pid_reset(all_cpu_data[cpu]); } } static inline void update_turbo_state(void) { u64 misc_en; struct cpudata *cpu; cpu = all_cpu_data[0]; rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); limits.turbo_disabled = (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); } #define PCT_TO_HWP(x) (x * 255 / 100) static void intel_pstate_hwp_set(void) { int min, max, cpu; u64 value, freq; get_online_cpus(); for_each_online_cpu(cpu) { rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); min = PCT_TO_HWP(limits.min_perf_pct); value &= ~HWP_MIN_PERF(~0L); value |= HWP_MIN_PERF(min); max = PCT_TO_HWP(limits.max_perf_pct); if (limits.no_turbo) { rdmsrl( MSR_HWP_CAPABILITIES, freq); max = HWP_GUARANTEED_PERF(freq); } value &= ~HWP_MAX_PERF(~0L); value |= HWP_MAX_PERF(max); wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); } put_online_cpus(); } /************************** debugfs begin ************************/ static int pid_param_set(void *data, u64 val) { *(u32 *)data = val; intel_pstate_reset_all_pid(); return 0; } static int pid_param_get(void *data, u64 *val) { *val = *(u32 *)data; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n"); struct pid_param { char *name; void *value; }; static struct pid_param pid_files[] = { {"sample_rate_ms", &pid_params.sample_rate_ms}, {"d_gain_pct", &pid_params.d_gain_pct}, {"i_gain_pct", &pid_params.i_gain_pct}, {"deadband", &pid_params.deadband}, {"setpoint", &pid_params.setpoint}, {"p_gain_pct", &pid_params.p_gain_pct}, {NULL, NULL} }; static void __init intel_pstate_debug_expose_params(void) { struct dentry *debugfs_parent; int i = 0; if (hwp_active) return; debugfs_parent = debugfs_create_dir("pstate_snb", NULL); if (IS_ERR_OR_NULL(debugfs_parent)) return; while (pid_files[i].name) { debugfs_create_file(pid_files[i].name, 0660, debugfs_parent, pid_files[i].value, &fops_pid_param); i++; } } /************************** debugfs end ************************/ /************************** sysfs begin ************************/ #define show_one(file_name, object) \ static ssize_t show_##file_name \ (struct kobject *kobj, struct attribute *attr, char *buf) \ { \ return sprintf(buf, "%u\n", limits.object); \ } static ssize_t show_turbo_pct(struct kobject *kobj, struct attribute *attr, char *buf) { struct cpudata *cpu; int total, no_turbo, turbo_pct; uint32_t turbo_fp; cpu = all_cpu_data[0]; total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total)); turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); return sprintf(buf, "%u\n", turbo_pct); } static ssize_t show_num_pstates(struct kobject *kobj, struct attribute *attr, char *buf) { struct cpudata *cpu; int total; cpu = all_cpu_data[0]; total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; return sprintf(buf, "%u\n", total); } static ssize_t show_no_turbo(struct kobject *kobj, struct attribute *attr, char *buf) { ssize_t ret; update_turbo_state(); if (limits.turbo_disabled) ret = sprintf(buf, "%u\n", limits.turbo_disabled); else ret = sprintf(buf, "%u\n", limits.no_turbo); return ret; } static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; update_turbo_state(); if (limits.turbo_disabled) { pr_warn("Turbo disabled by BIOS or unavailable on processor\n"); return -EPERM; } limits.no_turbo = clamp_t(int, input, 0, 1); if (hwp_active) intel_pstate_hwp_set(); return count; } static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; limits.max_sysfs_pct = clamp_t(int, input, 0 , 100); limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct); limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100)); if (hwp_active) intel_pstate_hwp_set(); return