/* * Kernel-based Virtual Machine driver for Linux * * This header defines architecture specific interfaces, x86 version * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #ifndef _ASM_X86_KVM_HOST_H #define _ASM_X86_KVM_HOST_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KVM_MAX_VCPUS 288 #define KVM_SOFT_MAX_VCPUS 240 #define KVM_MAX_VCPU_ID 1023 #define KVM_USER_MEM_SLOTS 509 /* memory slots that are not exposed to userspace */ #define KVM_PRIVATE_MEM_SLOTS 3 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) #define KVM_PIO_PAGE_OFFSET 1 #define KVM_COALESCED_MMIO_PAGE_OFFSET 2 #define KVM_HALT_POLL_NS_DEFAULT 400000 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS /* x86-specific vcpu->requests bit members */ #define KVM_REQ_MIGRATE_TIMER 8 #define KVM_REQ_REPORT_TPR_ACCESS 9 #define KVM_REQ_TRIPLE_FAULT 10 #define KVM_REQ_MMU_SYNC 11 #define KVM_REQ_CLOCK_UPDATE 12 #define KVM_REQ_DEACTIVATE_FPU 13 #define KVM_REQ_EVENT 14 #define KVM_REQ_APF_HALT 15 #define KVM_REQ_STEAL_UPDATE 16 #define KVM_REQ_NMI 17 #define KVM_REQ_PMU 18 #define KVM_REQ_PMI 19 #define KVM_REQ_SMI 20 #define KVM_REQ_MASTERCLOCK_UPDATE 21 #define KVM_REQ_MCLOCK_INPROGRESS 22 #define KVM_REQ_SCAN_IOAPIC 23 #define KVM_REQ_GLOBAL_CLOCK_UPDATE 24 #define KVM_REQ_APIC_PAGE_RELOAD 25 #define KVM_REQ_HV_CRASH 26 #define KVM_REQ_IOAPIC_EOI_EXIT 27 #define KVM_REQ_HV_RESET 28 #define KVM_REQ_HV_EXIT 29 #define KVM_REQ_HV_STIMER 30 #define CR0_RESERVED_BITS \ (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) #define CR3_L_MODE_RESERVED_BITS 0xFFFFFF0000000000ULL #define CR3_PCID_INVD BIT_64(63) #define CR4_RESERVED_BITS \ (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \ | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \ | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE | X86_CR4_SMAP \ | X86_CR4_PKE)) #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) #define INVALID_PAGE (~(hpa_t)0) #define VALID_PAGE(x) ((x) != INVALID_PAGE) #define UNMAPPED_GVA (~(gpa_t)0) /* KVM Hugepage definitions for x86 */ #define KVM_NR_PAGE_SIZES 3 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9) #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x)) #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x)) #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1)) #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE) static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level) { /* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */ return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) - (base_gfn >> KVM_HPAGE_GFN_SHIFT(level)); } #define KVM_PERMILLE_MMU_PAGES 20 #define KVM_MIN_ALLOC_MMU_PAGES 64 #define KVM_MMU_HASH_SHIFT 10 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT) #define KVM_MIN_FREE_MMU_PAGES 5 #define KVM_REFILL_PAGES 25 #define KVM_MAX_CPUID_ENTRIES 80 #define KVM_NR_FIXED_MTRR_REGION 88 #define KVM_NR_VAR_MTRR 8 #define ASYNC_PF_PER_VCPU 64 enum kvm_reg { VCPU_REGS_RAX = 0, VCPU_REGS_RCX = 1, VCPU_REGS_RDX = 2, VCPU_REGS_RBX = 3, VCPU_REGS_RSP = 4, VCPU_REGS_RBP = 5, VCPU_REGS_RSI = 6, VCPU_REGS_RDI = 7, #ifdef CONFIG_X86_64 VCPU_REGS_R8 = 8, VCPU_REGS_R9 = 9, VCPU_REGS_R10 = 10, VCPU_REGS_R11 = 11, VCPU_REGS_R12 = 12, VCPU_REGS_R13 = 13, VCPU_REGS_R14 = 14, VCPU_REGS_R15 = 15, #endif VCPU_REGS_RIP, NR_VCPU_REGS }; enum kvm_reg_ex { VCPU_EXREG_PDPTR = NR_VCPU_REGS, VCPU_EXREG_CR3, VCPU_EXREG_RFLAGS, VCPU_EXREG_SEGMENTS, }; enum { VCPU_SREG_ES, VCPU_SREG_CS, VCPU_SREG_SS, VCPU_SREG_DS, VCPU_SREG_FS, VCPU_SREG_GS, VCPU_SREG_TR, VCPU_SREG_LDTR, }; #include #define KVM_NR_MEM_OBJS 40 #define KVM_NR_DB_REGS 4 #define DR6_BD (1 << 13) #define DR6_BS (1 << 14) #define DR6_RTM (1 << 16) #define DR6_FIXED_1 0xfffe0ff0 #define DR6_INIT 0xffff0ff0 #define DR6_VOLATILE 0x0001e00f #define DR7_BP_EN_MASK 0x000000ff #define DR7_GE (1 << 9) #define DR7_GD (1 << 13) #define DR7_FIXED_1 0x00000400 #define DR7_VOLATILE 0xffff2bff #define PFERR_PRESENT_BIT 0 #define PFERR_WRITE_BIT 1 #define PFERR_USER_BIT 2 #define PFERR_RSVD_BIT 3 #define PFERR_FETCH_BIT 4 #define PFERR_PK_BIT 5 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT) #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT) #define PFERR_USER_MASK (1U << PFERR_USER_BIT) #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT) #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT) #define PFERR_PK_MASK (1U << PFERR_PK_BIT) /* apic attention bits */ #define KVM_APIC_CHECK_VAPIC 0 /* * The following bit is set with PV-EOI, unset on EOI. * We detect PV-EOI changes by guest by comparing * this bit with