/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * SGI UV Broadcast Assist Unit definitions * * Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved. */ #ifndef _ASM_X86_UV_UV_BAU_H #define _ASM_X86_UV_UV_BAU_H #include #define BITSPERBYTE 8 /* * Broadcast Assist Unit messaging structures * * Selective Broadcast activations are induced by software action * specifying a particular 8-descriptor "set" via a 6-bit index written * to an MMR. * Thus there are 64 unique 512-byte sets of SB descriptors - one set for * each 6-bit index value. These descriptor sets are mapped in sequence * starting with set 0 located at the address specified in the * BAU_SB_DESCRIPTOR_BASE register, set 1 is located at BASE + 512, * set 2 is at BASE + 2*512, set 3 at BASE + 3*512, and so on. * * We will use 31 sets, one for sending BAU messages from each of the 32 * cpu's on the uvhub. * * TLB shootdown will use the first of the 8 descriptors of each set. * Each of the descriptors is 64 bytes in size (8*64 = 512 bytes in a set). */ #define UV_ITEMS_PER_DESCRIPTOR 8 /* the 'throttle' to prevent the hardware stay-busy bug */ #define MAX_BAU_CONCURRENT 3 #define UV_CPUS_PER_ACT_STATUS 32 #define UV_ACT_STATUS_MASK 0x3 #define UV_ACT_STATUS_SIZE 2 #define UV_ADP_SIZE 32 #define UV_DISTRIBUTION_SIZE 256 #define UV_SW_ACK_NPENDING 8 #define UV_NET_ENDPOINT_INTD 0x38 #define UV_DESC_BASE_PNODE_SHIFT 49 #define UV_PAYLOADQ_PNODE_SHIFT 49 #define UV_PTC_BASENAME "sgi_uv/ptc_statistics" #define UV_BAU_BASENAME "sgi_uv/bau_tunables" #define UV_BAU_TUNABLES_DIR "sgi_uv" #define UV_BAU_TUNABLES_FILE "bau_tunables" #define WHITESPACE " \t\n" #define uv_physnodeaddr(x) ((__pa((unsigned long)(x)) & uv_mmask)) #define UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT 15 #define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT 16 #define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD 0x0000000009UL /* [19:16] SOFT_ACK timeout period 19: 1 is urgency 7 17:16 1 is multiplier */ #define BAU_MISC_CONTROL_MULT_MASK 3 #define UVH_AGING_PRESCALE_SEL 0x000000b000UL /* [30:28] URGENCY_7 an index into a table of times */ #define BAU_URGENCY_7_SHIFT 28 #define BAU_URGENCY_7_MASK 7 #define UVH_TRANSACTION_TIMEOUT 0x000000b200UL /* [45:40] BAU - BAU transaction timeout select - a multiplier */ #define BAU_TRANS_SHIFT 40 #define BAU_TRANS_MASK 0x3f /* * bits in UVH_LB_BAU_SB_ACTIVATION_STATUS_0/1 */ #define DESC_STATUS_IDLE 0 #define DESC_STATUS_ACTIVE 1 #define DESC_STATUS_DESTINATION_TIMEOUT 2 #define DESC_STATUS_SOURCE_TIMEOUT 3 #define TIMEOUT_DELAY 10 /* * delay for 'plugged' timeout retries, in microseconds */ #define PLUGGED_DELAY 10 /* * threshholds at which to use IPI to free resources */ /* after this # consecutive 'plugged' timeouts, use IPI to release resources */ #define PLUGSB4RESET 100 /* after this many consecutive timeouts, use IPI to release resources */ #define TIMEOUTSB4RESET 1 /* at this number uses of IPI to release resources, giveup the request */ #define IPI_RESET_LIMIT 1 /* after this # consecutive successes, bump up the throttle if it was lowered */ #define COMPLETE_THRESHOLD 5 /* * number of entries in the destination side payload queue */ #define DEST_Q_SIZE 20 /* * number of destination side software ack resources */ #define DEST_NUM_RESOURCES 8 #define MAX_CPUS_PER_NODE 32 /* * completion statuses for sending a TLB flush message */ #define FLUSH_RETRY_PLUGGED 1 #define FLUSH_RETRY_TIMEOUT 2 #define FLUSH_GIVEUP 3 #define FLUSH_COMPLETE 4 /* * tuning the action when the numalink network is extremely delayed */ #define CONGESTED_RESPONSE_US 1000 /* 'long' response time, in microseconds */ #define CONGESTED_REPS 10 /* long delays averaged over this many broadcasts */ #define CONGESTED_PERIOD 30 /* time for the bau to be disabled, in seconds */ /* * Distribution: 