/* * Ram backed block device driver. * * Copyright (C) 2007 Nick Piggin * Copyright (C) 2007 Novell Inc. * * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright * of their respective owners. */ #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_BLK_DEV_RAM_DAX #include #endif #include #define SECTOR_SHIFT 9 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) /* * Each block ramdisk device has a radix_tree brd_pages of pages that stores * the pages containing the block device's contents. A brd page's ->index is * its offset in PAGE_SIZE units. This is similar to, but in no way connected * with, the kernel's pagecache or buffer cache (which sit above our block * device). */ struct brd_device { int brd_number; struct request_queue *brd_queue; struct gendisk *brd_disk; struct list_head brd_list; /* * Backing store of pages and lock to protect it. This is the contents * of the block device. */ spinlock_t brd_lock; struct radix_tree_root brd_pages; }; /* * Look up and return a brd's page for a given sector. */ static DEFINE_MUTEX(brd_mutex); static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) { pgoff_t idx; struct page *page; /* * The page lifetime is protected by the fact that we have opened the * device node -- brd pages will never be deleted under us, so we * don't need any further locking or refcounting. * * This is strictly true for the radix-tree nodes as well (ie. we * don't actually need the rcu_read_lock()), however that is not a * documented feature of the radix-tree API so it is better to be * safe here (we don't have total exclusion from radix tree updates * here, only deletes). */ rcu_read_lock(); idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ page = radix_tree_lookup(&brd->brd_pages, idx); rcu_read_unlock(); BUG_ON(page && page->index != idx); return page; } /* * Look up and return a brd's page for a given sector. * If one does not exist, allocate an empty page, and insert that. Then * return it. */ static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) { pgoff_t idx; struct page *page; gfp_t gfp_flags; page = brd_lookup_page(brd, sector); if (page) return page; /* * Must use NOIO because we don't want to recurse back into the * block or filesystem layers from page reclaim. * * Cannot support DAX and highmem, because our ->direct_access * routine for DAX must return memory that is always addressable. * If DAX was reworked to use pfns and kmap throughout, this * restriction might be able to be lifted. */ gfp_flags = GFP_NOIO | __GFP_ZERO; #ifndef CONFIG_BLK_DEV_RAM_DAX gfp_flags |= __GFP_HIGHMEM; #endif page = alloc_page(gfp_flags); if (!page) return NULL; if (radix_tree_preload(GFP_NOIO)) { __free_page(page); return NULL; } spin_lock(&brd->brd_lock); idx = sector >> PAGE_SECTORS_SHIFT; page->index = idx; if (radix_tree_insert(&brd->brd_pages, idx, page)) { __free_page(page); page = radix_tree_lookup(&brd->brd_pages, idx); BUG_ON(!page); BUG_ON(page->index != idx); } spin_unlock(&brd->brd_lock); radix_tree_preload_end(); return page; } static void brd_free_page(struct brd_device *brd, sector_t sector) { struct page *page; pgoff_t idx; spin_lock(&brd->brd_lock); idx = sector >> PAGE_SECTORS_SHIFT; page = radix_tree_delete(&brd->brd_pages, idx); spin_unlock(&brd->brd_lock); if (page) __free_page(page); } static void brd_zero_page(struct brd_device *brd, sector_t sector) { struct page *page; page = brd_lookup_page(brd, sector); if (page) clear_highpage(page); } /* * Free all backing store pages and radix tree. This must only be called when * there are no other users of the device. */ #define FREE_BATCH 16 static void brd_free_pages(struct brd_device *brd) { unsigned long pos = 0; struct page *pages[FREE_BATCH]; int nr_pages; do { int i; nr_pages = radix_tree_gang_lookup(&brd->brd_pages, (void **)pages, pos, FREE_BATCH); for (i = 0; i < nr_pages; i++) { void *ret; BUG_ON(pages[i]->index < pos); pos = pages[i]->index; ret = radix_tree_delete(&brd->brd_pages, pos); BUG_ON(!ret || ret != pages[i]); __free_page(pages[i]); } pos++; /* * This assumes radix_tree_gang_lookup always returns as * many pages as possible. If the radix-tree code changes, * so will this have to. */ } while (nr_pages == FREE_BATCH); } /* * copy_to_brd_setup must be called before copy_to_brd. It may sleep. */ static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) { unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; size_t copy; copy = min_t(size_t, n, PAGE_SIZE - offset); if (!brd_insert_page(brd, sector)) return -ENOSPC; if (copy < n) { sector += copy >> SECTOR_SHIFT; if (!brd_insert_page(brd, sector)) return -ENOSPC; } return 0; } static void discard_from_brd(struct brd_device *brd, sector_t sector, size_t n) { while (n >= PAGE_SIZE) { /* * Don't want to