/* * blk-mq scheduling framework * * Copyright (C) 2016 Jens Axboe */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/blk-mq.h> #include <trace/events/block.h> #include "blk.h" #include "blk-mq.h" #include "blk-mq-sched.h" #include "blk-mq-tag.h" #include "blk-wbt.h" void blk_mq_sched_free_hctx_data(struct request_queue *q, void (*exit)(struct blk_mq_hw_ctx *)) { struct blk_mq_hw_ctx *hctx; int i; queue_for_each_hw_ctx(q, hctx, i) { if (exit && hctx->sched_data) exit(hctx); kfree(hctx->sched_data); hctx->sched_data = NULL; } } EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data); int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size, int (*init)(struct blk_mq_hw_ctx *), void (*exit)(struct blk_mq_hw_ctx *)) { struct blk_mq_hw_ctx *hctx; int ret; int i; queue_for_each_hw_ctx(q, hctx, i) { hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node); if (!hctx->sched_data) { ret = -ENOMEM; goto error; } if (init) { ret = init(hctx); if (ret) { /* * We don't want to give exit() a partially * initialized sched_data. init() must clean up * if it fails. */ kfree(hctx->sched_data); hctx->sched_data = NULL; goto error; } } } return 0; error: blk_mq_sched_free_hctx_data(q, exit); return ret; } EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data); static void __blk_mq_sched_assign_ioc(struct request_queue *q, struct request *rq, struct bio *bio, struct io_context *ioc) { struct io_cq *icq; spin_lock_irq(q->queue_lock); icq = ioc_lookup_icq(ioc, q); spin_unlock_irq(q->queue_lock); if (!icq) { icq = ioc_create_icq(ioc, q, GFP_ATOMIC); if (!icq) return; } rq->elv.icq = icq; if (!blk_mq_sched_get_rq_priv(q, rq, bio)) { rq->rq_flags |= RQF_ELVPRIV; get_io_context(icq->ioc); return; } rq->elv.icq = NULL; } static void blk_mq_sched_assign_ioc(struct request_queue *q, struct request *rq, struct bio *bio) { struct io_context *ioc; ioc = rq_ioc(bio); if (ioc) __blk_mq_sched_assign_ioc(q, rq, bio, ioc); } struct request *blk_mq_sched_get_request(struct request_queue *q, struct bio *bio, unsigned int op, struct blk_mq_alloc_data *data) { struct elevator_queue *e = q->elevator; struct request *rq; blk_queue_enter_live(q); data->q = q; if (likely(!data->ctx)) data->ctx = blk_mq_get_ctx(q); if (likely(!data->hctx)) data->hctx = blk_mq_map_queue(q, data->ctx->cpu); if (e) { data->flags |= BLK_MQ_REQ_INTERNAL; /* * Flush requests are special and go directly to the * dispatch list. */ if (!op_is_flush(op) && e->type->ops.mq.get_request) { rq = e->type->ops.mq.get_request(q, op, data); if (rq) rq->rq_flags |= RQF_QUEUED; } else rq = __blk_mq_alloc_request(data, op); } else { rq = __blk_mq_alloc_request(data, op); } if (rq) { if (!op_is_flush(op)) { rq->elv.icq = NULL; if (e && e->type->icq_cache) blk_mq_sched_assign_ioc(q, rq, bio); } data->hctx->queued++; return rq; } blk_queue_exit(q); return NULL; } void blk_mq_sched_put_request(struct request *rq) { struct request_queue *q = rq->q; struct elevator_queue *e = q->elevator; if (rq->rq_flags & RQF_ELVPRIV) { blk_mq_sched_put_rq_priv(rq->q, rq); if (rq->elv.icq) { put_io_context(rq->elv.icq->ioc); rq->elv.icq = NULL; } } if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request) e->type->ops.mq.put_request(rq); else blk_mq_finish_request(rq); } void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx) { struct elevator_queue *e = hctx->queue->elevator; const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request; bool did_work = false; LIST_HEAD(rq_list); if (unlikely(blk_mq_hctx_stopped(hctx))) return; hctx->run++; /* * If we have previous entries on our dispatch list, grab them first for * more fair dispatch. */ if (!list_empty_careful(&hctx->dispatch)) { spin_lock(&hctx->lock); if (!list_empty(&hctx->dispatch)) list_splice_init(&hctx->dispatch, &rq_list); spin_unlock(&hctx->lock); } /* * Only ask the scheduler for requests, if we didn't have residual * requests from the dispatch list. This is to avoid the case where * we only ever dispatch a fraction of the requests available because * of low device queue depth. Once we pull requests out of the IO * scheduler, we can no longer merge or sort them. So it's best to * leave them there for as long as we can. Mark the hw queue as * needing a restart in that case. */ if (!list_empty(&rq_list)) { blk_mq_sched_mark_restart_hctx(hctx); did_work = blk_mq_dispatch_rq_list(hctx, &rq_list); } else if (!has_sched_dispatch) { blk_mq_flush_busy_ctxs(hctx, &rq_list); blk_mq_dispatch_rq_list(hctx, &rq_list); } /* * We want to dispatch from the scheduler if we had no work left * on the dispatch list, OR if we did have work but weren't able * to make progress. */ if (!did_work && has_sched_dispatch) { do { struct request *rq; rq = e->type->ops.mq.dispatch_request(hctx); if (!rq) break; list_add(&rq->queuelist, &rq_list); } while (blk_mq_dispatch_rq_list(hctx, &rq_list)); } } void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx, struct list_head *rq_list, struct request *(*get_rq)(struct blk_mq_hw_ctx *)) { do { struct request *rq; rq = get_rq(hctx); if (!rq) break; list_add_tail(&rq->queuelist, rq_list); } while (1); } EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch); bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio, struct request **merged_request) { struct request *rq; switch (elv_merge(q, &rq, bio)) { case ELEVATOR_BACK_MERGE: if (!blk_mq_sched_allow_merge(q, rq, bio)) return false; if (!bio_attempt_back_merge(q, rq, bio)) return false; *merged_request = attempt_back_merge(q, rq); if (!*merged_request) elv_merged_request(q, rq, ELEVATOR_BACK_MERGE); return true; case ELEVATOR_FRONT_MERGE: if (!blk_mq_sched_allow_merge(q, rq, bio)) return false; if (!bio_attempt_front_merge(q, rq, bio)) return false; *merged_request = attempt_front_merge(q, rq); if (!*merged_request) elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE); return true; default: return false; } } EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge); bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio) { struct elevator_queue *e = q->elevator; if (e->type->ops.mq.bio_merge) { struct blk_mq_ctx *ctx = blk_mq_get_ctx(q); struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); blk_mq_put_ctx(ctx); return e->type->ops.mq.bio_merge(hctx, bio); } return false; } bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq) { return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq); } EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge); void blk_mq_sched_request_inserted(struct request *rq) { trace_block_rq_insert(rq->q, rq); } EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted); static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx, struct request *rq) { if (rq->tag == -1) { rq->rq_flags |= RQF_SORTED; return false; } /* * If we already have a real request tag, send directly to * the dispatch list. */ spin_lock(&hctx->lock); list_add(&rq->queuelist, &hctx->dispatch); spin_unlock(&hctx->lock); return true; } static void blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx) { if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) { clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); if (blk_mq_hctx_has_pending(hctx)) blk_mq_run_hw_queue(hctx, true); } } void blk_mq_sched_restart_queues(struct blk_mq_hw_ctx *hctx) { struct request_queue *q = hctx->queue; unsigned int i; if (test_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) { if (test_and_clear_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) { queue_for_each_hw_ctx(q, hctx, i) blk_mq_sched_restart_hctx(hctx); } } else { blk_mq_sched_restart_hctx(hctx); } } /* * Add flush/fua to the queue. If we fail getting a driver tag, then * punt to the requeue list. Requeue will re-invoke us from a context * that's safe to block from. */ static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx, struct request *rq, bool can_block) { if (blk_mq_get_driver_tag(rq, &hctx, can_block)) { blk_insert_flush(rq); blk_mq_run_hw_queue(hctx, true); } else blk_mq_add_to_requeue_list(rq, false, true); } void blk_mq_sched_insert_request(struct request *rq, bool at_head, bool run_queue, bool async, bool can_block) { struct request_queue *q = rq->q; struct elevator_queue *e = q->elevator; struct blk_mq_ctx *ctx = rq->mq_ctx; struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) { blk_mq_sched_insert_flush(hctx, rq, can_block); return; } if (e && blk_mq_sched_bypass_insert(hctx, rq)) goto run; if (e && e->type->ops.mq.insert_requests) { LIST_HEAD(list); list_add(&rq->queuelist, &list); e->type->ops.mq.insert_requests(hctx, &list, at_head); } else { spin_lock(&ctx->lock); __blk_mq_insert_request(hctx, rq, at_head); spin_unlock(&ctx->lock); } run: if (run_queue) blk_mq_run_hw_queue(hctx, async); } void blk_mq_sched_insert_requests(struct request_queue *q, struct blk_mq_ctx *ctx, struct list_head *list, bool run_queue_async) { struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); struct elevator_queue *e = hctx->queue->elevator; if (e) { struct request *rq, *next; /* * We bypass requests that already have a driver tag assigned, * which should only be flushes. Flushes are only ever inserted * as single requests, so we shouldn't ever hit the * WARN_ON_ONCE() below (but let's handle it just in case). */ list_for_each_entry_safe(rq, next, list, queuelist) { if (WARN_ON_ONCE(rq->tag != -1)) { list_del_init(&rq->queuelist); blk_mq_sched_bypass_insert(hctx, rq); } } } if (e && e->type->ops.mq.insert_requests) e->type->ops.mq.insert_requests(hctx, list, false); else blk_mq_insert_requests(hctx, ctx, list); blk_mq_run_hw_queue(hctx, run_queue_async); } static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set, struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) { if (hctx->sched_tags) { blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx); blk_mq_free_rq_map(hctx->sched_tags); hctx->sched_tags = NULL; } } int blk_mq_sched_setup(struct request_queue *q) { struct blk_mq_tag_set *set = q->tag_set; struct blk_mq_hw_ctx *hctx; int ret, i; /* * Default to 256, since we don't split into sync/async like the * old code did. Additionally, this is a per-hw queue depth. */ q->nr_requests = 2 * BLKDEV_MAX_RQ; /* * We're switching to using an IO scheduler, so setup the hctx * scheduler tags and switch the request map from the regular * tags to scheduler tags. First allocate what we need, so we * can safely fail and fallback, if needed. */ ret = 0; queue_for_each_hw_ctx(q, hctx, i) { hctx->sched_tags = blk_mq_alloc_rq_map(set, i, q->nr_requests, set->reserved_tags); if (!hctx->sched_tags) { ret = -ENOMEM; break; } ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests); if (ret) break; } /* * If we failed, free what we did allocate */ if (ret) { queue_for_each_hw_ctx(q, hctx, i) { if (!hctx->sched_tags) continue; blk_mq_sched_free_tags(set, hctx, i); } return ret; } return 0; } void blk_mq_sched_teardown(struct request_queue *q) { struct blk_mq_tag_set *set = q->tag_set; struct blk_mq_hw_ctx *hctx; int i; queue_for_each_hw_ctx(q, hctx, i) blk_mq_sched_free_tags(set, hctx, i); } int blk_mq_sched_init(struct request_queue *q) { int ret; mutex_lock(&q->sysfs_lock); ret = elevator_init(q, NULL); mutex_unlock(&q->sysfs_lock); return ret; }