32 bytes (256 bits) (bytes 0-0x1f of descriptor) * If the 'multilevel' flag in the header portion of the descriptor * has been set to 0, then endpoint multi-unicast mode is selected. * The distribution specification (32 bytes) is interpreted as a 256-bit * distribution vector. Adjacent bits correspond to consecutive even numbered * nodeIDs. The result of adding the index of a given bit to the 15-bit * 'base_dest_nodeid' field of the header corresponds to the * destination nodeID associated with that specified bit. */ struct bau_target_uvhubmask { unsigned long bits[BITS_TO_LONGS(UV_DISTRIBUTION_SIZE)]; }; /* * mask of cpu's on a uvhub * (during initialization we need to check that unsigned long has * enough bits for max. cpu's per uvhub) */ struct bau_local_cpumask { unsigned long bits; }; /* * Payload: 16 bytes (128 bits) (bytes 0x20-0x2f of descriptor) * only 12 bytes (96 bits) of the payload area are usable. * An additional 3 bytes (bits 27:4) of the header address are carried * to the next bytes of the destination payload queue. * And an additional 2 bytes of the header Suppl_A field are also * carried to the destination payload queue. * But the first byte of the Suppl_A becomes bits 127:120 (the 16th byte) * of the destination payload queue, which is written by the hardware * with the s/w ack resource bit vector. * [ effective message contents (16 bytes (128 bits) maximum), not counting * the s/w ack bit vector ] */ /* * The payload is software-defined for INTD transactions */ struct bau_msg_payload { unsigned long address; /* signifies a page or all TLB's of the cpu */ /* 64 bits */ unsigned short sending_cpu; /* filled in by sender */ /* 16 bits */ unsigned short acknowledge_count;/* filled in by destination */ /* 16 bits */ unsigned int reserved1:32; /* not usable */ }; /* * Message header: 16 bytes (128 bits) (bytes 0x30-0x3f of descriptor) * see table 4.2.3.0.1 in broacast_assist spec. */ struct bau_msg_header { unsigned int dest_subnodeid:6; /* must be 0x10, for the LB */ /* bits 5:0 */ unsigned int base_dest_nodeid:15; /* nasid (pnode<<1) of */ /* bits 20:6 */ /* first bit in uvhub map */ unsigned int command:8; /* message type */ /* bits 28:21 */ /* 0x38: SN3net EndPoint Message */ unsigned int rsvd_1:3; /* must be zero */ /* bits 31:29 */ /* int will align on 32 bits */ unsigned int rsvd_2:9; /* must be zero */ /* bits 40:32 */ /* Suppl_A is 56-41 */ unsigned int sequence:16;/* message sequence number */ /* bits 56:41 */ /* becomes bytes 16-17 of msg */ /* Address field (96:57) is never used as an address (these are address bits 42:3) */ unsigned int rsvd_3:1; /* must be zero */ /* bit 57 */ /* address bits 27:4 are payload */ /* these next 24 (58-81) bits become bytes 12-14 of msg */ /* bits 65:58 land in byte 12 */ unsigned int replied_to:1;/* sent as 0 by the source to byte 12 */ /* bit 58 */ unsigned int msg_type:3; /* software type of the message*/ /* bits 61:59 */ unsigned int canceled:1; /* message canceled, resource to be freed*/ /* bit 62 */ unsigned int payload_1a:1;/* not currently used */ /* bit 63 */ unsigned int payload_1b:2;/* not currently used */ /* bits 65:64 */ /* bits 73:66 land in byte 13 */ unsigned int payload_1ca:6;/* not currently used */ /* bits 71:66 */ unsigned int payload_1c:2;/* not currently used */ /* bits 73:72 */ /* bits 81:74 land in byte 14 */ unsigned int payload_1d:6;/* not currently used */ /* bits 79:74 */ unsigned int payload_1e:2;/* not currently used */ /* bits 81:80 */ unsigned int rsvd_4:7; /* must be zero */ /* bits 88:82 */ unsigned int sw_ack_flag:1;/* software acknowledge flag */ /* bit 89 */ /* INTD trasactions at destination are to wait for software acknowledge */ unsigned int rsvd_5:6; /* must be zero */ /* bits 95:90 */ unsigned int rsvd_6:5; /* must be zero */ /* bits 100:96 */ unsigned int