actually discard pages here because * re-allocating the pages can result in writeback * deadlocks under heavy load. */ if (0) brd_free_page(brd, sector); else brd_zero_page(brd, sector); sector += PAGE_SIZE >> SECTOR_SHIFT; n -= PAGE_SIZE; } } /* * Copy n bytes from src to the brd starting at sector. Does not sleep. */ static void copy_to_brd(struct brd_device *brd, const void *src, sector_t sector, size_t n) { struct page *page; void *dst; unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; size_t copy; copy = min_t(size_t, n, PAGE_SIZE - offset); page = brd_lookup_page(brd, sector); BUG_ON(!page); dst = kmap_atomic(page); memcpy(dst + offset, src, copy); kunmap_atomic(dst); if (copy < n) { src += copy; sector += copy >> SECTOR_SHIFT; copy = n - copy; page = brd_lookup_page(brd, sector); BUG_ON(!page); dst = kmap_atomic(page); memcpy(dst, src, copy); kunmap_atomic(dst); } } /* * Copy n bytes to dst from the brd starting at sector. Does not sleep. */ static void copy_from_brd(void *dst, struct brd_device *brd, sector_t sector, size_t n) { struct page *page; void *src; unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; size_t copy; copy = min_t(size_t, n, PAGE_SIZE - offset); page = brd_lookup_page(brd, sector); if (page) { src = kmap_atomic(page); memcpy(dst, src + offset, copy); kunmap_atomic(src); } else memset(dst, 0, copy); if (copy < n) { dst += copy; sector += copy >> SECTOR_SHIFT; copy = n - copy; page = brd_lookup_page(brd, sector); if (page) { src = kmap_atomic(page); memcpy(dst, src, copy); kunmap_atomic(src); } else memset(dst, 0, copy); } } /* * Process a single bvec of a bio. */ static int brd_do_bvec(struct brd_device *brd, struct page *page, unsigned int len, unsigned int off, int rw, sector_t sector) { void *mem; int err = 0; if (rw != READ) { err = copy_to_brd_setup(brd, sector, len); if (err) goto out; } mem = kmap_atomic(page); if (rw == READ) { copy_from_brd(mem + off, brd, sector, len); flush_dcache_page(page); } else { flush_dcache_page(page); copy_to_brd(brd, mem + off, sector, len); } kunmap_atomic(mem); out: return err; } static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio) { struct block_device *bdev = bio->bi_bdev; struct brd_device *brd = bdev->bd_disk->private_data; int rw; struct bio_vec bvec; sector_t sector; struct bvec_iter iter; sector = bio->bi_iter.bi_sector; if (bio_end_sector(bio) > get_capacity(bdev->bd_disk)) goto io_error; if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { if (sector & ((PAGE_SIZE >> SECTOR_SHIFT) - 1) || bio->bi_iter.bi_size & ~PAGE_MASK) goto io_error; discard_from_brd(brd, sector, bio->bi_iter.bi_size); goto out; } rw = bio_data_dir(bio); bio_for_each_segment(bvec, bio, iter) { unsigned int len = bvec.bv_len; int err; err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset, rw, sector); if (err) goto io_error; sector += len >> SECTOR_SHIFT; } out: bio_endio(bio); return BLK_QC_T_NONE; io_error: bio_io_error(bio); return BLK_QC_T_NONE; } static int brd_rw_page(struct block_device *bdev, sector_t sector, struct page *page, int rw) { struct brd_device *brd = bdev->bd_disk->private_data; int err = brd_do_bvec(brd, page, PAGE_SIZE, 0, rw, sector); page_endio(page, rw & WRITE, err); return err; } #ifdef CONFIG_BLK_DEV_RAM_DAX static long brd_direct_access(struct block_device *bdev, sector_t sector, void __pmem **kaddr, pfn_t *pfn, long size) { struct brd_device *brd = bdev->bd_disk->private_data; struct page *page; if (!brd) return -ENODEV; page = brd_insert_page(brd, sector); if (!page) return -ENOSPC; *kaddr = (void __pmem *)page_address(page); *pfn = page_to_pfn_t(page); return PAGE_SIZE; } #else #define brd_direct_access NULL #endif static int brd_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { int error; struct brd_device *brd = bdev->bd_disk->private_data; if (cmd != BLKFLSBUF) return -ENOTTY; /* * ram device BLKFLSBUF has special semantics, we want to actually * release and destroy the ramdisk data. */ mutex_lock(&brd_mutex); mutex_lock(&bdev->bd_mutex); error = -EBUSY; if (bdev->bd_openers <= 1) { /* * Kill the cache first, so it isn't written back to the * device. * * Another thread might instantiate more buffercache here, * but there is not much we can do to close that race. */ kill_bdev(bdev); brd_free_pages(brd); error = 0; } mutex_unlock(&bdev->bd_mutex); mutex_unlock(&brd_mutex); return error; } static const struct block_device_operations brd_fops = { .owner = THIS_MODULE, .rw_page = brd_rw_page, .ioctl = brd_ioctl, .direct_access = brd_direct_access, }; /* * And now the modules code and kernel interface. */ static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT; module_param(rd_nr, int, S_IRUGO); MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); int rd_size = CONFIG_BLK_DEV_RAM_SIZE; module_param(rd_size, int, S_IRUGO); MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); static int max_part = 1; module_param(max_part, int, S_IRUGO); MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices"); MODULE_LICENSE("GPL"); MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); MODULE_ALIAS("rd"); #ifndef MODULE /* Legacy boot options - nonmodular */ static int __init ramdisk_size(char *str) { rd_size = simple_strtol(str, NULL, 0); return 1; } __setup("ramdisk_size=", ramdisk_size); #endif /* * The device scheme is derived from loop.c. Keep them in synch where possible * (should share code eventually). */ static LIST_HEAD(brd_devices); static DEFINE_MUTEX(brd_devices_mutex); static struct brd_device *brd_alloc(int i) { struct brd_device *brd; struct gendisk *disk; brd = kzalloc(sizeof(*brd), GFP_KERNEL); if (!brd) goto out; brd->brd_number = i; spin_lock_init(&brd->brd_lock); INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); brd->brd_queue = blk_alloc_queue(GFP_KERNEL); if (!brd->brd_queue) goto out_free_dev; blk_queue_make_request(brd->brd_queue, brd_make_request); blk_queue_max_hw_sectors(brd->brd_queue, 1024); blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY); /* This is so fdisk will align partitions on 4k, because of * direct_access API needing 4k alignment, returning a PFN * (This is only a problem on very small devices <= 4M, * otherwise fdisk will align on 1M. Regardless this call * is harmless) */ blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE); brd->brd_queue->limits.discard_granularity = PAGE_SIZE; blk_queue_max_discard_sectors(brd->brd_queue, UINT_MAX); brd->brd_queue->limits.discard_zeroes_data = 1; queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue); disk = brd->brd_disk = alloc_disk(max_part); if (!disk) goto out_free_queue; disk->major = RAMDISK_MAJOR; disk->first_minor = i * max_part; disk->fops = &brd_fops; disk->private_data = brd; disk->queue = brd->brd_queue; disk->flags = GENHD_FL_EXT_DEVT; sprintf(disk->disk_name, "ram%d", i); set_capacity(disk, rd_size * 2); return brd; out_free_queue: blk_cleanup_queue(brd->brd_queue); out_free_dev: kfree(brd); out: return NULL; } static void brd_free(struct brd_device *brd) { put_disk(brd->brd_disk); blk_cleanup_queue(brd->brd_queue); brd_free_pages(brd); kfree(brd); } static struct brd_device *brd_init_one(int i, bool *new) { struct brd_device *brd; *new = false; list_for_each_entry(brd, &brd_devices, brd_list) { if (brd->brd_number == i) goto out; } brd = brd_alloc(i); if (brd) { add_disk(brd->brd_disk); list_add_tail(&brd->brd_list, &brd_devices); } *new = true; out: return brd; } static void brd_del_one(struct brd_device *brd) { list_del(&brd->brd_list); del_gendisk(brd->brd_disk); brd_free(brd); } static struct kobject *brd_probe(dev_t dev, int *part, void *data) { struct brd_device *brd; struct kobject *kobj; bool new; mutex_lock(&brd_devices_mutex); brd = brd_init_one(MINOR(dev) / max_part, &new); kobj = brd ? get_disk(brd->brd_disk) : NULL; mutex_unlock(&brd_devices_mutex); if (new) *part = 0; return kobj; } static int __init brd_init(void) { struct brd_device *brd, *next; int i; /* * brd module now has a feature to instantiate underlying device * structure on-demand, provided that there is an access dev node. * * (1) if rd_nr is specified, create that many upfront. else * it defaults to CONFIG_BLK_DEV_RAM_COUNT * (2) User can further extend brd devices by create dev node themselves * and have kernel automatically instantiate actual device * on-demand. Example: * mknod /path/devnod_name b 1 X # 1 is the rd major * fdisk -l /path/devnod_name * If (X / max_part) was not already created it will be created * dynamically. */ if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) return -EIO; if (unlikely(!max_part)) max_part = 1; for (i = 0; i < rd_nr; i++) { brd = brd_alloc(i); if (!brd) goto out_free; list_add_tail(&brd->brd_list, &brd_devices); } /* point of no return */ list_for_each_entry(brd, &brd_devices, brd_list) add_disk(brd->brd_disk); blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS, THIS_MODULE, brd_probe, NULL, NULL); pr_info("brd: module loaded\n"); return 0; out_free: list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { list_del(&brd->brd_list); brd_free(brd); } unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); pr_info("brd: module NOT loaded !!!\n"); return -ENOMEM; } static void __exit brd_exit(void) { struct brd_device *brd, *next; list_for_each_entry_safe(brd, next, &brd_devices, brd_list) brd_del_one(brd); blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS); unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); pr_info("brd: module unloaded\n"); } module_init(brd_init); module_exit(brd_exit);