/* * Zynq clock controller * * Copyright (C) 2012 - 2013 Xilinx * * Sören Brinkmann <soren.brinkmann@xilinx.com> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License v2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <linux/clk/zynq.h> #include <linux/clk-provider.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/io.h> static void __iomem *zynq_clkc_base; #define SLCR_ARMPLL_CTRL (zynq_clkc_base + 0x00) #define SLCR_DDRPLL_CTRL (zynq_clkc_base + 0x04) #define SLCR_IOPLL_CTRL (zynq_clkc_base + 0x08) #define SLCR_PLL_STATUS (zynq_clkc_base + 0x0c) #define SLCR_ARM_CLK_CTRL (zynq_clkc_base + 0x20) #define SLCR_DDR_CLK_CTRL (zynq_clkc_base + 0x24) #define SLCR_DCI_CLK_CTRL (zynq_clkc_base + 0x28) #define SLCR_APER_CLK_CTRL (zynq_clkc_base + 0x2c) #define SLCR_GEM0_CLK_CTRL (zynq_clkc_base + 0x40) #define SLCR_GEM1_CLK_CTRL (zynq_clkc_base + 0x44) #define SLCR_SMC_CLK_CTRL (zynq_clkc_base + 0x48) #define SLCR_LQSPI_CLK_CTRL (zynq_clkc_base + 0x4c) #define SLCR_SDIO_CLK_CTRL (zynq_clkc_base + 0x50) #define SLCR_UART_CLK_CTRL (zynq_clkc_base + 0x54) #define SLCR_SPI_CLK_CTRL (zynq_clkc_base + 0x58) #define SLCR_CAN_CLK_CTRL (zynq_clkc_base + 0x5c) #define SLCR_CAN_MIOCLK_CTRL (zynq_clkc_base + 0x60) #define SLCR_DBG_CLK_CTRL (zynq_clkc_base + 0x64) #define SLCR_PCAP_CLK_CTRL (zynq_clkc_base + 0x68) #define SLCR_FPGA0_CLK_CTRL (zynq_clkc_base + 0x70) #define SLCR_621_TRUE (zynq_clkc_base + 0xc4) #define SLCR_SWDT_CLK_SEL (zynq_clkc_base + 0x204) #define NUM_MIO_PINS 54 enum zynq_clk { armpll, ddrpll, iopll, cpu_6or4x, cpu_3or2x, cpu_2x, cpu_1x, ddr2x, ddr3x, dci, lqspi, smc, pcap, gem0, gem1, fclk0, fclk1, fclk2, fclk3, can0, can1, sdio0, sdio1, uart0, uart1, spi0, spi1, dma, usb0_aper, usb1_aper, gem0_aper, gem1_aper, sdio0_aper, sdio1_aper, spi0_aper, spi1_aper, can0_aper, can1_aper, i2c0_aper, i2c1_aper, uart0_aper, uart1_aper, gpio_aper, lqspi_aper, smc_aper, swdt, dbg_trc, dbg_apb, clk_max}; static struct clk *ps_clk; static struct clk *clks[clk_max]; static struct clk_onecell_data clk_data; static DEFINE_SPINLOCK(armpll_lock); static DEFINE_SPINLOCK(ddrpll_lock); static DEFINE_SPINLOCK(iopll_lock); static DEFINE_SPINLOCK(armclk_lock); static DEFINE_SPINLOCK(swdtclk_lock); static DEFINE_SPINLOCK(ddrclk_lock); static DEFINE_SPINLOCK(dciclk_lock); static DEFINE_SPINLOCK(gem0clk_lock); static DEFINE_SPINLOCK(gem1clk_lock); static DEFINE_SPINLOCK(canclk_lock); static DEFINE_SPINLOCK(canmioclk_lock); static DEFINE_SPINLOCK(dbgclk_lock); static DEFINE_SPINLOCK(aperclk_lock); static const char dummy_nm[] __initconst = "dummy_name"; static const char *armpll_parents[] __initdata = {"armpll_int", "ps_clk"}; static const char *ddrpll_parents[] __initdata = {"ddrpll_int", "ps_clk"}; static const char *iopll_parents[] __initdata = {"iopll_int", "ps_clk"}; static const char *gem0_mux_parents[] __initdata = {"gem0_div1", dummy_nm}; static const char *gem1_mux_parents[] __initdata = {"gem1_div1", dummy_nm}; static const char *can0_mio_mux2_parents[] __initdata = {"can0_gate", "can0_mio_mux"}; static const char *can1_mio_mux2_parents[] __initdata = {"can1_gate", "can1_mio_mux"}; static const char *dbg_emio_mux_parents[] __initdata = {"dbg_div", dummy_nm}; static const char *dbgtrc_emio_input_names[] __initdata = {"trace_emio_clk"}; static const char *gem0_emio_input_names[] __initdata = {"gem0_emio_clk"}; static