PV-EOI in guest memory. * See the implementation in apic_update_pv_eoi. */ #define KVM_APIC_PV_EOI_PENDING 1 struct kvm_kernel_irq_routing_entry; /* * We don't want allocation failures within the mmu code, so we preallocate * enough memory for a single page fault in a cache. */ struct kvm_mmu_memory_cache { int nobjs; void *objects[KVM_NR_MEM_OBJS]; }; /* * the pages used as guest page table on soft mmu are tracked by * kvm_memory_slot.arch.gfn_track which is 16 bits, so the role bits used * by indirect shadow page can not be more than 15 bits. * * Currently, we used 14 bits that are @level, @cr4_pae, @quadrant, @access, * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp. */ union kvm_mmu_page_role { unsigned word; struct { unsigned level:4; unsigned cr4_pae:1; unsigned quadrant:2; unsigned direct:1; unsigned access:3; unsigned invalid:1; unsigned nxe:1; unsigned cr0_wp:1; unsigned smep_andnot_wp:1; unsigned smap_andnot_wp:1; unsigned :8; /* * This is left at the top of the word so that * kvm_memslots_for_spte_role can extract it with a * simple shift. While there is room, give it a whole * byte so it is also faster to load it from memory. */ unsigned smm:8; }; }; struct kvm_rmap_head { unsigned long val; }; struct kvm_mmu_page { struct list_head link; struct hlist_node hash_link; /* * The following two entries are used to key the shadow page in the * hash table. */ gfn_t gfn; union kvm_mmu_page_role role; u64 *spt; /* hold the gfn of each spte inside spt */ gfn_t *gfns; bool unsync; int root_count; /* Currently serving as active root */ unsigned int unsync_children; struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */ /* The page is obsolete if mmu_valid_gen != kvm->arch.mmu_valid_gen. */ unsigned long mmu_valid_gen; DECLARE_BITMAP(unsync_child_bitmap, 512); #ifdef CONFIG_X86_32 /* * Used out of the mmu-lock to avoid reading spte values while an * update is in progress; see the comments in __get_spte_lockless(). */ int clear_spte_count; #endif /* Number of writes since the last time traversal visited this page. */ atomic_t write_flooding_count; }; struct kvm_pio_request { unsigned long count; int in; int port; int size; }; struct rsvd_bits_validate { u64 rsvd_bits_mask[2][4]; u64 bad_mt_xwr; }; /* * x86 supports 3 paging modes (4-level 64-bit, 3-level 64-bit, and 2-level * 32-bit). The kvm_mmu structure abstracts the details of the current mmu * mode. */ struct kvm_mmu { void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root); unsigned long (*get_cr3)(struct kvm_vcpu *vcpu); u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index); int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err, bool prefault); void (*inject_page_fault)(struct kvm_vcpu *vcpu, struct x86_exception *fault); gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access, struct x86_exception *exception); gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, struct x86_exception *exception); int (*sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp); void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva); void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, const void *pte); hpa_t root_hpa; int root_level; int shadow_root_level; union kvm_mmu_page_role base_role; bool direct_map; /* * Bitmap; bit set = permission fault * Byte index: page fault error code [4:1] * Bit index: pte permissions in ACC_* format */ u8 permissions[16]; /* * The pkru_mask indicates if protection key checks are needed. It * consists of 16 domains indexed by page fault error code bits [4:1], * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables. * Each domain has 2 bits which are ANDed with AD and WD from PKRU. */ u32 pkru_mask; u64 *pae_root; u64 *lm_root; /* * check zero bits on shadow page table entries, these * bits include not only hardware reserved bits but also * the bits spte never used. */ struct rsvd_bits_validate shadow_zero_check; struct rsvd_bits_validate guest_rsvd_check; /* Can have large pages at levels 2..last_nonleaf_level-1. */ u8 last_nonleaf_level; bool nx; u64 pdptrs[4]; /* pae */ }; enum pmc_type { KVM_PMC_GP = 0, KVM_PMC_FIXED, }; struct kvm_pmc { enum pmc_type type; u8 idx; u64 counter; u64 eventsel; struct perf_event *perf_event; struct kvm_vcpu *vcpu; }; struct kvm_pmu { unsigned nr_arch_gp_counters; unsigned nr_arch_fixed_counters; unsigned available_event_types; u64 fixed_ctr_ctrl; u64 global_ctrl; u64 global_status; u64 global_ovf_ctrl; u64 counter_bitmask[2]; u64 global_ctrl_mask; u64 reserved_bits; u8 version; struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC]; struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED]; struct irq_work irq_work; u64 reprogram_pmi; }; struct kvm_pmu_ops; enum { KVM_DEBUGREG_BP_ENABLED = 1, KVM_DEBUGREG_WONT_EXIT = 2, KVM_DEBUGREG_RELOAD = 4, }; struct kvm_mtrr_range { u64 base; u64 mask; struct list_head node; }; struct kvm_mtrr { struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR]; mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION]; u64 deftype; struct list_head head; }; /* Hyper-V SynIC timer */ struct kvm_vcpu_hv_stimer { struct hrtimer timer; int index; u64 config; u64 count; u64 exp_time; struct hv_message msg; bool msg_pending; }; /* Hyper-V synthetic interrupt controller (SynIC)*/ struct kvm_vcpu_hv_synic { u64 version; u64 control; u64 msg_page; u64 evt_page; atomic64_t sint[HV_SYNIC_SINT_COUNT]; atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT]; DECLARE_BITMAP(auto_eoi_bitmap, 256); DECLARE_BITMAP(vec_bitmap, 256); bool active; }; /* Hyper-V per vcpu emulation context */ struct kvm_vcpu_hv { u64 hv_vapic; s64 runtime_offset; struct kvm_vcpu_hv_synic synic; struct kvm_hyperv_exit exit; struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT]; DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT); }; struct kvm_vcpu_arch { /* * rip and regs accesses must go through * kvm_{register,rip}_{read,write} functions. */ unsigned long regs[NR_VCPU_REGS]; u32 regs_avail; u32 regs_dirty; unsigned long cr0; unsigned long cr0_guest_owned_bits; unsigned long cr2; unsigned long cr3; unsigned long cr4; unsigned long cr4_guest_owned_bits; unsigned long cr8; u32 hflags; u64 efer; u64 apic_base; struct kvm_lapic *apic; /* kernel irqchip context */ bool apicv_active; DECLARE_BITMAP(ioapic_handled_vectors, 256); unsigned long apic_attention; int32_t apic_arb_prio; int mp_state; u64 ia32_misc_enable_msr; u64 smbase; bool tpr_access_reporting; u64 ia32_xss; /* * Paging state of the vcpu * * If the vcpu runs in guest mode with two level paging this still saves * the paging mode of the l1 guest. This context is always used to * handle faults. */ struct kvm_mmu mmu; /* * Paging state of an L2 guest (used for nested npt) * * This context will save all necessary information to walk page tables * of the an L2 guest. This context is only initialized for page table * walking and not for faulting since we never handle l2 page faults on * the host. */ struct kvm_mmu nested_mmu; /* * Pointer to the mmu context currently used for * gva_to_gpa translations. */ struct kvm_mmu *walk_mmu; struct kvm_mmu_memory_cache mmu_pte_list_desc_cache; struct kvm_mmu_memory_cache mmu_page_cache; struct kvm_mmu_memory_cache mmu_page_header_cache; struct fpu guest_fpu; u64 xcr0; u64 guest_supported_xcr0; u32 guest_xstate_size; struct kvm_pio_request pio; void *pio_data; u8 event_exit_inst_len; struct kvm_queued_exception { bool pending; bool has_error_code; bool reinject; u8 nr; u32 error_code; } exception; struct kvm_queued_interrupt { bool pending; bool soft; u8 nr; } interrupt; int halt_request; /* real mode on Intel only */ int cpuid_nent; struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES]; int maxphyaddr; /* emulate context */ struct x86_emulate_ctxt emulate_ctxt; bool emulate_regs_need_sync_to_vcpu; bool emulate_regs_need_sync_from_vcpu; int (*complete_userspace_io)(struct kvm_vcpu *vcpu); gpa_t time; struct pvclock_vcpu_time_info hv_clock; unsigned int hw_tsc_khz; struct gfn_to_hva_cache pv_time; bool pv_time_enabled; /* set guest stopped flag in pvclock flags field */ bool pvclock_set_guest_stopped_request; struct { u64 msr_val; u64 last_steal; struct gfn_to_hva_cache stime; struct kvm_steal_time steal; } st; u64 tsc_offset; u64 last_guest_tsc; u64 last_host_tsc; u64 tsc_offset_adjustment; u64 this_tsc_nsec; u64 this_tsc_write; u64 this_tsc_generation; bool tsc_catchup; bool tsc_always_catchup; s8 virtual_tsc_shift; u32 virtual_tsc_mult; u32 virtual_tsc_khz; s64 ia32_tsc_adjust_msr; u64 tsc_scaling_ratio; atomic_t nmi_queued; /* unprocessed asynchronous NMIs */ unsigned nmi_pending; /* NMI queued after currently running handler */ bool nmi_injected; /* Trying to inject an NMI this entry */ bool smi_pending; /* SMI queued after currently running handler */ struct kvm_mtrr mtrr_state; u64 pat; unsigned switch_db_regs; unsigned long db[KVM_NR_DB_REGS]; unsigned long dr6; unsigned long dr7; unsigned long eff_db[KVM_NR_DB_REGS]; unsigned long guest_debug_dr7; u64 mcg_cap; u64 mcg_status; u64 mcg_ctl; u64 mcg_ext_ctl; u64 *mce_banks; /* Cache MMIO info */ u64 mmio_gva; unsigned access; gfn_t mmio_gfn; u64 