count; } static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; limits.min_sysfs_pct = clamp_t(int, input, 0 , 100); limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct); limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100)); if (hwp_active) intel_pstate_hwp_set(); return count; } show_one(max_perf_pct, max_perf_pct); show_one(min_perf_pct, min_perf_pct); define_one_global_rw(no_turbo); define_one_global_rw(max_perf_pct); define_one_global_rw(min_perf_pct); define_one_global_ro(turbo_pct); define_one_global_ro(num_pstates); static struct attribute *intel_pstate_attributes[] = { &no_turbo.attr, &max_perf_pct.attr, &min_perf_pct.attr, &turbo_pct.attr, &num_pstates.attr, NULL }; static struct attribute_group intel_pstate_attr_group = { .attrs = intel_pstate_attributes, }; static void __init intel_pstate_sysfs_expose_params(void) { struct kobject *intel_pstate_kobject; int rc; intel_pstate_kobject = kobject_create_and_add("intel_pstate", &cpu_subsys.dev_root->kobj); BUG_ON(!intel_pstate_kobject); rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); BUG_ON(rc); } /************************** sysfs end ************************/ static void intel_pstate_hwp_enable(void) { hwp_active++; pr_info("intel_pstate HWP enabled\n"); wrmsrl( MSR_PM_ENABLE, 0x1); } static int byt_get_min_pstate(void) { u64 value; rdmsrl(BYT_RATIOS, value); return (value >> 8) & 0x7F; } static int byt_get_max_pstate(void) { u64 value; rdmsrl(BYT_RATIOS, value); return (value >> 16) & 0x7F; } static int byt_get_turbo_pstate(void) { u64 value; rdmsrl(BYT_TURBO_RATIOS, value); return value & 0x7F; } static void byt_set_pstate(struct cpudata *cpudata, int pstate) { u64 val; int32_t vid_fp; u32 vid; val = pstate << 8; if (limits.no_turbo && !limits.turbo_disabled) val |= (u64)1 << 32; vid_fp = cpudata->vid.min + mul_fp( int_tofp(pstate - cpudata->pstate.min_pstate), cpudata->vid.ratio); vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); vid = ceiling_fp(vid_fp); if (pstate > cpudata->pstate.max_pstate) vid = cpudata->vid.turbo; val |= vid; wrmsrl(MSR_IA32_PERF_CTL, val); } #define BYT_BCLK_FREQS 5 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800}; static int byt_get_scaling(void) { u64 value; int i; rdmsrl(MSR_FSB_FREQ, value); i = value & 0x3; BUG_ON(i > BYT_BCLK_FREQS); return byt_freq_table[i] * 100; } static void byt_get_vid(struct cpudata *cpudata) { u64 value; rdmsrl(BYT_VIDS, value); cpudata->vid.min = int_tofp((value >> 8) & 0x7f); cpudata->vid.max = int_tofp((value >> 16) & 0x7f); cpudata->vid.ratio = div_fp( cpudata->vid.max - cpudata->vid.min, int_tofp(cpudata->pstate.max_pstate - cpudata->pstate.min_pstate)); rdmsrl(BYT_TURBO_VIDS, value); cpudata->vid.turbo = value & 0x7f; } static int core_get_min_pstate(void) { u64 value; rdmsrl(MSR_PLATFORM_INFO, value); return (value >> 40) & 0xFF; } static int core_get_max_pstate(void) { u64 value; rdmsrl(MSR_PLATFORM_INFO, value); return (value >> 8) & 0xFF; } static int core_get_turbo_pstate(void) { u64 value; int nont, ret; rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); nont = core_get_max_pstate(); ret = (value) & 255; if (ret <= nont) ret = nont; return ret; } static inline int core_get_scaling(void) { return 100000; } static void core_set_pstate(struct cpudata *cpudata, int pstate) { u64 val; val = pstate << 8; if (limits.no_turbo && !limits.turbo_disabled) val |= (u64)1 << 32; wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val); } static int knl_get_turbo_pstate(void) { u64 value; int nont, ret; rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); nont = core_get_max_pstate(); ret = (((value) >> 8) & 0xFF); if (ret <= nont) ret = nont; return