/* * * Bluetooth HCI Three-wire UART driver * * Copyright (C) 2012 Intel Corporation * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <linux/acpi.h> #include <linux/errno.h> #include <linux/gpio/consumer.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/serdev.h> #include <linux/skbuff.h> #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #include "btrtl.h" #include "hci_uart.h" #define HCI_3WIRE_ACK_PKT 0 #define HCI_3WIRE_LINK_PKT 15 /* Sliding window size */ #define H5_TX_WIN_MAX 4 #define H5_ACK_TIMEOUT msecs_to_jiffies(250) #define H5_SYNC_TIMEOUT msecs_to_jiffies(100) /* * Maximum Three-wire packet: * 4 byte header + max value for 12-bit length + 2 bytes for CRC */ #define H5_MAX_LEN (4 + 0xfff + 2) /* Convenience macros for reading Three-wire header values */ #define H5_HDR_SEQ(hdr) ((hdr)[0] & 0x07) #define H5_HDR_ACK(hdr) (((hdr)[0] >> 3) & 0x07) #define H5_HDR_CRC(hdr) (((hdr)[0] >> 6) & 0x01) #define H5_HDR_RELIABLE(hdr) (((hdr)[0] >> 7) & 0x01) #define H5_HDR_PKT_TYPE(hdr) ((hdr)[1] & 0x0f) #define H5_HDR_LEN(hdr) ((((hdr)[1] >> 4) & 0x0f) + ((hdr)[2] << 4)) #define SLIP_DELIMITER 0xc0 #define SLIP_ESC 0xdb #define SLIP_ESC_DELIM 0xdc #define SLIP_ESC_ESC 0xdd /* H5 state flags */ enum { H5_RX_ESC, /* SLIP escape mode */ H5_TX_ACK_REQ, /* Pending ack to send */ }; struct h5 { /* Must be the first member, hci_serdev.c expects this. */ struct hci_uart serdev_hu; struct sk_buff_head unack; /* Unack'ed packets queue */ struct sk_buff_head rel; /* Reliable packets queue */ struct sk_buff_head unrel; /* Unreliable packets queue */ unsigned long flags; struct sk_buff *rx_skb; /* Receive buffer */ size_t rx_pending; /* Expecting more bytes */ u8 rx_ack; /* Last ack number received */ int (*rx_func)(struct hci_uart *hu, u8 c); struct timer_list timer; /* Retransmission timer */ struct hci_uart *hu; /* Parent HCI UART */ u8 tx_seq; /* Next seq number to send */ u8 tx_ack; /* Next ack number to send */ u8 tx_win; /* Sliding window size */ enum { H5_UNINITIALIZED, H5_INITIALIZED, H5_ACTIVE, } state; enum { H5_AWAKE, H5_SLEEPING, H5_WAKING_UP, } sleep; const struct h5_vnd *vnd; const char *id; struct gpio_desc *enable_gpio; struct gpio_desc *device_wake_gpio; }; struct h5_vnd { int (*setup)(struct h5 *h5); void (*open)(struct h5 *h5); void (*close)(struct h5 *h5); const struct acpi_gpio_mapping *acpi_gpio_map; }; static void h5_reset_rx(struct h5 *h5); static void h5_link_control(struct hci_uart *hu, const void *data, size_t len) { struct h5 *h5 = hu->priv; struct sk_buff *nskb; nskb = alloc_skb(3, GFP_ATOMIC); if (!nskb) return; hci_skb_pkt_type(nskb) = HCI_3WIRE_LINK_PKT; skb_put_data(nskb, data, len); skb_queue_tail(&h5->unrel, nskb); } static u8 h5_cfg_field(struct h5 *h5) { /* Sliding window size (first 3 bits) */ return h5->tx_win & 0x07; } static void h5_timed_event(struct timer_list *t) { const unsigned char sync_req[] = { 0x01, 0x7e }; unsigned char conf_req[3] = { 0x03, 0xfc }; struct h5 *h5 = from_timer(h5, t, timer); struct hci_uart *hu = h5->hu; struct sk_buff *skb; unsigned long flags; BT_DBG("%s", hu->hdev->name); if (h5->state == H5_UNINITIALIZED) h5_link_control(hu, sync_req, sizeof(sync_req)); if (h5->state == H5_INITIALIZED) { conf_req[2] = h5_cfg_field(h5); h5_link_control(hu, conf_req, sizeof(conf_req)); } if (h5->state != H5_ACTIVE) { mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT); goto wakeup; } if (h5->sleep != H5_AWAKE) { h5->sleep = H5_SLEEPING; goto wakeup; } BT_DBG("hu %p retransmitting %u pkts", hu, h5->unack.qlen); spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING); while ((skb = __skb_dequeue_tail(&h5->unack)) != NULL) { h5->tx_seq = (h5->tx_seq - 1) & 0x07; skb_queue_head(&h5->rel, skb); } spin_unlock_irqrestore(&h5->unack.lock, flags); wakeup: hci_uart_tx_wakeup(hu); } static void h5_peer_reset(struct hci_uart *hu) { struct h5 *h5 = hu->priv; BT_ERR("Peer device has reset"); h5->state = H5_UNINITIALIZED; del_timer(&h5->timer); skb_queue_purge(&h5->rel); skb_queue_purge(&h5->unrel); skb_queue_purge(&h5->unack); h5->tx_seq = 0; h5->tx_ack = 0; /* Send reset request to upper stack */ hci_reset_dev(hu->hdev); } static int h5_open(struct hci_uart *hu) { struct h5 *h5; const unsigned char sync[] = { 0x01, 0x7e }; BT_DBG("hu %p", hu); if (hu->serdev) { h5 = serdev_device_get_drvdata(hu->serdev); } else { h5 = kzalloc(sizeof(*h5), GFP_KERNEL); if (!h5) return -ENOMEM; } hu->priv = h5; h5->hu = hu; skb_queue_head_init(&h5->unack); skb_queue_head_init(&h5->rel); skb_queue_head_init(&h5->unrel); h5_reset_rx(h5); timer_setup(&h5->timer, h5_timed_event, 0); h5->tx_win = H5_TX_WIN_MAX; if (h5->vnd && h5->vnd->open) h5->vnd->open(h5); set_bit(HCI_UART_INIT_PENDING, &hu->hdev_flags); /* Send initial sync request */ h5_link_control(hu, sync, sizeof(sync)); mod_timer(&h5->timer, jiffies + H5_SYNC_TIMEOUT); return 0; } static int h5_close(struct hci_uart *hu) { struct h5 *h5 = hu->priv; del_timer_sync(&h5->timer); skb_queue_purge(&h5->unack); skb_queue_purge(&h5->rel); skb_queue_purge(&h5->unrel); if (h5->vnd && h5->vnd->close) h5->vnd->close(h5); if (!hu->serdev) kfree(h5); return 0; } static int h5_setup(struct hci_uart *hu) { struct h5 *h5 = hu->priv; if (h5->vnd && h5->vnd->setup) return h5->vnd->setup(h5); return 0; } static void h5_pkt_cull(struct h5 *h5) { struct sk_buff *skb, *tmp; unsigned long flags; int i, to_remove; u8 seq; spin_lock_irqsave(&h5->unack.lock, flags); to_remove = skb_queue_len(&h5->unack); if (to_remove == 0) goto unlock; seq = h5->tx_seq; while (to_remove > 0) { if (h5->rx_ack == seq) break; to_remove--; seq = (seq - 1) & 0x07; } if (seq != h5->rx_ack) BT_ERR("Controller acked invalid packet"); i = 0; skb_queue_walk_safe(&h5->unack, skb, tmp) { if (i++ >= to_remove) break; __skb_unlink(skb, &h5->unack); kfree_skb(skb); } if (skb_queue_empty(&h5->unack)) del_timer(&h5->timer); unlock: spin_unlock_irqrestore(&h5->unack.lock, flags); } static void h5_handle_internal_rx(struct hci_uart *hu) { struct h5 *h5 = hu->priv; const unsigned char sync_req[] = { 0x01, 0x7e }; const unsigned char sync_rsp[] = { 0x02, 0x7d }; unsigned char conf_req[3] = { 0x03, 0xfc }; const unsigned char conf_rsp[] = { 0x04, 0x7b }; const unsigned char wakeup_req[] = { 0x05, 0xfa }; const unsigned char woken_req[] = { 0x06, 0xf9 }; const unsigned char sleep_req[] = { 0x07, 0x78 }; const unsigned char *hdr = h5->rx_skb->data; const unsigned char *data = &h5->rx_skb->data[4]; BT_DBG("%s", hu->hdev->name); if (H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT) return; if (H5_HDR_LEN(hdr) < 