/* * Twofish Cipher 3-way parallel algorithm (x86_64) * * Copyright (C) 2011 Jussi Kivilinna <jussi.kivilinna@mbnet.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA * */ #include <linux/linkage.h> .file "twofish-x86_64-asm-3way.S" .text /* structure of crypto context */ #define s0 0 #define s1 1024 #define s2 2048 #define s3 3072 #define w 4096 #define k 4128 /********************************************************************** 3-way twofish **********************************************************************/ #define CTX %rdi #define RIO %rdx #define RAB0 %rax #define RAB1 %rbx #define RAB2 %rcx #define RAB0d %eax #define RAB1d %ebx #define RAB2d %ecx #define RAB0bh %ah #define RAB1bh %bh #define RAB2bh %ch #define RAB0bl %al #define RAB1bl %bl #define RAB2bl %cl #define CD0 0x0(%rsp) #define CD1 0x8(%rsp) #define CD2 0x10(%rsp) # used only before/after all rounds #define RCD0 %r8 #define RCD1 %r9 #define RCD2 %r10 # used only during rounds #define RX0 %r8 #define RX1 %r9 #define RX2 %r10 #define RX0d %r8d #define RX1d %r9d #define RX2d %r10d #define RY0 %r11 #define RY1 %r12 #define RY2 %r13 #define RY0d %r11d #define RY1d %r12d #define RY2d %r13d #define RT0 %rdx #define RT1 %rsi #define RT0d %edx #define RT1d %esi #define RT1bl %sil #define do16bit_ror(rot, op1, op2, T0, T1, tmp1, tmp2, ab, dst) \ movzbl ab ## bl, tmp2 ## d; \ movzbl ab ## bh, tmp1 ## d; \ rorq $(rot), ab; \ op1##l T0(CTX, tmp2, 4), dst ## d; \ op2##l T1(CTX, tmp1, 4), dst ## d; #define swap_ab_with_cd(ab, cd, tmp) \ movq cd, tmp; \ movq ab, cd; \ movq tmp, ab; /* * Combined G1 & G2 function. Reordered with help of rotates to have moves * at begining. */ #define g1g2_3(ab, cd, Tx0, Tx1, Tx2, Tx3, Ty0, Ty1, Ty2, Ty3, x, y) \ /* G1,1 && G2,1 */ \ do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 0, ab ## 0, x ## 0); \ do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 0, ab ## 0, y ## 0); \ \ do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 1, ab ## 1, x ## 1); \ do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 1, ab ## 1, y ## 1); \ \ do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 2, ab ## 2, x ## 2); \ do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 2, ab ## 2, y ## 2); \ \ /* G1,2 && G2,2 */ \ do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 0, x ## 0); \ do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 0, y ## 0); \ swap_ab_with_cd(ab ## 0, cd ## 0, RT0); \ \ do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 1, x ## 1); \ do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 1, y ## 1); \ swap_ab_with_cd(ab ## 1, cd ## 1, RT0); \ \ do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 2, x ## 2); \ do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 2, y ## 2); \ swap_ab_with_cd(ab ## 2, cd ## 2, RT0); #define enc_round_end(ab, x, y, n) \ addl y ## d, x ## d; \ addl x ## d, y ## d; \ addl k+4*(2*(n))(CTX), x ## d; \ xorl ab ## d, x ## d; \ addl k+4*(2*(n)+1)(CTX), y ## d; \ shrq $32, ab; \ roll $1, ab ## d; \ xorl y ## d, ab ## d; \ shlq $32, ab; \ rorl $1, x ## d; \ orq x, ab; #define dec_round_end(ba, x, y, n) \ addl y ## d, x ## d; \ addl x ## d, y ## d; \ addl k+4*(2*(n))(CTX), x ## d; \ addl k+4*(2*(n)+1)(CTX), y ## d; \ xorl ba ## d, y ## d; \ shrq $32, ba; \ roll $1, ba ## d; \ xorl x ## d, ba ## d; \ shlq $32, ba; \ rorl $1, y ## d; \ orq y, ba; #define encrypt_round3(ab, cd, n) \ g1g2_3(ab, cd, s0, s1, s2, s3, s0, s1, s2, s3, RX, RY); \ \ enc_round_end(ab ## 0, RX0, RY0, n); \ enc_round_end(ab ## 1, RX1, RY1, n); \ enc_round_end(ab ## 2, RX2, RY2, n); #define decrypt_round3(ba, dc, n) \ g1g2_3(ba, dc, s1, s2, s3, s0, s3, s0, s1, s2, RY, RX); \ \ dec_round_end(ba ## 0, RX0, RY0, n); \ dec_round_end(ba ## 1, RX1, RY1, n); \ dec_round_end(ba ## 2, RX2, RY2, n); #define encrypt_cycle3(ab, cd, n) \ encrypt_round3(ab, cd, n*2); \ encrypt_round3(ab, cd, (n*2)+1); #define decrypt_cycle3(ba, dc, n) \ decrypt_round3(ba, dc, (n*2)+1); \ decrypt_round3(ba, dc, (n*2)); #define push_cd() \ pushq RCD2; \ pushq RCD1; \ pushq RCD0; #define pop_cd() \ popq RCD0; \ popq RCD1; \ popq RCD2; #define inpack3(in, n, xy, m) \ movq 4*(n)(in), xy ## 0; \ xorq w+4*m(CTX), xy ## 0; \ \ movq 4*(4+(n))(in), xy ## 1; \ xorq w+4*m(CTX), xy ## 1; \ \ movq 4*(8+(n))(in), xy ## 2; \ xorq w+4*m(CTX), xy ## 2; #define outunpack3(op, out, n, xy, m) \ xorq w+4*m(CTX), xy ## 0; \ op ## q xy ## 0, 4*(n)(out); \ \ xorq w+4*m(CTX), xy ## 1; \ op ## q xy ## 1, 4*(4+(n))(out); \ \ xorq w+4*m(CTX), xy ## 2; \ op ## q xy ## 2, 4*(8+(n))(out); #define inpack_enc3() \ inpack3(RIO, 0, RAB, 0); \ inpack3(RIO, 2, RCD, 2); #define outunpack_enc3(op) \ outunpack3(op, RIO, 2, RAB, 6); \ outunpack3(op, RIO, 0, RCD, 4); #define inpack_dec3() \ inpack3(RIO, 0, RAB, 4); \ rorq $32, RAB0; \ rorq $32, RAB1; \ rorq $32, RAB2; \ inpack3(RIO, 2, RCD, 6); \ rorq $32, RCD0; \ rorq $32, RCD1; \ rorq $32, RCD2; #define outunpack_dec3() \ rorq $32, RCD0; \ rorq $32, RCD1; \ rorq $32, RCD2; \ outunpack3(mov, RIO, 0, RCD, 0); \ rorq $32, RAB0; \ rorq $32, RAB1; \ rorq $32, RAB2; \ outunpack3(mov, RIO, 2, RAB, 2); ENTRY(__twofish_enc_blk_3way) /* input: * %rdi: ctx, CTX * %rsi: dst * %rdx: src, RIO * %rcx: bool, if true: xor output */ pushq %r13; pushq %r12; pushq %rbx; pushq %rcx; /* bool xor */ pushq %rsi; /* dst */ inpack_enc3(); push_cd(); encrypt_cycle3(RAB, CD, 0); encrypt_cycle3(RAB, CD, 1); encrypt_cycle3(RAB, CD, 2); encrypt_cycle3(RAB, CD, 3); encrypt_cycle3(RAB, CD, 4); encrypt_cycle3(RAB, CD, 5); encrypt_cycle3(RAB, CD, 6); encrypt_cycle3(RAB, CD, 7); pop_cd(); popq RIO; /* dst */ popq RT1; /* bool xor */ testb RT1bl, RT1bl; jnz .L__enc_xor3; outunpack_enc3(mov); popq %rbx; popq %r12; popq %r13; ret; .L__enc_xor3: outunpack_enc3(xor); popq %rbx; popq %r12; popq %r13; ret; ENDPROC(__twofish_enc_blk_3way) ENTRY(twofish_dec_blk_3way) /* input: * %rdi: ctx, CTX * %rsi: dst * %rdx: src, RIO */ pushq %r13; pushq %r12; pushq %rbx; pushq %rsi; /* dst */ inpack_dec3(); push_cd(); decrypt_cycle3(RAB, CD, 7); decrypt_cycle3(RAB, CD, 6); decrypt_cycle3(RAB, CD, 5); decrypt_cycle3(RAB, CD, 4); decrypt_cycle3(RAB, CD, 3); decrypt_cycle3(RAB, CD, 2); decrypt_cycle3(RAB, CD, 1); decrypt_cycle3(RAB, CD, 0); pop_cd(); popq RIO; /* dst */ outunpack_dec3(); popq %rbx; popq %r12; popq %r13; ret; ENDPROC(twofish_dec_blk_3way)