int_both:1;/* if 1, interrupt both sockets on the uvhub */ /* bit 101*/ unsigned int fairness:3;/* usually zero */ /* bits 104:102 */ unsigned int multilevel:1; /* multi-level multicast format */ /* bit 105 */ /* 0 for TLB: endpoint multi-unicast messages */ unsigned int chaining:1;/* next descriptor is part of this activation*/ /* bit 106 */ unsigned int rsvd_7:21; /* must be zero */ /* bits 127:107 */ }; /* see msg_type: */ #define MSG_NOOP 0 #define MSG_REGULAR 1 #define MSG_RETRY 2 /* * The activation descriptor: * The format of the message to send, plus all accompanying control * Should be 64 bytes */ struct bau_desc { struct bau_target_uvhubmask distribution; /* * message template, consisting of header and payload: */ struct bau_msg_header header; struct bau_msg_payload payload; }; /* * -payload-- ---------header------ * bytes 0-11 bits 41-56 bits 58-81 * A B (2) C (3) * * A/B/C are moved to: * A C B * bytes 0-11 bytes 12-14 bytes 16-17 (byte 15 filled in by hw as vector) * ------------payload queue----------- */ /* * The payload queue on the destination side is an array of these. * With BAU_MISC_CONTROL set for software acknowledge mode, the messages * are 32 bytes (2 micropackets) (256 bits) in length, but contain only 17 * bytes of usable data, including the sw ack vector in byte 15 (bits 127:120) * (12 bytes come from bau_msg_payload, 3 from payload_1, 2 from * sw_ack_vector and payload_2) * "Enabling Software Acknowledgment mode (see Section 4.3.3 Software * Acknowledge Processing) also selects 32 byte (17 bytes usable) payload * operation." */ struct bau_payload_queue_entry { unsigned long address; /* signifies a page or all TLB's of the cpu */ /* 64 bits, bytes 0-7 */ unsigned short sending_cpu; /* cpu that sent the message */ /* 16 bits, bytes 8-9 */ unsigned short acknowledge_count; /* filled in by destination */ /* 16 bits, bytes 10-11 */ /* these next 3 bytes come from bits 58-81 of the message header */ unsigned short replied_to:1; /* sent as 0 by the source */ unsigned short msg_type:3; /* software message type */ unsigned short canceled:1; /* sent as 0 by the source */ unsigned short unused1:3; /* not currently using */ /* byte 12 */ unsigned char unused2a; /* not currently using */ /* byte 13 */ unsigned char unused2; /* not currently using */ /* byte 14 */ unsigned char sw_ack_vector; /* filled in by the hardware */ /* byte 15 (bits 127:120) */ unsigned short sequence; /* message sequence number */ /* bytes 16-17 */ unsigned char unused4[2]; /* not currently using bytes 18-19 */ /* bytes 18-19 */ int number_of_cpus; /* filled in at destination */ /* 32 bits, bytes 20-23 (aligned) */ unsigned char unused5[8]; /* not using */ /* bytes 24-31 */ }; struct msg_desc { struct bau_payload_queue_entry *msg; int msg_slot; int sw_ack_slot; struct bau_payload_queue_entry *va_queue_first; struct bau_payload_queue_entry *va_queue_last; }; struct reset_args { int sender; }; /* * This structure is allocated per_cpu for UV TLB shootdown statistics. */ struct ptc_stats { /* sender statistics */ unsigned long s_giveup; /* number of fall backs to IPI-style flushes */ unsigned long s_requestor; /* number of shootdown requests */ unsigned long s_stimeout; /* source side timeouts */ unsigned long s_dtimeout; /* destination side timeouts */ unsigned long s_time; /* time spent in sending side */ unsigned long s_retriesok; /* successful retries */ unsigned long s_ntargcpu; /* total number of cpu's targeted */ unsigned long s_ntarguvhub; /* total number of uvhubs targeted */ unsigned long s_ntarguvhub16; /* number of times target hubs >= 16*/ unsigned long s_ntarguvhub8; /* number of times target hubs >= 8 */ unsigned long s_ntarguvhub4; /* number of times target hubs >= 4 */ unsigned long s_ntarguvhub2; /* number of times target hubs >= 2 */ unsigned long