2) return; conf_req[2] = h5_cfg_field(h5); if (memcmp(data, sync_req, 2) == 0) { if (h5->state == H5_ACTIVE) h5_peer_reset(hu); h5_link_control(hu, sync_rsp, 2); } else if (memcmp(data, sync_rsp, 2) == 0) { if (h5->state == H5_ACTIVE) h5_peer_reset(hu); h5->state = H5_INITIALIZED; h5_link_control(hu, conf_req, 3); } else if (memcmp(data, conf_req, 2) == 0) { h5_link_control(hu, conf_rsp, 2); h5_link_control(hu, conf_req, 3); } else if (memcmp(data, conf_rsp, 2) == 0) { if (H5_HDR_LEN(hdr) > 2) h5->tx_win = (data[2] & 0x07); BT_DBG("Three-wire init complete. tx_win %u", h5->tx_win); h5->state = H5_ACTIVE; hci_uart_init_ready(hu); return; } else if (memcmp(data, sleep_req, 2) == 0) { BT_DBG("Peer went to sleep"); h5->sleep = H5_SLEEPING; return; } else if (memcmp(data, woken_req, 2) == 0) { BT_DBG("Peer woke up"); h5->sleep = H5_AWAKE; } else if (memcmp(data, wakeup_req, 2) == 0) { BT_DBG("Peer requested wakeup"); h5_link_control(hu, woken_req, 2); h5->sleep = H5_AWAKE; } else { BT_DBG("Link Control: 0x%02hhx 0x%02hhx", data[0], data[1]); return; } hci_uart_tx_wakeup(hu); } static void h5_complete_rx_pkt(struct hci_uart *hu) { struct h5 *h5 = hu->priv; const unsigned char *hdr = h5->rx_skb->data; if (H5_HDR_RELIABLE(hdr)) { h5->tx_ack = (h5->tx_ack + 1) % 8; set_bit(H5_TX_ACK_REQ, &h5->flags); hci_uart_tx_wakeup(hu); } h5->rx_ack = H5_HDR_ACK(hdr); h5_pkt_cull(h5); switch (H5_HDR_PKT_TYPE(hdr)) { case HCI_EVENT_PKT: case HCI_ACLDATA_PKT: case HCI_SCODATA_PKT: hci_skb_pkt_type(h5->rx_skb) = H5_HDR_PKT_TYPE(hdr); /* Remove Three-wire header */ skb_pull(h5->rx_skb, 4); hci_recv_frame(hu->hdev, h5->rx_skb); h5->rx_skb = NULL; break; default: h5_handle_internal_rx(hu); break; } h5_reset_rx(h5); } static int h5_rx_crc(struct hci_uart *hu, unsigned char c) { h5_complete_rx_pkt(hu); return 0; } static int h5_rx_payload(struct hci_uart *hu, unsigned char c) { struct h5 *h5 = hu->priv; const unsigned char *hdr = h5->rx_skb->data; if (H5_HDR_CRC(hdr)) { h5->rx_func = h5_rx_crc; h5->rx_pending = 2; } else { h5_complete_rx_pkt(hu); } return 0; } static int h5_rx_3wire_hdr(struct hci_uart *hu, unsigned char c) { struct h5 *h5 = hu->priv; const unsigned char *hdr = h5->rx_skb->data; BT_DBG("%s rx: seq %u ack %u crc %u rel %u type %u len %u", hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr), H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr), H5_HDR_LEN(hdr)); if (((hdr[0] + hdr[1] + hdr[2] + hdr[3]) & 0xff) != 0xff) { BT_ERR("Invalid header checksum"); h5_reset_rx(h5); return 0; } if (H5_HDR_RELIABLE(hdr) && H5_HDR_SEQ(hdr) != h5->tx_ack) { BT_ERR("Out-of-order packet arrived (%u != %u)", H5_HDR_SEQ(hdr), h5->tx_ack); h5_reset_rx(h5); return 0; } if (h5->state != H5_ACTIVE && H5_HDR_PKT_TYPE(hdr) != HCI_3WIRE_LINK_PKT) { BT_ERR("Non-link packet received in non-active state"); h5_reset_rx(h5); return 0; } h5->rx_func = h5_rx_payload; h5->rx_pending = H5_HDR_LEN(hdr); return 0; } static int h5_rx_pkt_start(struct hci_uart *hu, unsigned char c) { struct h5 *h5 = hu->priv; if (c == SLIP_DELIMITER) return 1; h5->rx_func = h5_rx_3wire_hdr; h5->rx_pending = 4; h5->rx_skb = bt_skb_alloc(H5_MAX_LEN, GFP_ATOMIC); if (!h5->rx_skb) { BT_ERR("Can't allocate mem for new packet"); h5_reset_rx(h5); return -ENOMEM; } h5->rx_skb->dev = (void *)hu->hdev; return 0; } static int h5_rx_delimiter(struct hci_uart *hu, unsigned char c) { struct h5 *h5 = hu->priv; if (c == SLIP_DELIMITER) h5->rx_func = h5_rx_pkt_start; return 1; } static void h5_unslip_one_byte(struct h5 *h5, unsigned char c) { const u8 delim = SLIP_DELIMITER, esc = SLIP_ESC; const u8 *byte = &c; if (!test_bit(H5_RX_ESC, &h5->flags) && c == SLIP_ESC) { set_bit(H5_RX_ESC, &h5->flags); return; } if (test_and_clear_bit(H5_RX_ESC, &h5->flags)) { switch (c) { case SLIP_ESC_DELIM: byte = &delim; break; case SLIP_ESC_ESC: byte = &esc; break; default: BT_ERR("Invalid esc byte 0x%02hhx", c); h5_reset_rx(h5); return; } } skb_put_data(h5->rx_skb, byte, 1); h5->rx_pending--; BT_DBG("unsliped 0x%02hhx, rx_pending %zu", *byte, h5->rx_pending); } static void h5_reset_rx(struct h5 *h5) { if (h5->rx_skb) { kfree_skb(h5->rx_skb); h5->rx_skb = NULL; } h5->rx_func = h5_rx_delimiter; h5->rx_pending = 0; clear_bit(H5_RX_ESC, &h5->flags); } static int h5_recv(struct hci_uart *hu, const void *data, int count) { struct h5 *h5 = hu->priv; const unsigned char *ptr = data; BT_DBG("%s pending %zu count %d", hu->hdev->name, h5->rx_pending, count); while (count > 0) { int processed; if (h5->rx_pending > 0) { if (*ptr == SLIP_DELIMITER) { BT_ERR("Too short H5 packet"); h5_reset_rx(h5); continue; } h5_unslip_one_byte(h5, *ptr); ptr++; count--; continue; } processed = h5->rx_func(hu, *ptr); if (processed < 0) return processed; ptr += processed; count -= processed; } return 0; } static int h5_enqueue(struct hci_uart *hu, struct sk_buff *skb) { struct h5 *h5 = hu->priv; if (skb->len > 0xfff) { BT_ERR("Packet too long (%u bytes)", skb->len); kfree_skb(skb); return 0; } if (h5->state != H5_ACTIVE) { BT_ERR("Ignoring HCI data in non-active state"); kfree_skb(skb); return 0; } switch (hci_skb_pkt_type(skb)) { case HCI_ACLDATA_PKT: case HCI_COMMAND_PKT: skb_queue_tail(&h5->rel, skb); break; case HCI_SCODATA_PKT: skb_queue_tail(&h5->unrel, skb); break; default: BT_ERR("Unknown packet type %u", hci_skb_pkt_type(skb)); kfree_skb(skb); break; } return 0; } static void h5_slip_delim(struct sk_buff *skb) { const char delim = SLIP_DELIMITER; skb_put_data(skb, &delim, 1); } static void h5_slip_one_byte(struct sk_buff *skb, u8 c) { const char esc_delim[2] = { SLIP_ESC, SLIP_ESC_DELIM }; const char esc_esc[2] = { SLIP_ESC, SLIP_ESC_ESC }; switch (c) { case SLIP_DELIMITER: skb_put_data(skb, &esc_delim, 2); break; case SLIP_ESC: skb_put_data(skb, &esc_esc, 2); break; default: skb_put_data(skb, &c, 1); } } static bool valid_packet_type(u8 type) { switch (type) { case HCI_ACLDATA_PKT: case HCI_COMMAND_PKT: case HCI_SCODATA_PKT: case HCI_3WIRE_LINK_PKT: case HCI_3WIRE_ACK_PKT: return true; default: return false; } } static struct sk_buff *h5_prepare_pkt(struct hci_uart *hu, u8 pkt_type, const u8 *data, size_t len) { struct h5 *h5 = hu->priv; struct sk_buff *nskb; u8 hdr[4]; int i; if (!valid_packet_type(pkt_type)) { BT_ERR("Unknown packet type %u", pkt_type); return NULL; } /* * Max len of packet: (original len + 4 (H5 hdr) + 2 (crc)) * 2 * (because bytes 0xc0 and 0xdb are escaped, worst case is when * the packet is all made of 0xc0 and 0xdb) + 2 (0xc0 * delimiters at start and end). */ nskb = alloc_skb((len + 6) * 2 + 2, GFP_ATOMIC); if (!nskb) return NULL; hci_skb_pkt_type(nskb) = pkt_type; h5_slip_delim(nskb); hdr[0] = h5->tx_ack << 3; clear_bit(H5_TX_ACK_REQ, &h5->flags); /* Reliable packet? */ if (pkt_type == HCI_ACLDATA_PKT || pkt_type == HCI_COMMAND_PKT) { hdr[0] |= 1 << 7; hdr[0] |= h5->tx_seq; h5->tx_seq = (h5->tx_seq + 1) % 8; } hdr[1] = pkt_type | ((len & 0x0f) << 4); hdr[2] = len >> 4; hdr[3] = ~((hdr[0] + hdr[1] + hdr[2]) & 0xff); BT_DBG("%s tx: seq %u ack %u crc %u rel %u type %u len %u", hu->hdev->name, H5_HDR_SEQ(hdr), H5_HDR_ACK(hdr), H5_HDR_CRC(hdr), H5_HDR_RELIABLE(hdr), H5_HDR_PKT_TYPE(hdr), H5_HDR_LEN(hdr)); for (i = 0; i < 4; i++) h5_slip_one_byte(nskb, hdr[i]); for (i = 0; i < len; i++) h5_slip_one_byte(nskb, data[i]); h5_slip_delim(nskb); return nskb; } static struct sk_buff *h5_dequeue(struct hci_uart *hu) { struct h5 *h5 = hu->priv; unsigned long flags; struct sk_buff *skb, *nskb; if (h5->sleep != H5_AWAKE) { const unsigned char wakeup_req[] = { 0x05, 0xfa }; if (h5->sleep == H5_WAKING_UP) return NULL; h5->sleep = H5_WAKING_UP; BT_DBG("Sending wakeup request"); mod_timer(&h5->timer, jiffies + HZ / 100); return h5_prepare_pkt(hu, HCI_3WIRE_LINK_PKT, wakeup_req, 2); } skb = skb_dequeue(&h5->unrel); if (skb) { nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb), skb->data, skb->len); if (nskb) { kfree_skb(skb); return nskb; } skb_queue_head(&h5->unrel, skb); BT_ERR("Could not dequeue pkt because alloc_skb failed"); } spin_lock_irqsave_nested(&h5->unack.lock, flags, SINGLE_DEPTH_NESTING); if (h5->unack.qlen >= h5->tx_win) goto unlock; skb = skb_dequeue(&h5->rel); if (skb) { nskb = h5_prepare_pkt(hu, hci_skb_pkt_type(skb), skb->data, skb->len); if (nskb) { __skb_queue_tail(&h5->unack, skb); mod_timer(&h5->timer, jiffies + H5_ACK_TIMEOUT); spin_unlock_irqrestore(&h5->unack.lock, flags); return nskb; } skb_queue_head(&h5->rel, skb); BT_ERR("Could not dequeue pkt because alloc_skb failed"); } unlock: spin_unlock_irqrestore(&h5->unack.lock, flags); if (test_bit(H5_TX_ACK_REQ, &h5->flags)) return h5_prepare_pkt(hu, HCI_3WIRE_ACK_PKT, NULL, 0); return NULL; } static int h5_flush(struct hci_uart *hu) { BT_DBG("hu %p", hu); return 0; } static const struct hci_uart_proto h5p = { .id = HCI_UART_3WIRE, .name = "Three-wire (H5)", .open = h5_open, .close = h5_close, .setup = h5_setup, .recv = h5_recv, .enqueue = h5_enqueue, .dequeue = h5_dequeue, .flush = h5_flush, }; static int h5_serdev_probe(struct serdev_device *serdev) { const struct acpi_device_id *match; struct device *dev = &serdev->dev; struct h5 *h5; h5 = devm_kzalloc(dev, sizeof(*h5), GFP_KERNEL); if (!h5) return -ENOMEM; set_bit(HCI_UART_RESET_ON_INIT, &h5->serdev_hu.flags); h5->hu = &h5->serdev_hu; h5->serdev_hu.serdev = serdev; serdev_device_set_drvdata(serdev, h5); if (has_acpi_companion(dev)) { match = acpi_match_device(dev->driver->acpi_match_table, dev); if (!match) return -ENODEV; h5->vnd = (const struct h5_vnd *)match->driver_data; h5->id = (char *)match->id; if (h5->vnd->acpi_gpio_map) devm_acpi_dev_add_driver_gpios(dev, h5->vnd->acpi_gpio_map); } h5->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW); if (IS_ERR(h5->enable_gpio)) return PTR_ERR(h5->enable_gpio); h5->device_wake_gpio = devm_gpiod_get_optional(dev, "device-wake", GPIOD_OUT_LOW); if (IS_ERR(h5->device_wake_gpio)) return PTR_ERR(h5->device_wake_gpio); return hci_uart_register_device(&h5->serdev_hu, &h5p); } static void h5_serdev_remove(struct serdev_device *serdev) { struct h5 *h5 = serdev_device_get_drvdata(serdev); hci_uart_unregister_device(&h5->serdev_hu); } #ifdef CONFIG_BT_HCIUART_RTL static int h5_btrtl_setup(struct h5 *h5) { struct btrtl_device_info *btrtl_dev; struct sk_buff *skb; __le32 baudrate_data; u32 device_baudrate; unsigned int controller_baudrate; bool flow_control; int err; btrtl_dev = btrtl_initialize(h5->hu->hdev, h5->id); if (IS_ERR(btrtl_dev)) return PTR_ERR(btrtl_dev); err = btrtl_get_uart_settings(h5->hu->hdev, btrtl_dev, &controller_baudrate, &device_baudrate, &flow_control); if (err) goto out_free; baudrate_data = cpu_to_le32(device_baudrate); skb = __hci_cmd_sync(h5->hu->hdev, 0xfc17, sizeof(baudrate_data), &baudrate_data, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { rtl_dev_err(h5->hu->hdev, "set baud rate command failed\n"); err = PTR_ERR(skb); goto out_free; } else { kfree_skb(skb); } /* Give the device some time to set up the new baudrate. */ usleep_range(10000, 20000); serdev_device_set_baudrate(h5->hu->serdev, controller_baudrate); serdev_device_set_flow_control(h5->hu->serdev, flow_control); err = btrtl_download_firmware(h5->hu->hdev, btrtl_dev); /* Give the device some time before the hci-core sends it a reset */ usleep_range(10000, 20000); out_free: btrtl_free(btrtl_dev); return err; } static void h5_btrtl_open(struct h5 *h5) { /* Devices always start with these fixed parameters */ serdev_device_set_flow_control(h5->hu->serdev, false); serdev_device_set_parity(h5->hu->serdev, SERDEV_PARITY_EVEN); serdev_device_set_baudrate(h5->hu->serdev, 115200); /* The controller needs up to 500ms to wakeup */ gpiod_set_value_cansleep(h5->enable_gpio, 1); gpiod_set_value_cansleep(h5->device_wake_gpio, 1); msleep(500); } static void h5_btrtl_close(struct h5 *h5) { gpiod_set_value_cansleep(h5->device_wake_gpio, 0); gpiod_set_value_cansleep(h5->enable_gpio, 0); } static const struct acpi_gpio_params btrtl_device_wake_gpios = { 0, 0, false }; static const struct acpi_gpio_params btrtl_enable_gpios = { 1, 0, false }; static const struct acpi_gpio_params btrtl_host_wake_gpios = { 2, 0, false }; static const struct acpi_gpio_mapping acpi_btrtl_gpios[] = { { "device-wake-gpios", &btrtl_device_wake_gpios, 1 }, { "enable-gpios", &btrtl_enable_gpios, 1 }, { "host-wake-gpios", &btrtl_host_wake_gpios, 1 }, {}, }; static struct h5_vnd rtl_vnd = { .setup = h5_btrtl_setup, .open = h5_btrtl_open, .close = h5_btrtl_close, .acpi_gpio_map = acpi_btrtl_gpios, }; #endif #ifdef CONFIG_ACPI static const struct acpi_device_id h5_acpi_match[] = { #ifdef CONFIG_BT_HCIUART_RTL { "OBDA8723", (kernel_ulong_t)&rtl_vnd }, #endif { }, }; MODULE_DEVICE_TABLE(acpi, h5_acpi_match); #endif static struct serdev_device_driver h5_serdev_driver = { .probe = h5_serdev_probe, .remove = h5_serdev_remove, .driver = { .name = "hci_uart_h5", .acpi_match_table = ACPI_PTR(h5_acpi_match), }, }; int __init h5_init(void) { serdev_device_driver_register(&h5_serdev_driver); return hci_uart_register_proto(&h5p); } int __exit h5_deinit(void) { serdev_device_driver_unregister(&h5_serdev_driver); return hci_uart_unregister_proto(&h5p); }