const char *gem1_emio_input_names[] __initdata = {"gem1_emio_clk"}; static const char *swdt_ext_clk_input_names[] __initdata = {"swdt_ext_clk"}; static void __init zynq_clk_register_fclk(enum zynq_clk fclk, const char *clk_name, void __iomem *fclk_ctrl_reg, const char **parents, int enable) { struct clk *clk; u32 enable_reg; char *mux_name; char *div0_name; char *div1_name; spinlock_t *fclk_lock; spinlock_t *fclk_gate_lock; void __iomem *fclk_gate_reg = fclk_ctrl_reg + 8; fclk_lock = kmalloc(sizeof(*fclk_lock), GFP_KERNEL); if (!fclk_lock) goto err; fclk_gate_lock = kmalloc(sizeof(*fclk_gate_lock), GFP_KERNEL); if (!fclk_gate_lock) goto err_fclk_gate_lock; spin_lock_init(fclk_lock); spin_lock_init(fclk_gate_lock); mux_name = kasprintf(GFP_KERNEL, "%s_mux", clk_name); if (!mux_name) goto err_mux_name; div0_name = kasprintf(GFP_KERNEL, "%s_div0", clk_name); if (!div0_name) goto err_div0_name; div1_name = kasprintf(GFP_KERNEL, "%s_div1", clk_name); if (!div1_name) goto err_div1_name; clk = clk_register_mux(NULL, mux_name, parents, 4, CLK_SET_RATE_NO_REPARENT, fclk_ctrl_reg, 4, 2, 0, fclk_lock); clk = clk_register_divider(NULL, div0_name, mux_name, 0, fclk_ctrl_reg, 8, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, fclk_lock); clk = clk_register_divider(NULL, div1_name, div0_name, CLK_SET_RATE_PARENT, fclk_ctrl_reg, 20, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, fclk_lock); clks[fclk] = clk_register_gate(NULL, clk_name, div1_name, CLK_SET_RATE_PARENT, fclk_gate_reg, 0, CLK_GATE_SET_TO_DISABLE, fclk_gate_lock); enable_reg = clk_readl(fclk_gate_reg) & 1; if (enable && !enable_reg) { if (clk_prepare_enable(clks[fclk])) pr_warn("%s: FCLK%u enable failed\n", __func__, fclk - fclk0); } kfree(mux_name); kfree(div0_name); kfree(div1_name); return; err_div1_name: kfree(div0_name); err_div0_name: kfree(mux_name); err_mux_name: kfree(fclk_gate_lock); err_fclk_gate_lock: kfree(fclk_lock); err: clks[fclk] = ERR_PTR(-ENOMEM); } static void __init zynq_clk_register_periph_clk(enum zynq_clk clk0, enum zynq_clk clk1, const char *clk_name0, const char *clk_name1, void __iomem *clk_ctrl, const char **parents, unsigned int two_gates) { struct clk *clk; char *mux_name; char *div_name; spinlock_t *lock; lock = kmalloc(sizeof(*lock), GFP_KERNEL); if (!lock) goto err; spin_lock_init(lock); mux_name = kasprintf(GFP_KERNEL, "%s_mux", clk_name0); div_name = kasprintf(GFP_KERNEL, "%s_div", clk_name0); clk = clk_register_mux(NULL, mux_name, parents, 4, CLK_SET_RATE_NO_REPARENT, clk_ctrl, 4, 2, 0, lock); clk = clk_register_divider(NULL, div_name, mux_name, 0, clk_ctrl, 8, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, lock); clks[clk0] = clk_register_gate(NULL, clk_name0, div_name, CLK_SET_RATE_PARENT, clk_ctrl, 0, 0, lock); if (two_gates) clks[clk1] = clk_register_gate(NULL, clk_name1, div_name, CLK_SET_RATE_PARENT, clk_ctrl, 1, 0, lock); kfree(mux_name); kfree(div_name); return; err: clks[clk0] = ERR_PTR(-ENOMEM); if (two_gates) clks[clk1] = ERR_PTR(-ENOMEM); } static void __init zynq_clk_setup(struct device_node *np) { int i; u32 tmp; int ret; struct clk *clk; char *clk_name; unsigned int fclk_enable = 0; const char *clk_output_name[clk_max]; const char *cpu_parents[4]; const char *periph_parents[4]; const char *swdt_ext_clk_mux_parents[2]; const char *can_mio_mux_parents[NUM_MIO_PINS]; pr_info("Zynq clock