/* * General Purpose functions for the global management of the * 8260 Communication Processor Module. * Copyright (c) 1999 Dan Malek (dmalek@jlc.net) * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com) * 2.3.99 Updates * * In addition to the individual control of the communication * channels, there are a few functions that globally affect the * communication processor. * * Buffer descriptors must be allocated from the dual ported memory * space. The allocator for that is here. When the communication * process is reset, we reclaim the memory available. There is * currently no deallocator for this memory. */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/module.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/mpc8260.h> #include <asm/page.h> #include <asm/pgtable.h> #include <asm/cpm2.h> #include <asm/rheap.h> static void cpm2_dpinit(void); cpm_cpm2_t *cpmp; /* Pointer to comm processor space */ /* We allocate this here because it is used almost exclusively for * the communication processor devices. */ cpm2_map_t *cpm2_immr; #define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount of space for CPM as it is larger than on PQ2 */ void cpm2_reset(void) { cpm2_immr = (cpm2_map_t *)ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE); /* Reclaim the DP memory for our use. */ cpm2_dpinit(); /* Tell everyone where the comm processor resides. */ cpmp = &cpm2_immr->im_cpm; } /* Set a baud rate generator. This needs lots of work. There are * eight BRGs, which can be connected to the CPM channels or output * as clocks. The BRGs are in two different block of internal * memory mapped space. * The baud rate clock is the system clock divided by something. * It was set up long ago during the initial boot phase and is * is given to us. * Baud rate clocks are zero-based in the driver code (as that maps * to port numbers). Documentation uses 1-based numbering. */ #define BRG_INT_CLK (((bd_t *)__res)->bi_brgfreq) #define BRG_UART_CLK (BRG_INT_CLK/16) /* This function is used by UARTS, or anything else that uses a 16x * oversampled clock. */ void cpm_setbrg(uint brg, uint rate) { volatile uint *bp; /* This is good enough to get SMCs running..... */ if (brg < 4) { bp = (uint *)&cpm2_immr->im_brgc1; } else { bp = (uint *)&cpm2_immr->im_brgc5; brg -= 4; } bp += brg; *bp = ((BRG_UART_CLK / rate) << 1) | CPM_BRG_EN; } /* This function is used to set high speed synchronous baud rate * clocks. */ void cpm2_fastbrg(uint brg, uint rate, int div16) { volatile uint *bp; if (brg < 4) { bp = (uint *)&cpm2_immr->im_brgc1; } else { bp = (uint *)&cpm2_immr->im_brgc5; brg -= 4; } bp += brg; *bp = ((BRG_INT_CLK / rate) << 1) | CPM_BRG_EN; if (div16) *bp |= CPM_BRG_DIV16; } /* * dpalloc / dpfree bits. */ static spinlock_t cpm_dpmem_lock; /* 16 blocks should be enough to satisfy all requests * until the memory subsystem goes up... */ static rh_block_t cpm_boot_dpmem_rh_block[16]; static rh_info_t cpm_dpmem_info; static void cpm2_dpinit(void) { spin_lock_init(&cpm_dpmem_lock); /* initialize the info header */ rh_init(&cpm_dpmem_info, 1, sizeof(cpm_boot_dpmem_rh_block) / sizeof(cpm_boot_dpmem_rh_block[0]), cpm_boot_dpmem_rh_block); /* Attach the usable dpmem area */ /* XXX: This is actually crap. CPM_DATAONLY_BASE and * CPM_DATAONLY_SIZE is only a subset of the available dpram. It * varies with the processor and the microcode patches activated. * But the following should be at least safe. */ rh_attach_region(&cpm_dpmem_info, (void *)CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE); } /* This function returns an index into the DPRAM area. */ uint cpm_dpalloc(uint size, uint align) { void *start; unsigned long flags; spin_lock_irqsave(&cpm_dpmem_lock, flags); cpm_dpmem_info.alignment = align; start = rh_alloc(&cpm_dpmem_info, size, "commproc"); spin_unlock_irqrestore(&cpm_dpmem_lock, flags); return (uint)start; } EXPORT_SYMBOL(cpm_dpalloc); int cpm_dpfree(uint offset) { int ret; unsigned long flags; spin_lock_irqsave(&cpm_dpmem_lock, flags); ret = rh_free(&cpm_dpmem_info, (void *)offset); spin_unlock_irqrestore(&cpm_dpmem_lock, flags); return ret; } EXPORT_SYMBOL(cpm_dpfree); /* not sure if this is ever needed */ uint cpm_dpalloc_fixed(uint offset, uint size, uint align) { void *start; unsigned long flags; spin_lock_irqsave(&cpm_dpmem_lock, flags); cpm_dpmem_info.alignment = align; start = rh_alloc_fixed(&cpm_dpmem_info, (void *)offset, size, "commproc"); spin_unlock_irqrestore(&cpm_dpmem_lock, flags); return (uint)start; } EXPORT_SYMBOL(cpm_dpalloc_fixed); void cpm_dpdump(void) { rh_dump(&cpm_dpmem_info); } EXPORT_SYMBOL(cpm_dpdump); void *cpm_dpram_addr(uint offset) { return (void *)&cpm2_immr->im_dprambase[offset]; } EXPORT_SYMBOL(cpm_dpram_addr);