mmio_gen; struct kvm_pmu pmu; /* used for guest single stepping over the given code position */ unsigned long singlestep_rip; struct kvm_vcpu_hv hyperv; cpumask_var_t wbinvd_dirty_mask; unsigned long last_retry_eip; unsigned long last_retry_addr; struct { bool halted; gfn_t gfns[roundup_pow_of_two(ASYNC_PF_PER_VCPU)]; struct gfn_to_hva_cache data; u64 msr_val; u32 id; bool send_user_only; } apf; /* OSVW MSRs (AMD only) */ struct { u64 length; u64 status; } osvw; struct { u64 msr_val; struct gfn_to_hva_cache data; } pv_eoi; /* * Indicate whether the access faults on its page table in guest * which is set when fix page fault and used to detect unhandeable * instruction. */ bool write_fault_to_shadow_pgtable; /* set at EPT violation at this point */ unsigned long exit_qualification; /* pv related host specific info */ struct { bool pv_unhalted; } pv; int pending_ioapic_eoi; int pending_external_vector; }; struct kvm_lpage_info { int disallow_lpage; }; struct kvm_arch_memory_slot { struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES]; struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1]; unsigned short *gfn_track[KVM_PAGE_TRACK_MAX]; }; /* * We use as the mode the number of bits allocated in the LDR for the * logical processor ID. It happens that these are all powers of two. * This makes it is very easy to detect cases where the APICs are * configured for multiple modes; in that case, we cannot use the map and * hence cannot use kvm_irq_delivery_to_apic_fast either. */ #define KVM_APIC_MODE_XAPIC_CLUSTER 4 #define KVM_APIC_MODE_XAPIC_FLAT 8 #define KVM_APIC_MODE_X2APIC 16 struct kvm_apic_map { struct rcu_head rcu; u8 mode; u32 max_apic_id; union { struct kvm_lapic *xapic_flat_map[8]; struct kvm_lapic *xapic_cluster_map[16][4]; }; struct kvm_lapic *phys_map[]; }; /* Hyper-V emulation context */ struct kvm_hv { u64 hv_guest_os_id; u64 hv_hypercall; u64 hv_tsc_page; /* Hyper-v based guest crash (NT kernel bugcheck) parameters */ u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS]; u64 hv_crash_ctl; HV_REFERENCE_TSC_PAGE tsc_ref; }; struct kvm_arch { unsigned int n_used_mmu_pages; unsigned int n_requested_mmu_pages; unsigned int n_max_mmu_pages; unsigned int indirect_shadow_pages; unsigned long mmu_valid_gen; struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES]; /* * Hash table of struct kvm_mmu_page. */ struct list_head active_mmu_pages; struct list_head zapped_obsolete_pages; struct kvm_page_track_notifier_node mmu_sp_tracker; struct kvm_page_track_notifier_head track_notifier_head; struct list_head assigned_dev_head; struct iommu_domain *iommu_domain; bool iommu_noncoherent; #define __KVM_HAVE_ARCH_NONCOHERENT_DMA atomic_t noncoherent_dma_count; #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE atomic_t assigned_device_count; struct kvm_pic *vpic; struct kvm_ioapic *vioapic; struct kvm_pit *vpit; atomic_t vapics_in_nmi_mode; struct mutex apic_map_lock; struct kvm_apic_map *apic_map; unsigned int tss_addr; bool apic_access_page_done; gpa_t wall_clock; bool ept_identity_pagetable_done; gpa_t ept_identity_map_addr; unsigned long irq_sources_bitmap; s64 kvmclock_offset; raw_spinlock_t tsc_write_lock; u64 last_tsc_nsec; u64 last_tsc_write; u32 last_tsc_khz; u64 cur_tsc_nsec; u64 cur_tsc_write; u64 cur_tsc_offset; u64 cur_tsc_generation; int nr_vcpus_matched_tsc; spinlock_t pvclock_gtod_sync_lock; bool use_master_clock; u64 master_kernel_ns; cycle_t master_cycle_now; struct delayed_work kvmclock_update_work; struct delayed_work kvmclock_sync_work; struct kvm_xen_hvm_config xen_hvm_config; /* reads protected by irq_srcu, writes by irq_lock */ struct hlist_head mask_notifier_list; struct kvm_hv hyperv; #ifdef CONFIG_KVM_MMU_AUDIT int audit_point; #endif bool boot_vcpu_runs_old_kvmclock; u32 bsp_vcpu_id; u64 disabled_quirks; bool irqchip_split; u8 nr_reserved_ioapic_pins; bool disabled_lapic_found; /* Struct members for AVIC */ u32 avic_vm_id; u32 ldr_mode; struct page *avic_logical_id_table_page; struct page *avic_physical_id_table_page; struct hlist_node hnode; bool x2apic_format; bool x2apic_broadcast_quirk_disabled; }; struct kvm_vm_stat { ulong mmu_shadow_zapped; ulong mmu_pte_write; ulong mmu_pte_updated; ulong mmu_pde_zapped; ulong mmu_flooded; ulong mmu_recycled; ulong mmu_cache_miss; ulong mmu_unsync; ulong remote_tlb_flush; ulong lpages; }; struct kvm_vcpu_stat { u64 pf_fixed; u64 pf_guest; u64 tlb_flush; u64 invlpg; u64 exits; u64 io_exits; u64 mmio_exits; u64 signal_exits; u64 irq_window_exits; u64 nmi_window_exits; u64 halt_exits; u64 halt_successful_poll; u64 