s_ntarguvhub1; /* number of times target hubs == 1 */ unsigned long s_resets_plug; /* ipi-style resets from plug state */ unsigned long s_resets_timeout; /* ipi-style resets from timeouts */ unsigned long s_busy; /* status stayed busy past s/w timer */ unsigned long s_throttles; /* waits in throttle */ unsigned long s_retry_messages; /* retry broadcasts */ unsigned long s_bau_reenabled; /* for bau enable/disable */ unsigned long s_bau_disabled; /* for bau enable/disable */ /* destination statistics */ unsigned long d_alltlb; /* times all tlb's on this cpu were flushed */ unsigned long d_onetlb; /* times just one tlb on this cpu was flushed */ unsigned long d_multmsg; /* interrupts with multiple messages */ unsigned long d_nomsg; /* interrupts with no message */ unsigned long d_time; /* time spent on destination side */ unsigned long d_requestee; /* number of messages processed */ unsigned long d_retries; /* number of retry messages processed */ unsigned long d_canceled; /* number of messages canceled by retries */ unsigned long d_nocanceled; /* retries that found nothing to cancel */ unsigned long d_resets; /* number of ipi-style requests processed */ unsigned long d_rcanceled; /* number of messages canceled by resets */ }; /* * one per-cpu; to locate the software tables */ struct bau_control { struct bau_desc *descriptor_base; struct bau_payload_queue_entry *va_queue_first; struct bau_payload_queue_entry *va_queue_last; struct bau_payload_queue_entry *bau_msg_head; struct bau_control *uvhub_master; struct bau_control *socket_master; struct ptc_stats *statp; unsigned long timeout_interval; unsigned long set_bau_on_time; atomic_t active_descriptor_count; int plugged_tries; int timeout_tries; int ipi_attempts; int conseccompletes; int baudisabled; int set_bau_off; short cpu; short uvhub_cpu; short uvhub; short cpus_in_socket; short cpus_in_uvhub; unsigned short message_number; unsigned short uvhub_quiesce; short socket_acknowledge_count[DEST_Q_SIZE]; cycles_t send_message; spinlock_t masks_lock; spinlock_t uvhub_lock; spinlock_t queue_lock; /* tunables */ int max_bau_concurrent; int max_bau_concurrent_constant; int plugged_delay; int plugsb4reset; int timeoutsb4reset; int ipi_reset_limit; int complete_threshold; int congested_response_us; int congested_reps; int congested_period; cycles_t period_time; long period_requests; }; static inline int bau_uvhub_isset(int uvhub, struct bau_target_uvhubmask *dstp) { return constant_test_bit(uvhub, &dstp->bits[0]); } static inline void bau_uvhub_set(int uvhub, struct bau_target_uvhubmask *dstp) { __set_bit(uvhub, &dstp->bits[0]); } static inline void bau_uvhubs_clear(struct bau_target_uvhubmask *dstp, int nbits) { bitmap_zero(&dstp->bits[0], nbits); } static inline int bau_uvhub_weight(struct bau_target_uvhubmask *dstp) { return bitmap_weight((unsigned long *)&dstp->bits[0], UV_DISTRIBUTION_SIZE); } static inline void bau_cpubits_clear(struct bau_local_cpumask *dstp, int nbits) { bitmap_zero(&dstp->bits, nbits); } #define cpubit_isset(cpu, bau_local_cpumask) \ test_bit((cpu), (bau_local_cpumask).bits) extern void uv_bau_message_intr1(void); extern void uv_bau_timeout_intr1(void); struct atomic_short { short counter; }; /** * atomic_read_short - read a short atomic variable * @v: pointer of type atomic_short * * Atomically reads the value of @v. */ static inline int atomic_read_short(const struct atomic_short *v) { return v->counter; } /** * atomic_add_short_return - add and return a short int * @i: short value to add * @v: pointer of type atomic_short * * Atomically adds @i to @v and returns @i + @v */ static inline int atomic_add_short_return(short i, struct atomic_short *v) { short __i = i; asm volatile(LOCK_PREFIX "xaddw %0, %1" : "+r" (i), "+m" (v->counter) : : "memory"); return i + __i; } #endif /* _ASM_X86_UV_UV_BAU_H */