ret; } static struct cpu_defaults core_params = { .pid_policy = { .sample_rate_ms = 10, .deadband = 0, .setpoint = 97, .p_gain_pct = 20, .d_gain_pct = 0, .i_gain_pct = 0, }, .funcs = { .get_max = core_get_max_pstate, .get_min = core_get_min_pstate, .get_turbo = core_get_turbo_pstate, .get_scaling = core_get_scaling, .set = core_set_pstate, }, }; static struct cpu_defaults byt_params = { .pid_policy = { .sample_rate_ms = 10, .deadband = 0, .setpoint = 60, .p_gain_pct = 14, .d_gain_pct = 0, .i_gain_pct = 4, }, .funcs = { .get_max = byt_get_max_pstate, .get_min = byt_get_min_pstate, .get_turbo = byt_get_turbo_pstate, .set = byt_set_pstate, .get_scaling = byt_get_scaling, .get_vid = byt_get_vid, }, }; static struct cpu_defaults knl_params = { .pid_policy = { .sample_rate_ms = 10, .deadband = 0, .setpoint = 97, .p_gain_pct = 20, .d_gain_pct = 0, .i_gain_pct = 0, }, .funcs = { .get_max = core_get_max_pstate, .get_min = core_get_min_pstate, .get_turbo = knl_get_turbo_pstate, .set = core_set_pstate, }, }; static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max) { int max_perf = cpu->pstate.turbo_pstate; int max_perf_adj; int min_perf; if (limits.no_turbo || limits.turbo_disabled) max_perf = cpu->pstate.max_pstate; /* * performance can be limited by user through sysfs, by cpufreq * policy, or by cpu specific default values determined through * experimentation. */ max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf)); *max = clamp_t(int, max_perf_adj, cpu->pstate.min_pstate, cpu->pstate.turbo_pstate); min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf)); *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf); } static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) { int max_perf, min_perf; update_turbo_state(); intel_pstate_get_min_max(cpu, &min_perf, &max_perf); pstate = clamp_t(int, pstate, min_perf, max_perf); if (pstate == cpu->pstate.current_pstate) return; trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); cpu->pstate.current_pstate = pstate; pstate_funcs.set(cpu, pstate); } static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) { cpu->pstate.min_pstate = pstate_funcs.get_min(); cpu->pstate.max_pstate = pstate_funcs.get_max(); cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); cpu->pstate.scaling = pstate_funcs.get_scaling(); if (pstate_funcs.get_vid) pstate_funcs.get_vid(cpu); intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); } static inline void intel_pstate_calc_busy(struct cpudata *cpu) { struct sample *sample = &cpu->sample; int64_t core_pct; core_pct = int_tofp(sample->aperf) * int_tofp(100); core_pct = div64_u64(core_pct, int_tofp(sample->mperf)); sample->freq = fp_toint( mul_fp(int_tofp( cpu->pstate.max_pstate * cpu->pstate.scaling / 100), core_pct)); sample->core_pct_busy = (int32_t)core_pct; } static inline void intel_pstate_sample(struct cpudata *cpu) { u64 aperf, mperf; unsigned long flags; local_irq_save(flags); rdmsrl(MSR_IA32_APERF, aperf); rdmsrl(MSR_IA32_MPERF, mperf); local_irq_restore(flags); cpu->last_sample_time = cpu->sample.time; cpu->sample.time = ktime_get(); cpu->sample.aperf = aperf; cpu->sample.mperf = mperf; cpu->sample.aperf -= cpu->prev_aperf; cpu->sample.mperf -= cpu->prev_mperf; intel_pstate_calc_busy(cpu); cpu->prev_aperf = aperf; cpu->prev_mperf = mperf; } static inline void intel_hwp_set_sample_time(struct cpudata *cpu) { int delay; delay = msecs_to_jiffies(50); mod_timer_pinned(&cpu->timer, jiffies + delay); } static inline void intel_pstate_set_sample_time(struct cpudata *cpu) { int delay; delay = msecs_to_jiffies(pid_params.sample_rate_ms); mod_timer_pinned(&cpu->timer, jiffies + delay); } static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu) { int32_t core_busy, max_pstate, current_pstate, sample_ratio; u32 duration_us; u32 sample_time; /* * core_busy is the ratio of actual performance to max * max_pstate is the max non turbo pstate available * current_pstate was the pstate that was requested during * the last sample period. * * We normalize core_busy, which was our actual percent * performance to what we requested during the last sample * period. The result will be a percentage of busy at a * specified pstate. */ core_busy = cpu->sample.core_pct_busy; max_pstate = int_tofp(cpu->pstate.max_pstate); current_pstate = int_tofp(cpu->pstate.current_pstate); core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate)); /* * Since we have a deferred timer, it will not fire unless * we are in C0. So, determine if the actual elapsed time * is significantly greater (3x) than our sample interval. If it * is, then we were idle for a long enough period of time * to adjust our busyness. */ sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC; duration_us = (u32) ktime_us_delta(cpu->sample.time, cpu->last_sample_time); if (duration_us > sample_time * 3) { sample_ratio = div_fp(int_tofp(sample_time), int_tofp(duration_us)); core_busy = mul_fp(core_busy, sample_ratio); } return core_busy; } static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu) { int32_t busy_scaled; struct _pid *pid; signed int ctl; pid = &cpu->pid; busy_scaled = intel_pstate_get_scaled_busy(cpu); ctl = pid_calc(pid, busy_scaled); /* Negative values of ctl increase the pstate and vice versa */ intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl); } static void intel_hwp_timer_func(unsigned long __data) { struct cpudata *cpu = (struct cpudata *) __data; intel_pstate_sample(cpu); intel_hwp_set_sample_time(cpu); } static void intel_pstate_timer_func(unsigned long __data) { struct cpudata *cpu = (struct cpudata *) __data; struct sample *sample; intel_pstate_sample(cpu); sample = &cpu->sample; intel_pstate_adjust_busy_pstate(cpu); trace_pstate_sample(fp_toint(sample->core_pct_busy), fp_toint(intel_pstate_get_scaled_busy(cpu)), cpu->pstate.current_pstate, sample->mperf, sample->aperf, sample->freq); intel_pstate_set_sample_time(cpu); } #define ICPU(model, policy) \ { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\ (unsigned long)&policy } static const struct x86_cpu_id intel_pstate_cpu_ids[] = { ICPU(0x2a, core_params), ICPU(0x2d, core_params), ICPU(0x37, byt_params), ICPU(0x3a, core_params), ICPU(0x3c, core_params), ICPU(0x3d, core_params), ICPU(0x3e, core_params), ICPU(0x3f, core_params), ICPU(0x45, core_params), ICPU(0x46, core_params), ICPU(0x47, core_params), ICPU(0x4c, byt_params), ICPU(0x4e, core_params), ICPU(0x4f, core_params), ICPU(0x56, core_params), ICPU(0x57, knl_params), {} }; MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = { ICPU(0x56, core_params), {} }; static int intel_pstate_init_cpu(unsigned int cpunum) { struct cpudata *cpu; if (!all_cpu_data[cpunum]) all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL); if (!all_cpu_data[cpunum]) return -ENOMEM; cpu = all_cpu_data[cpunum]; cpu->cpu = cpunum; intel_pstate_get_cpu_pstates(cpu); init_timer_deferrable(&cpu->timer); cpu->timer.data = (unsigned long)cpu; cpu->timer.expires = jiffies + HZ/100; if (!hwp_active) cpu->timer.function = intel_pstate_timer_func; else cpu->timer.function = intel_hwp_timer_func; intel_pstate_busy_pid_reset(cpu); intel_pstate_sample(cpu); add_timer_on(&cpu->timer, cpunum); pr_debug("Intel pstate controlling: cpu %d\n", cpunum); return 0; } static unsigned int intel_pstate_get(unsigned int