halt_attempted_poll; u64 halt_poll_invalid; u64 halt_wakeup; u64 request_irq_exits; u64 irq_exits; u64 host_state_reload; u64 efer_reload; u64 fpu_reload; u64 insn_emulation; u64 insn_emulation_fail; u64 hypercalls; u64 irq_injections; u64 nmi_injections; }; struct x86_instruction_info; struct msr_data { bool host_initiated; u32 index; u64 data; }; struct kvm_lapic_irq { u32 vector; u16 delivery_mode; u16 dest_mode; bool level; u16 trig_mode; u32 shorthand; u32 dest_id; bool msi_redir_hint; }; struct kvm_x86_ops { int (*cpu_has_kvm_support)(void); /* __init */ int (*disabled_by_bios)(void); /* __init */ int (*hardware_enable)(void); void (*hardware_disable)(void); void (*check_processor_compatibility)(void *rtn); int (*hardware_setup)(void); /* __init */ void (*hardware_unsetup)(void); /* __exit */ bool (*cpu_has_accelerated_tpr)(void); bool (*cpu_has_high_real_mode_segbase)(void); void (*cpuid_update)(struct kvm_vcpu *vcpu); int (*vm_init)(struct kvm *kvm); void (*vm_destroy)(struct kvm *kvm); /* Create, but do not attach this VCPU */ struct kvm_vcpu *(*vcpu_create)(struct kvm *kvm, unsigned id); void (*vcpu_free)(struct kvm_vcpu *vcpu); void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event); void (*prepare_guest_switch)(struct kvm_vcpu *vcpu); void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu); void (*vcpu_put)(struct kvm_vcpu *vcpu); void (*update_bp_intercept)(struct kvm_vcpu *vcpu); int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr); u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg); void (*get_segment)(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); int (*get_cpl)(struct kvm_vcpu *vcpu); void (*set_segment)(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l); void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu); void (*decache_cr3)(struct kvm_vcpu *vcpu); void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu); void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0); void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4); void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer); void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt); u64 (*get_dr6)(struct kvm_vcpu *vcpu); void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value); void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu); void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value); void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg); unsigned long (*get_rflags)(struct kvm_vcpu *vcpu); void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags); u32 (*get_pkru)(struct kvm_vcpu *vcpu); void (*fpu_activate)(struct kvm_vcpu *vcpu); void (*fpu_deactivate)(struct kvm_vcpu *vcpu); void (*tlb_flush)(struct kvm_vcpu *vcpu); void (*run)(struct kvm_vcpu *vcpu); int (*handle_exit)(struct kvm_vcpu *vcpu); void (*skip_emulated_instruction)(struct kvm_vcpu *vcpu); void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask); u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu); void (*patch_hypercall)(struct kvm_vcpu *vcpu, unsigned char *hypercall_addr); void (*set_irq)(struct kvm_vcpu *vcpu); void (*set_nmi)(struct kvm_vcpu *vcpu); void (*queue_exception)(struct kvm_vcpu *vcpu, unsigned nr, bool has_error_code, u32 error_code, bool reinject); void (*cancel_injection)(struct kvm_vcpu *vcpu); int (*interrupt_allowed)(struct kvm_vcpu *vcpu); int (*nmi_allowed)(struct kvm_vcpu *vcpu); bool (*get_nmi_mask)(struct kvm_vcpu *vcpu); void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked); void (*enable_nmi_window)(struct kvm_vcpu *vcpu); void (*enable_irq_window)(struct kvm_vcpu *vcpu); void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr); bool (*get_enable_apicv)(void); void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu); void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr); void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr); void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap); void (*set_virtual_x2apic_mode)(struct kvm_vcpu *vcpu, bool set); void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu, hpa_t hpa); void (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector); void (*sync_pir_to_irr)(struct kvm_vcpu *vcpu); int (*set_tss_addr)(struct kvm *kvm, unsigned int addr); int (*get_tdp_level)(void); u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio); int (*get_lpage_level)(void); bool (*rdtscp_supported)(void); bool (*invpcid_supported)(void); void (*adjust_tsc_offset_guest)(struct kvm_vcpu *vcpu, s64 