#define pr_fmt(fmt) "Hyper-V: " fmt #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */ struct hv_flush_pcpu { u64 address_space; u64 flags; u64 processor_mask; u64 gva_list[]; }; /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */ struct hv_flush_pcpu_ex { u64 address_space; u64 flags; struct { u64 format; u64 valid_bank_mask; u64 bank_contents[]; } hv_vp_set; u64 gva_list[]; }; /* Each gva in gva_list encodes up to 4096 pages to flush */ #define HV_TLB_FLUSH_UNIT (4096 * PAGE_SIZE) static struct hv_flush_pcpu __percpu **pcpu_flush; static struct hv_flush_pcpu_ex __percpu **pcpu_flush_ex; /* * Fills in gva_list starting from offset. Returns the number of items added. */ static inline int fill_gva_list(u64 gva_list[], int offset, unsigned long start, unsigned long end) { int gva_n = offset; unsigned long cur = start, diff; do { diff = end > cur ? end - cur : 0; gva_list[gva_n] = cur & PAGE_MASK; /* * Lower 12 bits encode the number of additional * pages to flush (in addition to the 'cur' page). */ if (diff >= HV_TLB_FLUSH_UNIT) gva_list[gva_n] |= ~PAGE_MASK; else if (diff) gva_list[gva_n] |= (diff - 1) >> PAGE_SHIFT; cur += HV_TLB_FLUSH_UNIT; gva_n++; } while (cur < end); return gva_n - offset; } /* Return the number of banks in the resulting vp_set */ static inline int cpumask_to_vp_set(struct hv_flush_pcpu_ex *flush, const struct cpumask *cpus) { int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; /* valid_bank_mask can represent up to 64 banks */ if (hv_max_vp_index / 64 >= 64) return 0; /* * Clear all banks up to the maximum possible bank as hv_flush_pcpu_ex * structs are not cleared between calls, we risk flushing unneeded * vCPUs otherwise. */ for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++) flush->hv_vp_set.bank_contents[vcpu_bank] = 0; /* * Some banks may end up being empty but this is acceptable. */ for_each_cpu(cpu, cpus) { vcpu = hv_cpu_number_to_vp_number(cpu); vcpu_bank = vcpu / 64; vcpu_offset = vcpu % 64; __set_bit(vcpu_offset, (unsigned long *) &flush->hv_vp_set.bank_contents[vcpu_bank]); if (vcpu_bank >= nr_bank) nr_bank = vcpu_bank + 1; } flush->hv_vp_set.valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); return nr_bank; } static void hyperv_flush_tlb_others(const struct cpumask *cpus, const struct flush_tlb_info *info) { int cpu, vcpu, gva_n, max_gvas; struct hv_flush_pcpu **flush_pcpu; struct hv_flush_pcpu *flush; u64 status = U64_MAX; unsigned long flags; trace_hyperv_mmu_flush_tlb_others(cpus, info); if (!pcpu_flush || !hv_hypercall_pg) goto do_native; if (cpumask_empty(cpus)) return; local_irq_save(flags); flush_pcpu = this_cpu_ptr(pcpu_flush); if (unlikely(!*flush_pcpu)) *flush_pcpu = page_address(alloc_page(GFP_ATOMIC)); flush = *flush_pcpu; if (unlikely(!flush)) { local_irq_restore(flags); goto do_native; } if (info->mm) { flush->address_space = virt_to_phys(info->mm->pgd); flush->flags = 0; } else { flush->address_space = 0; flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; } flush->processor_mask = 0; if (cpumask_equal(cpus, cpu_present_mask)) { flush->flags |= HV_FLUSH_ALL_PROCESSORS; } else { for_each_cpu(cpu, cpus) { vcpu = hv_cpu_number_to_vp_number(cpu); if (vcpu >= 64) goto do_native; __set_bit(vcpu, (unsigned long *) &flush->processor_mask); } } /* * We can flush not more than max_gvas with one hypercall. Flush the * whole address space if we were asked to do more. */ max_gvas = (PAGE_SIZE - sizeof(*flush)) / sizeof(flush->gva_list[0]); if (info->end == TLB_FLUSH_ALL) { flush->flags |= HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY; status = hv_do_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, flush, NULL); } else if (info->end && ((info->end - info->start)/HV_TLB_FLUSH_UNIT) > max_gvas) { status = hv_do_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, flush, NULL); } else { gva_n = fill_gva_list(flush->gva_list, 0, info->start, info->end); status = hv_do_rep_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST, gva_n, 0, flush, NULL); } local_irq_restore(flags); if (!(status & HV_HYPERCALL_RESULT_MASK)) return; do_native: native_flush_tlb_others(cpus, info); } static void hyperv_flush_tlb_others_ex(const struct cpumask *cpus, const struct flush_tlb_info *info) { int nr_bank = 0, max_gvas, gva_n; struct hv_flush_pcpu_ex **flush_pcpu; struct hv_flush_pcpu_ex *flush; u64 status = U64_MAX; unsigned long flags; trace_hyperv_mmu_flush_tlb_others(cpus, info); if (!pcpu_flush_ex || !hv_hypercall_pg) goto do_native; if (cpumask_empty(cpus)) return; local_irq_save(flags); flush_pcpu = this_cpu_ptr(pcpu_flush_ex); if (unlikely(!*flush_pcpu)) *flush_pcpu = page_address(alloc_page(GFP_ATOMIC)); flush = *flush_pcpu; if (unlikely(!flush)) { local_irq_restore(flags); goto do_native; } if (info->mm) { flush->address_space = virt_to_phys(info->mm->pgd); flush->flags = 0; } else { flush->address_space = 0; flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; } flush->hv_vp_set.valid_bank_mask = 0; if (!cpumask_equal(cpus, cpu_present_mask)) { flush->hv_vp_set.format = HV_GENERIC_SET_SPARCE_4K; nr_bank = cpumask_to_vp_set(flush, cpus); } if (!nr_bank) { flush->hv_vp_set.format = HV_GENERIC_SET_ALL; flush->flags |= HV_FLUSH_ALL_PROCESSORS; } /* * We can flush not more than max_gvas with one hypercall. Flush the * whole address space if we were asked to do more. */ max_gvas = (PAGE_SIZE - sizeof(*flush) - nr_bank * sizeof(flush->hv_vp_set.bank_contents[0])) / sizeof(flush->gva_list[0]); if (info->end == TLB_FLUSH_ALL) { flush->flags |= HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY; status = hv_do_rep_hypercall( HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX, 0, nr_bank + 2, flush, NULL); } else if (info->end && ((info->end - info->start)/HV_TLB_FLUSH_UNIT) > max_gvas) { status = hv_do_rep_hypercall( HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX, 0, nr_bank + 2, flush, NULL); } else { gva_n = fill_gva_list(flush->gva_list, nr_bank, info->start, info->end); status = hv_do_rep_hypercall( HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX, gva_n, nr_bank + 2, flush, NULL); } local_irq_restore(flags); if (!(status & HV_HYPERCALL_RESULT_MASK)) return; do_native: native_flush_tlb_others(cpus, info); } void hyperv_setup_mmu_ops(void) { if (!(ms_hyperv.hints & HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED)) return; setup_clear_cpu_cap(X86_FEATURE_PCID); if (!(ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) { pr_info("Using hypercall for remote TLB flush\n"); pv_mmu_ops.flush_tlb_others = hyperv_flush_tlb_others; } else { pr_info("Using ext hypercall for remote TLB flush\n"); pv_mmu_ops.flush_tlb_others = hyperv_flush_tlb_others_ex; } } void hyper_alloc_mmu(void) { if (!(ms_hyperv.hints & HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED)) return; if (!(ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED)) pcpu_flush = alloc_percpu(struct hv_flush_pcpu *); else pcpu_flush_ex = alloc_percpu(struct hv_flush_pcpu_ex *); }