cpu_num) { struct sample *sample; struct cpudata *cpu; cpu = all_cpu_data[cpu_num]; if (!cpu) return 0; sample = &cpu->sample; return sample->freq; } static int intel_pstate_set_policy(struct cpufreq_policy *policy) { if (!policy->cpuinfo.max_freq) return -ENODEV; if (policy->policy == CPUFREQ_POLICY_PERFORMANCE && policy->max >= policy->cpuinfo.max_freq) { limits.min_policy_pct = 100; limits.min_perf_pct = 100; limits.min_perf = int_tofp(1); limits.max_policy_pct = 100; limits.max_perf_pct = 100; limits.max_perf = int_tofp(1); limits.no_turbo = 0; return 0; } limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq; limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100); limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct); limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100)); limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq; limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100); limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct); limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100)); if (hwp_active) intel_pstate_hwp_set(); return 0; } static int intel_pstate_verify_policy(struct cpufreq_policy *policy) { cpufreq_verify_within_cpu_limits(policy); if (policy->policy != CPUFREQ_POLICY_POWERSAVE && policy->policy != CPUFREQ_POLICY_PERFORMANCE) return -EINVAL; return 0; } static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) { int cpu_num = policy->cpu; struct cpudata *cpu = all_cpu_data[cpu_num]; pr_info("intel_pstate CPU %d exiting\n", cpu_num); del_timer_sync(&all_cpu_data[cpu_num]->timer); if (hwp_active) return; intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); } static int intel_pstate_cpu_init(struct cpufreq_policy *policy) { struct cpudata *cpu; int rc; rc = intel_pstate_init_cpu(policy->cpu); if (rc) return rc; cpu = all_cpu_data[policy->cpu]; if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100) policy->policy = CPUFREQ_POLICY_PERFORMANCE; else policy->policy = CPUFREQ_POLICY_POWERSAVE; policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; /* cpuinfo and default policy values */ policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling; policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; cpumask_set_cpu(policy->cpu, policy->cpus); return 0; } static struct cpufreq_driver intel_pstate_driver = { .flags = CPUFREQ_CONST_LOOPS, .verify = intel_pstate_verify_policy, .setpolicy = intel_pstate_set_policy, .get = intel_pstate_get, .init = intel_pstate_cpu_init, .stop_cpu = intel_pstate_stop_cpu, .name = "intel_pstate", }; static int __initdata no_load; static int __initdata no_hwp; static int __initdata hwp_only; static unsigned int force_load; static int intel_pstate_msrs_not_valid(void) { if (!pstate_funcs.get_max() || !pstate_funcs.get_min() || !pstate_funcs.get_turbo()) return -ENODEV; return 0; } static void copy_pid_params(struct pstate_adjust_policy *policy) { pid_params.sample_rate_ms = policy->sample_rate_ms; pid_params.p_gain_pct = policy->p_gain_pct; pid_params.i_gain_pct = policy->i_gain_pct; pid_params.d_gain_pct = policy->d_gain_pct; pid_params.deadband = policy->deadband; pid_params.setpoint = policy->setpoint; } static void copy_cpu_funcs(struct pstate_funcs *funcs) { pstate_funcs.get_max = funcs->get_max; pstate_funcs.get_min = funcs->get_min; pstate_funcs.get_turbo = funcs->get_turbo; pstate_funcs.get_scaling = funcs->get_scaling; pstate_funcs.set = funcs->set; pstate_funcs.get_vid = funcs->get_vid; } #if IS_ENABLED(CONFIG_ACPI) #include <acpi/processor.h> static bool intel_pstate_no_acpi_pss(void) { int i; for_each_possible_cpu(i) { acpi_status status; union acpi_object *pss; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_processor *pr = per_cpu(processors, i); if (!pr) continue; status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); if (ACPI_FAILURE(status)) continue; pss = buffer.pointer; if (pss && pss->type == ACPI_TYPE_PACKAGE) { kfree(pss); return false; } kfree(pss); } return true; } static bool intel_pstate_has_acpi_ppc(void) { int i; for_each_possible_cpu(i) { struct acpi_processor *pr = per_cpu(processors, i); if (!pr) continue; if (acpi_has_method(pr->handle, "_PPC")) return true; } return false; } enum { PSS, PPC, }; struct hw_vendor_info { u16 valid; char oem_id[ACPI_OEM_ID_SIZE]; char oem_table_id[ACPI_OEM_TABLE_ID_SIZE]; int oem_pwr_table; }; /* Hardware vendor-specific info that has its own power management modes */ static struct hw_vendor_info vendor_info[] = { {1, "HP ", "ProLiant", PSS}, {1, "ORACLE", "X4-2 ", PPC}, {1, "ORACLE", "X4-2L ", PPC}, {1, "ORACLE", "X4-2B ", PPC}, {1, "ORACLE", "X3-2 ", PPC}, {1, "ORACLE", "X3-2L ", PPC}, {1, "ORACLE", "X3-2B ", PPC}, {1, "ORACLE", "X4470M2 ", PPC}, {1, "ORACLE", "X4270M3 ", PPC}, {1, "ORACLE", "X4270M2 ", PPC}, {1, "ORACLE", "X4170M2 ", PPC}, {0, "", ""}, }; static bool intel_pstate_platform_pwr_mgmt_exists(void) { struct acpi_table_header hdr; struct hw_vendor_info *v_info; const struct x86_cpu_id *id; u64 misc_pwr; id = x86_match_cpu(intel_pstate_cpu_oob_ids); if (id) { rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); if ( misc_pwr & (1 << 8)) return true; } if (acpi_disabled || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr))) return false; for (v_info = vendor_info; v_info->valid; v_info++) { if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)) switch (v_info->oem_pwr_table) { case PSS: return intel_pstate_no_acpi_pss(); case PPC: return intel_pstate_has_acpi_ppc() && (!force_load); } } return false; } #else /* CONFIG_ACPI not enabled */ static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } static inline bool intel_pstate_has_acpi_ppc(void) { return false; } #endif /* CONFIG_ACPI */ static int __init intel_pstate_init(void) { int cpu, rc = 0; const struct x86_cpu_id *id; struct cpu_defaults *cpu_def; if (no_load) return -ENODEV; id = x86_match_cpu(intel_pstate_cpu_ids); if (!id) return -ENODEV; /* * The Intel pstate driver will be ignored if the platform * firmware has its own power management modes. */ if (intel_pstate_platform_pwr_mgmt_exists()) return -ENODEV; cpu_def = (struct cpu_defaults *)id->driver_data; copy_pid_params(&cpu_def->pid_policy); copy_cpu_funcs(&cpu_def->funcs); if (intel_pstate_msrs_not_valid()) return -ENODEV; pr_info("Intel P-state driver initializing.\n"); all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); if (!all_cpu_data) return -ENOMEM; if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) intel_pstate_hwp_enable(); if (!hwp_active && hwp_only) goto out; rc = cpufreq_register_driver(&intel_pstate_driver); if (rc) goto out; intel_pstate_debug_expose_params(); intel_pstate_sysfs_expose_params(); return rc; out: get_online_cpus(); for_each_online_cpu(cpu) { if (all_cpu_data[cpu]) { del_timer_sync(&all_cpu_data[cpu]->timer); kfree(all_cpu_data[cpu]); } } put_online_cpus(); vfree(all_cpu_data); return -ENODEV; } device_initcall(intel_pstate_init); static int __init intel_pstate_setup(char *str) { if (!str) return -EINVAL; if (!strcmp(str, "disable")) no_load = 1; if (!strcmp(str, "no_hwp")) no_hwp = 1; if (!strcmp(str, "force")) force_load = 1; if (!strcmp(str, "hwp_only")) hwp_only = 1; return 0; } early_param("intel_pstate", intel_pstate_setup); MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); MODULE_LICENSE("GPL");