init\n"); /* get clock output names from DT */ for (i = 0; i < clk_max; i++) { if (of_property_read_string_index(np, "clock-output-names", i, &clk_output_name[i])) { pr_err("%s: clock output name not in DT\n", __func__); BUG(); } } cpu_parents[0] = clk_output_name[armpll]; cpu_parents[1] = clk_output_name[armpll]; cpu_parents[2] = clk_output_name[ddrpll]; cpu_parents[3] = clk_output_name[iopll]; periph_parents[0] = clk_output_name[iopll]; periph_parents[1] = clk_output_name[iopll]; periph_parents[2] = clk_output_name[armpll]; periph_parents[3] = clk_output_name[ddrpll]; of_property_read_u32(np, "fclk-enable", &fclk_enable); /* ps_clk */ ret = of_property_read_u32(np, "ps-clk-frequency", &tmp); if (ret) { pr_warn("ps_clk frequency not specified, using 33 MHz.\n"); tmp = 33333333; } ps_clk = clk_register_fixed_rate(NULL, "ps_clk", NULL, CLK_IS_ROOT, tmp); /* PLLs */ clk = clk_register_zynq_pll("armpll_int", "ps_clk", SLCR_ARMPLL_CTRL, SLCR_PLL_STATUS, 0, &armpll_lock); clks[armpll] = clk_register_mux(NULL, clk_output_name[armpll], armpll_parents, 2, CLK_SET_RATE_NO_REPARENT, SLCR_ARMPLL_CTRL, 4, 1, 0, &armpll_lock); clk = clk_register_zynq_pll("ddrpll_int", "ps_clk", SLCR_DDRPLL_CTRL, SLCR_PLL_STATUS, 1, &ddrpll_lock); clks[ddrpll] = clk_register_mux(NULL, clk_output_name[ddrpll], ddrpll_parents, 2, CLK_SET_RATE_NO_REPARENT, SLCR_DDRPLL_CTRL, 4, 1, 0, &ddrpll_lock); clk = clk_register_zynq_pll("iopll_int", "ps_clk", SLCR_IOPLL_CTRL, SLCR_PLL_STATUS, 2, &iopll_lock); clks[iopll] = clk_register_mux(NULL, clk_output_name[iopll], iopll_parents, 2, CLK_SET_RATE_NO_REPARENT, SLCR_IOPLL_CTRL, 4, 1, 0, &iopll_lock); /* CPU clocks */ tmp = clk_readl(SLCR_621_TRUE) & 1; clk = clk_register_mux(NULL, "cpu_mux", cpu_parents, 4, CLK_SET_RATE_NO_REPARENT, SLCR_ARM_CLK_CTRL, 4, 2, 0, &armclk_lock); clk = clk_register_divider(NULL, "cpu_div", "cpu_mux", 0, SLCR_ARM_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &armclk_lock); clks[cpu_6or4x] = clk_register_gate(NULL, clk_output_name[cpu_6or4x], "cpu_div", CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL, 24, 0, &armclk_lock); clk = clk_register_fixed_factor(NULL, "cpu_3or2x_div", "cpu_div", 0, 1, 2); clks[cpu_3or2x] = clk_register_gate(NULL, clk_output_name[cpu_3or2x], "cpu_3or2x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL, 25, 0, &armclk_lock); clk = clk_register_fixed_factor(NULL, "cpu_2x_div", "cpu_div", 0, 1, 2 + tmp); clks[cpu_2x] = clk_register_gate(NULL, clk_output_name[cpu_2x], "cpu_2x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL, 26, 0, &armclk_lock); clk = clk_register_fixed_factor(NULL, "cpu_1x_div", "cpu_div", 0, 1, 4 + 2 * tmp); clks[cpu_1x] = clk_register_gate(NULL, clk_output_name[cpu_1x], "cpu_1x_div", CLK_IGNORE_UNUSED, SLCR_ARM_CLK_CTRL, 27, 0, &armclk_lock); /* Timers */ swdt_ext_clk_mux_parents[0] = clk_output_name[cpu_1x]; for (i = 0; i < ARRAY_SIZE(swdt_ext_clk_input_names); i++) { int idx = of_property_match_string(np, "clock-names", swdt_ext_clk_input_names[i]); if (idx >= 0) swdt_ext_clk_mux_parents[i + 1] = of_clk_get_parent_name(np, idx); else swdt_ext_clk_mux_parents[i + 1] = dummy_nm; } clks[swdt] = clk_register_mux(NULL, clk_output_name[swdt], swdt_ext_clk_mux_parents, 2, CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT, SLCR_SWDT_CLK_SEL, 0, 1, 0, &swdtclk_lock); /* DDR clocks */ clk = clk_register_divider(NULL, "ddr2x_div", "ddrpll", 0, SLCR_DDR_CLK_CTRL, 26, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &ddrclk_lock); clks[ddr2x] = clk_register_gate(NULL, clk_output_name[ddr2x], "ddr2x_div", 0, SLCR_DDR_CLK_CTRL, 1, 0, &ddrclk_lock); clk_prepare_enable(clks[ddr2x]); clk = clk_register_divider(NULL, "ddr3x_div", "ddrpll", 0, SLCR_DDR_CLK_CTRL, 20, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &ddrclk_lock); clks[ddr3x] = clk_register_gate(NULL, clk_output_name[ddr3x], "ddr3x_div", 0, SLCR_DDR_CLK_CTRL, 0, 0, &ddrclk_lock); clk_prepare_enable(clks[ddr3x]); clk = clk_register_divider(NULL, "dci_div0", "ddrpll", 0, SLCR_DCI_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &dciclk_lock); clk = clk_register_divider(NULL, "dci_div1", "dci_div0", CLK_SET_RATE_PARENT, SLCR_DCI_CLK_CTRL, 20, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &dciclk_lock); clks[dci] = clk_register_gate(NULL, clk_output_name[dci], "dci_div1", CLK_SET_RATE_PARENT, SLCR_DCI_CLK_CTRL, 0, 0, &dciclk_lock); clk_prepare_enable(clks[dci]); /* Peripheral clocks */ for (i = fclk0; i <= fclk3; i++) { int enable = !!(fclk_enable & BIT(i - fclk0)); zynq_clk_register_fclk(i, clk_output_name[i], SLCR_FPGA0_CLK_CTRL + 0x10 * (i - fclk0), periph_parents, enable); } zynq_clk_register_periph_clk(lqspi, 0, clk_output_name[lqspi], NULL, SLCR_LQSPI_CLK_CTRL, periph_parents, 0); zynq_clk_register_periph_clk(smc, 0, clk_output_name[smc], NULL, SLCR_SMC_CLK_CTRL, periph_parents, 0); zynq_clk_register_periph_clk(pcap, 0, clk_output_name[pcap], NULL, SLCR_PCAP_CLK_CTRL, periph_parents, 0); zynq_clk_register_periph_clk(sdio0, sdio1, clk_output_name[sdio0], clk_output_name[sdio1], SLCR_SDIO_CLK_CTRL, periph_parents, 1); zynq_clk_register_periph_clk(uart0, uart1, clk_output_name[uart0], clk_output_name[uart1], SLCR_UART_CLK_CTRL, periph_parents, 1); zynq_clk_register_periph_clk(spi0, spi1, clk_output_name[spi0], clk_output_name[spi1], SLCR_SPI_CLK_CTRL, periph_parents, 1); for (i = 0; i < ARRAY_SIZE(gem0_emio_input_names); i++) { int idx = of_property_match_string(np, "clock-names", gem0_emio_input_names[i]); if (idx >= 0) gem0_mux_parents[i + 1] = of_clk_get_parent_name(np, idx); } clk = clk_register_mux(NULL, "gem0_mux", periph_parents, 4, CLK_SET_RATE_NO_REPARENT, SLCR_GEM0_CLK_CTRL, 4, 2, 0, &gem0clk_lock); clk = clk_register_divider(NULL, "gem0_div0", "gem0_mux", 0, SLCR_GEM0_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &gem0clk_lock); clk = clk_register_divider(NULL, "gem0_div1", "gem0_div0", CLK_SET_RATE_PARENT, SLCR_GEM0_CLK_CTRL, 20, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &gem0clk_lock); clk = clk_register_mux(NULL, "gem0_emio_mux", gem0_mux_parents, 2, CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT, SLCR_GEM0_CLK_CTRL, 6, 1, 0, &gem0clk_lock); clks[gem0] = clk_register_gate(NULL, clk_output_name[gem0], "gem0_emio_mux", CLK_SET_RATE_PARENT, SLCR_GEM0_CLK_CTRL, 0, 0, &gem0clk_lock); for (i = 0; i < ARRAY_SIZE(gem1_emio_input_names); i++) { int idx = of_property_match_string(np, "clock-names", gem1_emio_input_names[i]); if (idx >= 0) gem1_mux_parents[i + 1] = of_clk_get_parent_name(np, idx); } clk = clk_register_mux(NULL, "gem1_mux", periph_parents, 4, CLK_SET_RATE_NO_REPARENT, SLCR_GEM1_CLK_CTRL, 4, 2, 0, &gem1clk_lock); clk = clk_register_divider(NULL, "gem1_div0", "gem1_mux", 