adjustment); void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3); void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry); bool (*has_wbinvd_exit)(void); void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset); u64 (*read_l1_tsc)(struct kvm_vcpu *vcpu, u64 host_tsc); void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2); int (*check_intercept)(struct kvm_vcpu *vcpu, struct x86_instruction_info *info, enum x86_intercept_stage stage); void (*handle_external_intr)(struct kvm_vcpu *vcpu); bool (*mpx_supported)(void); bool (*xsaves_supported)(void); int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr); void (*sched_in)(struct kvm_vcpu *kvm, int cpu); /* * Arch-specific dirty logging hooks. These hooks are only supposed to * be valid if the specific arch has hardware-accelerated dirty logging * mechanism. Currently only for PML on VMX. * * - slot_enable_log_dirty: * called when enabling log dirty mode for the slot. * - slot_disable_log_dirty: * called when disabling log dirty mode for the slot. * also called when slot is created with log dirty disabled. * - flush_log_dirty: * called before reporting dirty_bitmap to userspace. * - enable_log_dirty_pt_masked: * called when reenabling log dirty for the GFNs in the mask after * corresponding bits are cleared in slot->dirty_bitmap. */ void (*slot_enable_log_dirty)(struct kvm *kvm, struct kvm_memory_slot *slot); void (*slot_disable_log_dirty)(struct kvm *kvm, struct kvm_memory_slot *slot); void (*flush_log_dirty)(struct kvm *kvm); void (*enable_log_dirty_pt_masked)(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t offset, unsigned long mask); /* pmu operations of sub-arch */ const struct kvm_pmu_ops *pmu_ops; /* * Architecture specific hooks for vCPU blocking due to * HLT instruction. * Returns for .pre_block(): * - 0 means continue to block the vCPU. * - 1 means we cannot block the vCPU since some event * happens during this period, such as, 'ON' bit in * posted-interrupts descriptor is set. */ int (*pre_block)(struct kvm_vcpu *vcpu); void (*post_block)(struct kvm_vcpu *vcpu); void (*vcpu_blocking)(struct kvm_vcpu *vcpu); void (*vcpu_unblocking)(struct kvm_vcpu *vcpu); int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set); void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc); void (*cancel_hv_timer)(struct kvm_vcpu *vcpu); void (*setup_mce)(struct kvm_vcpu *vcpu); }; struct kvm_arch_async_pf { u32 token; gfn_t gfn; unsigned long cr3; bool direct_map; }; extern struct kvm_x86_ops *kvm_x86_ops; int kvm_mmu_module_init(void); void kvm_mmu_module_exit(void); void kvm_mmu_destroy(struct kvm_vcpu *vcpu); int kvm_mmu_create(struct kvm_vcpu *vcpu); void kvm_mmu_setup(struct kvm_vcpu *vcpu); void kvm_mmu_init_vm(struct kvm *kvm); void kvm_mmu_uninit_vm(struct kvm *kvm); void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask); void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); void kvm_mmu_slot_remove_write_access(struct kvm *kvm, struct kvm_memory_slot *memslot); void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, const struct kvm_memory_slot *memslot); void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, struct kvm_memory_slot *memslot); void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, struct kvm_memory_slot *memslot); void kvm_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *memslot); void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, struct kvm_memory_slot *slot, gfn_t gfn_offset, unsigned long mask); void kvm_mmu_zap_all(struct kvm *kvm); void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots); unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm); void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages); int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3); int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, const void *val, int bytes); struct kvm_irq_mask_notifier { void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked); int irq; struct hlist_node link; }; void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq, struct kvm_irq_mask_notifier *kimn); void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq, struct kvm_irq_mask_notifier *kimn); void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin, bool mask); extern bool tdp_enabled; u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu); /* control of guest tsc rate supported? */ extern bool kvm_has_tsc_control; /* maximum supported tsc_khz for guests */ extern u32 kvm_max_guest_tsc_khz; /* number of bits of the fractional part of the TSC scaling ratio */ extern u8 kvm_tsc_scaling_ratio_frac_bits; /* maximum allowed value of