/* * Glue Code for AVX assembler versions of Serpent Cipher * * Copyright (C) 2012 Johannes Goetzfried * <Johannes.Goetzfried@informatik.stud.uni-erlangen.de> * * Copyright © 2011-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA * */ #include <linux/module.h> #include <linux/types.h> #include <linux/crypto.h> #include <linux/err.h> #include <crypto/algapi.h> #include <crypto/internal/simd.h> #include <crypto/serpent.h> #include <crypto/xts.h> #include <asm/crypto/glue_helper.h> #include <asm/crypto/serpent-avx.h> /* 8-way parallel cipher functions */ asmlinkage void serpent_ecb_enc_8way_avx(struct serpent_ctx *ctx, u8 *dst, const u8 *src); EXPORT_SYMBOL_GPL(serpent_ecb_enc_8way_avx); asmlinkage void serpent_ecb_dec_8way_avx(struct serpent_ctx *ctx, u8 *dst, const u8 *src); EXPORT_SYMBOL_GPL(serpent_ecb_dec_8way_avx); asmlinkage void serpent_cbc_dec_8way_avx(struct serpent_ctx *ctx, u8 *dst, const u8 *src); EXPORT_SYMBOL_GPL(serpent_cbc_dec_8way_avx); asmlinkage void serpent_ctr_8way_avx(struct serpent_ctx *ctx, u8 *dst, const u8 *src, le128 *iv); EXPORT_SYMBOL_GPL(serpent_ctr_8way_avx); asmlinkage void serpent_xts_enc_8way_avx(struct serpent_ctx *ctx, u8 *dst, const u8 *src, le128 *iv); EXPORT_SYMBOL_GPL(serpent_xts_enc_8way_avx); asmlinkage void serpent_xts_dec_8way_avx(struct serpent_ctx *ctx, u8 *dst, const u8 *src, le128 *iv); EXPORT_SYMBOL_GPL(serpent_xts_dec_8way_avx); void __serpent_crypt_ctr(void *ctx, u128 *dst, const u128 *src, le128 *iv) { be128 ctrblk; le128_to_be128(&ctrblk, iv); le128_inc(iv); __serpent_encrypt(ctx, (u8 *)&ctrblk, (u8 *)&ctrblk); u128_xor(dst, src, (u128 *)&ctrblk); } EXPORT_SYMBOL_GPL(__serpent_crypt_ctr); void serpent_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv) { glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(__serpent_encrypt)); } EXPORT_SYMBOL_GPL(serpent_xts_enc); void serpent_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv) { glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(__serpent_decrypt)); } EXPORT_SYMBOL_GPL(serpent_xts_dec); static int serpent_setkey_skcipher(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { return __serpent_setkey(crypto_skcipher_ctx(tfm), key, keylen); } int xts_serpent_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) { struct serpent_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int err; err = xts_verify_key(tfm, key, keylen); if (err) return err; /* first half of xts-key is for crypt */ err = __serpent_setkey(&ctx->crypt_ctx, key, keylen / 2); if (err) return err; /* second half of xts-key is for tweak */ return __serpent_setkey(&ctx->tweak_ctx, key + keylen / 2, keylen / 2); } EXPORT_SYMBOL_GPL(xts_serpent_setkey); static const struct common_glue_ctx serpent_enc = { .num_funcs = 2, .fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS, .funcs = { { .num_blocks = SERPENT_PARALLEL_BLOCKS, .fn_u = { .ecb = GLUE_FUNC_CAST(serpent_ecb_enc_8way_avx) } }, { .num_blocks = 1, .fn_u = { .ecb = GLUE_FUNC_CAST(__serpent_encrypt) } } } }; static const struct common_glue_ctx serpent_ctr = { .num_funcs = 2, .fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS, .funcs = { { .num_blocks = SERPENT_PARALLEL_BLOCKS, .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(serpent_ctr_8way_avx) } }, { .num_blocks = 1, .fn_u = { .ctr = GLUE_CTR_FUNC_CAST(__serpent_crypt_ctr) } } } }; static const struct common_glue_ctx serpent_enc_xts = { .num_funcs = 2, .fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS, .funcs = { { .num_blocks = SERPENT_PARALLEL_BLOCKS, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_enc_8way_avx) } }, { .num_blocks = 1, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_enc) } } } }; static const struct common_glue_ctx serpent_dec = { .num_funcs = 2, .fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS, .funcs = { { .num_blocks = SERPENT_PARALLEL_BLOCKS, .fn_u = { .ecb = GLUE_FUNC_CAST(serpent_ecb_dec_8way_avx) } }, { .num_blocks = 1, .fn_u = { .ecb = GLUE_FUNC_CAST(__serpent_decrypt) } } } }; static const struct common_glue_ctx serpent_dec_cbc = { .num_funcs = 2, .fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS, .funcs = { { .num_blocks = SERPENT_PARALLEL_BLOCKS, .