0, SLCR_GEM1_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &gem1clk_lock); clk = clk_register_divider(NULL, "gem1_div1", "gem1_div0", CLK_SET_RATE_PARENT, SLCR_GEM1_CLK_CTRL, 20, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &gem1clk_lock); clk = clk_register_mux(NULL, "gem1_emio_mux", gem1_mux_parents, 2, CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT, SLCR_GEM1_CLK_CTRL, 6, 1, 0, &gem1clk_lock); clks[gem1] = clk_register_gate(NULL, clk_output_name[gem1], "gem1_emio_mux", CLK_SET_RATE_PARENT, SLCR_GEM1_CLK_CTRL, 0, 0, &gem1clk_lock); tmp = strlen("mio_clk_00x"); clk_name = kmalloc(tmp, GFP_KERNEL); for (i = 0; i < NUM_MIO_PINS; i++) { int idx; snprintf(clk_name, tmp, "mio_clk_%2.2d", i); idx = of_property_match_string(np, "clock-names", clk_name); if (idx >= 0) can_mio_mux_parents[i] = of_clk_get_parent_name(np, idx); else can_mio_mux_parents[i] = dummy_nm; } kfree(clk_name); clk = clk_register_mux(NULL, "can_mux", periph_parents, 4, CLK_SET_RATE_NO_REPARENT, SLCR_CAN_CLK_CTRL, 4, 2, 0, &canclk_lock); clk = clk_register_divider(NULL, "can_div0", "can_mux", 0, SLCR_CAN_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &canclk_lock); clk = clk_register_divider(NULL, "can_div1", "can_div0", CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 20, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &canclk_lock); clk = clk_register_gate(NULL, "can0_gate", "can_div1", CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 0, 0, &canclk_lock); clk = clk_register_gate(NULL, "can1_gate", "can_div1", CLK_SET_RATE_PARENT, SLCR_CAN_CLK_CTRL, 1, 0, &canclk_lock); clk = clk_register_mux(NULL, "can0_mio_mux", can_mio_mux_parents, 54, CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 0, 6, 0, &canmioclk_lock); clk = clk_register_mux(NULL, "can1_mio_mux", can_mio_mux_parents, 54, CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 16, 6, 0, &canmioclk_lock); clks[can0] = clk_register_mux(NULL, clk_output_name[can0], can0_mio_mux2_parents, 2, CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 6, 1, 0, &canmioclk_lock); clks[can1] = clk_register_mux(NULL, clk_output_name[can1], can1_mio_mux2_parents, 2, CLK_SET_RATE_PARENT | CLK_SET_RATE_NO_REPARENT, SLCR_CAN_MIOCLK_CTRL, 22, 1, 0, &canmioclk_lock); for (i = 0; i < ARRAY_SIZE(dbgtrc_emio_input_names); i++) { int idx = of_property_match_string(np, "clock-names", dbgtrc_emio_input_names[i]); if (idx >= 0) dbg_emio_mux_parents[i + 1] = of_clk_get_parent_name(np, idx); } clk = clk_register_mux(NULL, "dbg_mux", periph_parents, 4, CLK_SET_RATE_NO_REPARENT, SLCR_DBG_CLK_CTRL, 4, 2, 0, &dbgclk_lock); clk = clk_register_divider(NULL, "dbg_div", "dbg_mux", 0, SLCR_DBG_CLK_CTRL, 8, 6, CLK_DIVIDER_ONE_BASED | CLK_DIVIDER_ALLOW_ZERO, &dbgclk_lock); clk = clk_register_mux(NULL, "dbg_emio_mux", dbg_emio_mux_parents, 2, CLK_SET_RATE_NO_REPARENT, SLCR_DBG_CLK_CTRL, 6, 1, 0, &dbgclk_lock); clks[dbg_trc] = clk_register_gate(NULL, clk_output_name[dbg_trc], "dbg_emio_mux", CLK_SET_RATE_PARENT, SLCR_DBG_CLK_CTRL, 0, 0, &dbgclk_lock); clks[dbg_apb] = clk_register_gate(NULL, clk_output_name[dbg_apb], clk_output_name[cpu_1x], 0, SLCR_DBG_CLK_CTRL, 1, 0, &dbgclk_lock); /* One gated clock for all APER clocks. */ clks[dma] = clk_register_gate(NULL, clk_output_name[dma], clk_output_name[cpu_2x], 0, SLCR_APER_CLK_CTRL, 0, 