TSC scaling ratio */ extern u64 kvm_max_tsc_scaling_ratio; /* 1ull << kvm_tsc_scaling_ratio_frac_bits */ extern u64 kvm_default_tsc_scaling_ratio; extern u64 kvm_mce_cap_supported; enum emulation_result { EMULATE_DONE, /* no further processing */ EMULATE_USER_EXIT, /* kvm_run ready for userspace exit */ EMULATE_FAIL, /* can't emulate this instruction */ }; #define EMULTYPE_NO_DECODE (1 << 0) #define EMULTYPE_TRAP_UD (1 << 1) #define EMULTYPE_SKIP (1 << 2) #define EMULTYPE_RETRY (1 << 3) #define EMULTYPE_NO_REEXECUTE (1 << 4) int x86_emulate_instruction(struct kvm_vcpu *vcpu, unsigned long cr2, int emulation_type, void *insn, int insn_len); static inline int emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) { return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); } void kvm_enable_efer_bits(u64); bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer); int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr); int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr); struct x86_emulate_ctxt; int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port); void kvm_emulate_cpuid(struct kvm_vcpu *vcpu); int kvm_emulate_halt(struct kvm_vcpu *vcpu); int kvm_vcpu_halt(struct kvm_vcpu *vcpu); int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu); void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg); int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg); void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, int reason, bool has_error_code, u32 error_code); int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8); int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val); int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val); unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu); void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw); void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l); int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr); int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr); unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu); void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); bool kvm_rdpmc(struct kvm_vcpu *vcpu); void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr); void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr); void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code); void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault); int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gfn_t gfn, void *data, int offset, int len, u32 access); bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl); bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr); static inline int __kvm_irq_line_state(unsigned long *irq_state, int irq_source_id, int level) { /* Logical OR for level trig interrupt */ if (level) __set_bit(irq_source_id, irq_state); else __clear_bit(irq_source_id, irq_state); return !!(*irq_state); } int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level); void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id); void kvm_inject_nmi(struct kvm_vcpu *vcpu); int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn); int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva); void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu); int kvm_mmu_load(struct kvm_vcpu *vcpu); void kvm_mmu_unload(struct kvm_vcpu *vcpu); void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu); gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, struct x86_exception *exception); gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception); gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception); gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception); gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, struct x86_exception *exception); void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu); int kvm_emulate_hypercall(struct kvm_vcpu *vcpu); int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u32 error_code, void *insn, int insn_len); void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva); void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu); void kvm_enable_tdp(void); void kvm_disable_tdp(void); static inline gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, struct x86_exception *exception) { return gpa; } static inline struct kvm_mmu_page *page_header(hpa_t shadow_page) { struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT); return (struct kvm_mmu_page *)page_private(page); } static inline u16 kvm_read_ldt(void) { u16 ldt; asm("sldt %0" : "=g"(ldt)); return ldt; } static inline void kvm_load_ldt(u16 