// SPDX-License-Identifier: GPL-2.0-or-later /* * CMAC: Cipher Block Mode for Authentication * * Copyright © 2013 Jussi Kivilinna * * Based on work by: * Copyright © 2013 Tom St Denis * Based on crypto/xcbc.c: * Copyright © 2006 USAGI/WIDE Project, * Author: Kazunori Miyazawa */ #include #include #include #include #include /* * +------------------------ * | * +------------------------ * | cmac_tfm_ctx * +------------------------ * | consts (block size * 2) * +------------------------ */ struct cmac_tfm_ctx { struct crypto_cipher *child; __be64 consts[]; }; /* * +------------------------ * | * +------------------------ * | cmac_desc_ctx * +------------------------ * | odds (block size) * +------------------------ * | prev (block size) * +------------------------ */ struct cmac_desc_ctx { unsigned int len; u8 odds[]; }; static int crypto_cmac_digest_setkey(struct crypto_shash *parent, const u8 *inkey, unsigned int keylen) { struct cmac_tfm_ctx *ctx = crypto_shash_ctx(parent); unsigned int bs = crypto_shash_blocksize(parent); __be64 *consts = ctx->consts; u64 _const[2]; int i, err = 0; u8 msb_mask, gfmask; err = crypto_cipher_setkey(ctx->child, inkey, keylen); if (err) return err; /* encrypt the zero block */ memset(consts, 0, bs); crypto_cipher_encrypt_one(ctx->child, (u8 *)consts, (u8 *)consts); switch (bs) { case 16: gfmask = 0x87; _const[0] = be64_to_cpu(consts[1]); _const[1] = be64_to_cpu(consts[0]); /* gf(2^128) multiply zero-ciphertext with u and u^2 */ for (i = 0; i < 4; i += 2) { msb_mask = ((s64)_const[1] >> 63) & gfmask; _const[1] = (_const[1] << 1) | (_const[0] >> 63); _const[0] = (_const[0] << 1) ^ msb_mask; consts[i + 0] = cpu_to_be64(_const[1]); consts[i + 1] = cpu_to_be64(_const[0]); } break; case 8: gfmask = 0x1B; _const[0] = be64_to_cpu(consts[0]); /* gf(2^64) multiply zero-ciphertext with u and u^2 */ for (i = 0; i < 2; i++) { msb_mask = ((s64)_const[0] >> 63) & gfmask; _const[0] = (_const[0] << 1) ^ msb_mask; consts[i] = cpu_to_be64(_const[0]); } break; } return 0; } static int crypto_cmac_digest_init(struct shash_desc *pdesc) { struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc); int bs = crypto_shash_blocksize(pdesc->tfm); u8 *prev = &ctx->odds[bs]; ctx->len = 0; memset(prev, 0, bs); return 0; } static int crypto_cmac_digest_update(struct shash_desc *pdesc, const u8 *p, unsigned int len) { struct crypto_shash *parent = pdesc->tfm; struct cmac_tfm_ctx *tctx = crypto_shash_ctx(parent); struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc); struct crypto_cipher *tfm = tctx->child; int bs = crypto_shash_blocksize(parent); u8 *odds = ctx->odds; u8 *prev = odds + bs; /* checking the data can fill the block */ if ((ctx->len + len) <= bs) { memcpy(odds + ctx->len, p, len); ctx->len += len; return 0; } /* filling odds with new data and encrypting it */ memcpy(odds + ctx->len, p, bs - ctx->len); len -= bs - ctx->len; p += bs - ctx->len; crypto_xor(prev, odds, bs); crypto_cipher_encrypt_one(tfm, prev, prev); /* clearing the length */ ctx->len = 0; /* encrypting the rest of data */ while (len > bs) { crypto_xor(prev, p, bs); crypto_cipher_encrypt_one(tfm, prev, prev); p += bs; len -= bs; } /* keeping the surplus of blocksize */ if (len) { memcpy(odds, p, len); ctx->len = len; } return 0; } static int crypto_cmac_digest_final(struct shash_desc *pdesc, u8 *out) { struct crypto_shash *parent = pdesc->tfm; struct cmac_tfm_ctx *tctx = crypto_shash_ctx(parent); struct cmac_desc_ctx *ctx = shash_desc_ctx(pdesc); struct crypto_cipher *tfm = tctx->child; int bs = crypto_shash_blocksize(parent); u8 *odds = ctx->odds; u8 *prev = odds + bs; unsigned int offset = 0; if (ctx->len != bs) { unsigned int rlen; u8 *p = odds + ctx->len; *p = 0x80; p++; rlen = bs - ctx->len - 1; if (rlen) memset(p, 0, rlen); offset += bs; } crypto_xor(prev, odds, bs); crypto_xor(prev, (const u8 *)tctx->consts + offset, bs); crypto_cipher_encrypt_one(tfm, out, prev); return 0; } static int cmac_init_tfm(struct crypto_shash *tfm) { struct shash_instance *inst = shash_alg_instance(tfm); struct cmac_tfm_ctx *ctx = crypto_shash_ctx(tfm); struct crypto_cipher_spawn *spawn; struct crypto_cipher *cipher; spawn = shash_instance_ctx(inst); cipher = crypto_spawn_cipher(spawn); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; return 0; } static int cmac_clone_tfm(struct crypto_shash *tfm, struct crypto_shash *otfm) { struct cmac_tfm_ctx *octx = crypto_shash_ctx(otfm); struct cmac_tfm_ctx *ctx = crypto_shash_ctx(tfm); struct crypto_cipher *cipher; cipher = crypto_clone_cipher(octx->child); if (IS_ERR(cipher)) return PTR_ERR(cipher); ctx->child = cipher; return 0; } static void cmac_exit_tfm(struct crypto_shash *tfm) { struct cmac_tfm_ctx *ctx = crypto_shash_ctx(tfm); crypto_free_cipher(ctx->child); } static int cmac_create(struct crypto_template *tmpl, struct rtattr **tb) { struct shash_instance *inst; struct crypto_cipher_spawn *spawn; struct crypto_alg *alg; u32 mask; int err; err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH, &mask); if (err) return err; inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); if (!inst) return -ENOMEM; spawn = shash_instance_ctx(inst); err = crypto_grab_cipher(spawn, shash_crypto_instance(inst), crypto_attr_alg_name(tb[1]), 0, mask); if (err) goto err_free_inst; alg = crypto_spawn_cipher_alg(spawn); switch (alg->cra_blocksize) { case 16: case 8: break; default: err = -EINVAL; goto err_free_inst; } err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg); if (err) goto err_free_inst; inst->alg.base.cra_priority = alg->cra_priority; inst->alg.base.cra_blocksize = alg->cra_blocksize; inst->alg.base.cra_ctxsize = sizeof(struct cmac_tfm_ctx) + alg->cra_blocksize * 2; inst->alg.digestsize = alg->cra_blocksize; inst->alg.descsize = sizeof(struct cmac_desc_ctx) + alg->cra_blocksize * 2; inst->alg.init = crypto_cmac_digest_init; inst->alg.update = crypto_cmac_digest_update; inst->alg.final = crypto_cmac_digest_final; inst->alg.setkey = crypto_cmac_digest_setkey; inst->alg.init_tfm = cmac_init_tfm; inst->alg.clone_tfm = cmac_clone_tfm; inst->alg.exit_tfm = cmac_exit_tfm; inst->free = shash_free_singlespawn_instance; err = shash_register_instance(tmpl, inst); if (err) { err_free_inst: shash_free_singlespawn_instance(inst); } return err; } static struct crypto_template crypto_cmac_tmpl = { .name = "cmac", .create = cmac_create, .module = THIS_MODULE, }; static int __init crypto_cmac_module_init(void) { return crypto_register_template(&crypto_cmac_tmpl); } static void __exit crypto_cmac_module_exit(void) { crypto_unregister_template(&crypto_cmac_tmpl); } subsys_initcall(crypto_cmac_module_init); module_exit(crypto_cmac_module_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("CMAC keyed hash algorithm"); MODULE_ALIAS_CRYPTO("cmac"); MODULE_IMPORT_NS("CRYPTO_INTERNAL");