0, &aperclk_lock); clks[usb0_aper] = clk_register_gate(NULL, clk_output_name[usb0_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 2, 0, &aperclk_lock); clks[usb1_aper] = clk_register_gate(NULL, clk_output_name[usb1_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 3, 0, &aperclk_lock); clks[gem0_aper] = clk_register_gate(NULL, clk_output_name[gem0_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 6, 0, &aperclk_lock); clks[gem1_aper] = clk_register_gate(NULL, clk_output_name[gem1_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 7, 0, &aperclk_lock); clks[sdio0_aper] = clk_register_gate(NULL, clk_output_name[sdio0_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 10, 0, &aperclk_lock); clks[sdio1_aper] = clk_register_gate(NULL, clk_output_name[sdio1_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 11, 0, &aperclk_lock); clks[spi0_aper] = clk_register_gate(NULL, clk_output_name[spi0_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 14, 0, &aperclk_lock); clks[spi1_aper] = clk_register_gate(NULL, clk_output_name[spi1_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 15, 0, &aperclk_lock); clks[can0_aper] = clk_register_gate(NULL, clk_output_name[can0_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 16, 0, &aperclk_lock); clks[can1_aper] = clk_register_gate(NULL, clk_output_name[can1_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 17, 0, &aperclk_lock); clks[i2c0_aper] = clk_register_gate(NULL, clk_output_name[i2c0_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 18, 0, &aperclk_lock); clks[i2c1_aper] = clk_register_gate(NULL, clk_output_name[i2c1_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 19, 0, &aperclk_lock); clks[uart0_aper] = clk_register_gate(NULL, clk_output_name[uart0_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 20, 0, &aperclk_lock); clks[uart1_aper] = clk_register_gate(NULL, clk_output_name[uart1_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 21, 0, &aperclk_lock); clks[gpio_aper] = clk_register_gate(NULL, clk_output_name[gpio_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 22, 0, &aperclk_lock); clks[lqspi_aper] = clk_register_gate(NULL, clk_output_name[lqspi_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 23, 0, &aperclk_lock); clks[smc_aper] = clk_register_gate(NULL, clk_output_name[smc_aper], clk_output_name[cpu_1x], 0, SLCR_APER_CLK_CTRL, 24, 0, &aperclk_lock); for (i = 0; i < ARRAY_SIZE(clks); i++) { if (IS_ERR(clks[i])) { pr_err("Zynq clk %d: register failed with %ld\n", i, PTR_ERR(clks[i])); BUG(); } } clk_data.clks = clks; clk_data.clk_num = ARRAY_SIZE(clks); of_clk_add_provider(np, of_clk_src_onecell_get, &clk_data); } CLK_OF_DECLARE(zynq_clkc, "xlnx,ps7-clkc", zynq_clk_setup); void __init zynq_clock_init(void) { struct device_node *np; struct device_node *slcr; struct resource res; np = of_find_compatible_node(NULL, NULL, "xlnx,ps7-clkc"); if (!np) { pr_err("%s: clkc node not found\n", __func__); goto np_err; } if (of_address_to_resource(np, 0, &res)) { pr_err("%s: failed to get resource\n", np->name); goto np_err; } slcr = of_get_parent(np); if (slcr->data) { zynq_clkc_base = (__force void __iomem *)slcr->data + res.start; } else { pr_err("%s: Unable to get I/O memory\n", np->name); of_node_put(slcr); goto np_err; } pr_info("%s: clkc starts at %p\n", __func__, zynq_clkc_base); of_node_put(slcr); of_node_put(np); return; np_err: of_node_put(np); BUG(); return; }