sel) { asm("lldt %0" : : "rm"(sel)); } #ifdef CONFIG_X86_64 static inline unsigned long read_msr(unsigned long msr) { u64 value; rdmsrl(msr, value); return value; } #endif static inline u32 get_rdx_init_val(void) { return 0x600; /* P6 family */ } static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code) { kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); } static inline u64 get_canonical(u64 la) { return ((int64_t)la << 16) >> 16; } static inline bool is_noncanonical_address(u64 la) { #ifdef CONFIG_X86_64 return get_canonical(la) != la; #else return false; #endif } #define TSS_IOPB_BASE_OFFSET 0x66 #define TSS_BASE_SIZE 0x68 #define TSS_IOPB_SIZE (65536 / 8) #define TSS_REDIRECTION_SIZE (256 / 8) #define RMODE_TSS_SIZE \ (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1) enum { TASK_SWITCH_CALL = 0, TASK_SWITCH_IRET = 1, TASK_SWITCH_JMP = 2, TASK_SWITCH_GATE = 3, }; #define HF_GIF_MASK (1 << 0) #define HF_HIF_MASK (1 << 1) #define HF_VINTR_MASK (1 << 2) #define HF_NMI_MASK (1 << 3) #define HF_IRET_MASK (1 << 4) #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */ #define HF_SMM_MASK (1 << 6) #define HF_SMM_INSIDE_NMI_MASK (1 << 7) #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE #define KVM_ADDRESS_SPACE_NUM 2 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0) #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm) /* * Hardware virtualization extension instructions may fault if a * reboot turns off virtualization while processes are running. * Trap the fault and ignore the instruction if that happens. */ asmlinkage void kvm_spurious_fault(void); #define ____kvm_handle_fault_on_reboot(insn, cleanup_insn) \ "666: " insn "\n\t" \ "668: \n\t" \ ".pushsection .fixup, \"ax\" \n" \ "667: \n\t" \ cleanup_insn "\n\t" \ "cmpb $0, kvm_rebooting \n\t" \ "jne 668b \n\t" \ __ASM_SIZE(push) " $666b \n\t" \ "call kvm_spurious_fault \n\t" \ ".popsection \n\t" \ _ASM_EXTABLE(666b, 667b) #define __kvm_handle_fault_on_reboot(insn) \ ____kvm_handle_fault_on_reboot(insn, "") #define KVM_ARCH_WANT_MMU_NOTIFIER int kvm_unmap_hva(struct kvm *kvm, unsigned long hva); int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end); int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end); int kvm_test_age_hva(struct kvm *kvm, unsigned long hva); void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte); int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v); int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu); int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu); int kvm_cpu_get_interrupt(struct kvm_vcpu *v); void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event); void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu); void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm, unsigned long address); void kvm_define_shared_msr(unsigned index, u32 msr); int kvm_set_shared_msr(unsigned index, u64 val, u64 mask); u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc); u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc); unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu); bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip); void kvm_make_mclock_inprogress_request(struct kvm *kvm); void kvm_make_scan_ioapic_request(struct kvm *kvm); void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work); void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, struct kvm_async_pf *work); void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work); bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu); extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err); int kvm_is_in_guest(void); int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size); int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size); bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu); bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu); bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq, struct kvm_vcpu **dest_vcpu); void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, struct kvm_lapic_irq *irq); static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) { if (kvm_x86_ops->vcpu_blocking) kvm_x86_ops->vcpu_blocking(vcpu); } static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) { if (kvm_x86_ops->vcpu_unblocking) kvm_x86_ops->vcpu_unblocking(vcpu); } static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {} static inline int kvm_cpu_get_apicid(int mps_cpu) { #ifdef CONFIG_X86_LOCAL_APIC return __default_cpu_present_to_apicid(mps_cpu); #else WARN_ON_ONCE(1); return BAD_APICID; #endif } #endif /* _ASM_X86_KVM_HOST_H */