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(serpent_cbc_dec_8way_avx) } }, { .num_blocks = 1, .fn_u = { .cbc = GLUE_CBC_FUNC_CAST(__serpent_decrypt) } } } }; static const struct common_glue_ctx serpent_dec_xts = { .num_funcs = 2, .fpu_blocks_limit = SERPENT_PARALLEL_BLOCKS, .funcs = { { .num_blocks = SERPENT_PARALLEL_BLOCKS, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_dec_8way_avx) } }, { .num_blocks = 1, .fn_u = { .xts = GLUE_XTS_FUNC_CAST(serpent_xts_dec) } } } }; static int ecb_encrypt(struct skcipher_request *req) { return glue_ecb_req_128bit(&serpent_enc, req); } static int ecb_decrypt(struct skcipher_request *req) { return glue_ecb_req_128bit(&serpent_dec, req); } static int cbc_encrypt(struct skcipher_request *req) { return glue_cbc_encrypt_req_128bit(GLUE_FUNC_CAST(__serpent_encrypt), req); } static int cbc_decrypt(struct skcipher_request *req) { return glue_cbc_decrypt_req_128bit(&serpent_dec_cbc, req); } static int ctr_crypt(struct skcipher_request *req) { return glue_ctr_req_128bit(&serpent_ctr, req); } static int xts_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct serpent_xts_ctx *ctx = crypto_skcipher_ctx(tfm); return glue_xts_req_128bit(&serpent_enc_xts, req, XTS_TWEAK_CAST(__serpent_encrypt), &ctx->tweak_ctx, &ctx->crypt_ctx); } static int xts_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct serpent_xts_ctx *ctx = crypto_skcipher_ctx(tfm); return glue_xts_req_128bit(&serpent_dec_xts, req, XTS_TWEAK_CAST(__serpent_encrypt), &ctx->tweak_ctx, &ctx->crypt_ctx); } static struct skcipher_alg serpent_algs[] = { { .base.cra_name = "__ecb(serpent)", .base.cra_driver_name = "__ecb-serpent-avx", .base.cra_priority = 500, .base.cra_flags = CRYPTO_ALG_INTERNAL, .base.cra_blocksize = SERPENT_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct serpent_ctx), .base.cra_module = THIS_MODULE, .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .setkey = serpent_setkey_skcipher, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, { .base.cra_name = "__cbc(serpent)", .base.cra_driver_name = "__cbc-serpent-avx", .base.cra_priority = 500, .base.cra_flags = CRYPTO_ALG_INTERNAL, .base.cra_blocksize = SERPENT_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct serpent_ctx), .base.cra_module = THIS_MODULE, .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = serpent_setkey_skcipher, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, { .base.cra_name = "__ctr(serpent)", .base.cra_driver_name = "__ctr-serpent-avx", .base.cra_priority = 500, .base.cra_flags = CRYPTO_ALG_INTERNAL, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct serpent_ctx), .base.cra_module = THIS_MODULE, .min_keysize = SERPENT_MIN_KEY_SIZE, .max_keysize = SERPENT_MAX_KEY_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .chunksize = SERPENT_BLOCK_SIZE, .setkey = serpent_setkey_skcipher, .encrypt = ctr_crypt, .decrypt = ctr_crypt, }, { .base.cra_name = "__xts(serpent)", .base.cra_driver_name = "__xts-serpent-avx", .base.cra_priority = 500, .base.cra_flags = CRYPTO_ALG_INTERNAL, .base.cra_blocksize = SERPENT_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct serpent_xts_ctx), .base.cra_module = THIS_MODULE, .min_keysize = 2 * SERPENT_MIN_KEY_SIZE, .max_keysize = 2 * SERPENT_MAX_KEY_SIZE, .ivsize = SERPENT_BLOCK_SIZE, .setkey = xts_serpent_setkey, .encrypt = xts_encrypt, .decrypt = xts_decrypt, }, }; static struct simd_skcipher_alg *serpent_simd_algs[ARRAY_SIZE(serpent_algs)]; static int __init serpent_init(void) { const char *feature_name; if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, &feature_name)) { pr_info("CPU feature '%s' is not supported.\n", feature_name); return -ENODEV; } return simd_register_skciphers_compat(serpent_algs, ARRAY_SIZE(serpent_algs), serpent_simd_algs); } static void __exit serpent_exit(void) { simd_unregister_skciphers(serpent_algs, ARRAY_SIZE(serpent_algs), serpent_simd_algs); } module_init(serpent_init); module_exit(serpent_exit); MODULE_DESCRIPTION("Serpent Cipher Algorithm, AVX optimized"); MODULE_LICENSE("GPL"); MODULE_ALIAS_CRYPTO("serpent");