/* * Routines providing a simple monitor for use on the PowerMac. * * Copyright (C) 1996-2005 Paul Mackerras. * Copyright (C) 2001 PPC64 Team, IBM Corp * Copyrignt (C) 2006 Michael Ellerman, IBM Corp * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_PPC64 #include #include #endif #include "nonstdio.h" #include "dis-asm.h" #ifdef CONFIG_SMP static cpumask_t cpus_in_xmon = CPU_MASK_NONE; static unsigned long xmon_taken = 1; static int xmon_owner; static int xmon_gate; #else #define xmon_owner 0 #endif /* CONFIG_SMP */ static unsigned long in_xmon __read_mostly = 0; static unsigned long adrs; static int size = 1; #define MAX_DUMP (128 * 1024) static unsigned long ndump = 64; static unsigned long nidump = 16; static unsigned long ncsum = 4096; static int termch; static char tmpstr[128]; static long bus_error_jmp[JMP_BUF_LEN]; static int catch_memory_errors; static long *xmon_fault_jmp[NR_CPUS]; /* Breakpoint stuff */ struct bpt { unsigned long address; unsigned int instr[2]; atomic_t ref_count; int enabled; unsigned long pad; }; /* Bits in bpt.enabled */ #define BP_IABR_TE 1 /* IABR translation enabled */ #define BP_IABR 2 #define BP_TRAP 8 #define BP_DABR 0x10 #define NBPTS 256 static struct bpt bpts[NBPTS]; static struct bpt dabr; static struct bpt *iabr; static unsigned bpinstr = 0x7fe00008; /* trap */ #define BP_NUM(bp) ((bp) - bpts + 1) /* Prototypes */ static int cmds(struct pt_regs *); static int mread(unsigned long, void *, int); static int mwrite(unsigned long, void *, int); static int handle_fault(struct pt_regs *); static void byterev(unsigned char *, int); static void memex(void); static int bsesc(void); static void dump(void); static void prdump(unsigned long, long); static int ppc_inst_dump(unsigned long, long, int); static void dump_log_buf(void); static void backtrace(struct pt_regs *); static void excprint(struct pt_regs *); static void prregs(struct pt_regs *); static void memops(int); static void memlocate(void); static void memzcan(void); static void memdiffs(unsigned char *, unsigned char *, unsigned, unsigned); int skipbl(void); int scanhex(unsigned long *valp); static void scannl(void); static int hexdigit(int); void getstring(char *, int); static void flush_input(void); static int inchar(void); static void take_input(char *); static unsigned long read_spr(int); static void write_spr(int, unsigned long); static void super_regs(void); static void remove_bpts(void); static void insert_bpts(void); static void remove_cpu_bpts(void); static void insert_cpu_bpts(void); static struct bpt *at_breakpoint(unsigned long pc); static struct bpt *in_breakpoint_table(unsigned long pc, unsigned long *offp); static int do_step(struct pt_regs *); static void bpt_cmds(void); static void cacheflush(void); static int cpu_cmd(void); static void csum(void); static void bootcmds(void); static void proccall(void); void dump_segments(void); static void symbol_lookup(void); static void xmon_show_stack(unsigned long sp, unsigned long lr, unsigned long pc); static void xmon_print_symbol(unsigned long address, const char *mid, const char *after); static const char *getvecname(unsigned long vec); static int do_spu_cmd(void); #ifdef CONFIG_44x static void dump_tlb_44x(void); #endif #ifdef CONFIG_PPC_BOOK3E static void dump_tlb_book3e(void); #endif static int xmon_no_auto_backtrace; extern void xmon_enter(void); extern void xmon_leave(void); #ifdef CONFIG_PPC64 #define REG "%.16lx" #else #define REG "%.8lx" #endif #ifdef __LITTLE_ENDIAN__ #define GETWORD(v) (((v)[3] << 24) + ((v)[2] << 16) + ((v)[1] << 8) + (v)[0]) #else #define GETWORD(v) (((v)[0] << 24) + ((v)[1] << 16) + ((v)[2] << 8) + (v)[3]) #endif #define isxdigit(c) (('0' <= (c) && (c) <= '9') \ || ('a' <= (c) && (c) <= 'f') \ || ('A' <= (c) && (c) <= 'F')) #define isalnum(c) (('0' <= (c) && (c) <= '9') \ || ('a' <= (c) && (c) <= 'z') \ || ('A' <= (c) && (c) <= 'Z')) #define isspace(c) (c == ' ' || c == '\t' || c == 10 || c == 13 || c == 0) static char *help_string = "\ Commands:\n\ b show breakpoints\n\ bd set data breakpoint\n\ bi set instruction breakpoint\n\ bc clear breakpoint\n" #ifdef CONFIG_SMP "\ c print cpus stopped in xmon\n\ c# try to switch to cpu number h (in hex)\n" #endif "\ C checksum\n\ d dump bytes\n\ di dump instructions\n\ df dump float values\n\ dd dump double values\n\ dl dump the kernel log buffer\n" #ifdef CONFIG_PPC64 "\ dp[#] dump paca for current cpu, or cpu #\n\ dpa dump paca for all possible cpus\n" #endif "\ dr dump stream of raw bytes\n\ e print exception information\n\ f flush cache\n\ la lookup symbol+offset of specified address\n\ ls lookup address of specified symbol\n\ m examine/change memory\n\ mm move a block of memory\n\ ms set a block of memory\n\ md compare two blocks of memory\n\ ml locate a block of memory\n\ mz zero a block of memory\n\ mi show information about memory allocation\n\ p call a procedure\n\ r print registers\n\ s single step\n" #ifdef CONFIG_SPU_BASE " ss stop execution on all spus\n\ sr restore execution on stopped spus\n\ sf # dump spu fields for spu # (in hex)\n\ sd # dump spu local store for spu # (in hex)\n\ sdi # disassemble spu local store for spu # (in hex)\n" #endif " S print special registers\n\ t print backtrace\n\ x exit monitor and recover\n\ X exit monitor and dont recover\n" #if defined(CONFIG_PPC64) && !defined(CONFIG_PPC_BOOK3E) " u dump segment table or SLB\n" #elif defined(CONFIG_PPC_STD_MMU_32) " u dump segment registers\n" #elif defined(CONFIG_44x) || defined(CONFIG_PPC_BOOK3E) " u dump TLB\n" #endif " ? help\n" " zr reboot\n\ zh halt\n" ; static struct pt_regs *xmon_regs; static inline void sync(void) { asm volatile("sync; isync"); } static inline void store_inst(void *p) { asm volatile ("dcbst 0,%0; sync; icbi 0,%0; isync" : : "r" (p)); } static inline void cflush(void *p) { asm volatile ("dcbf 0,%0; icbi 0,%0" : : "r" (p)); } static inline void cinval(void *p) { asm volatile ("dcbi 0,%0; icbi 0,%0" : : "r" (p)); } /* * Disable surveillance (the service processor watchdog function) * while we are in xmon. * XXX we should re-enable it when we leave. :) */ #define SURVEILLANCE_TOKEN 9000 static inline void disable_surveillance(void) { #ifdef CONFIG_PPC_PSERIES /* Since this can't be a module, args should end up below 4GB. */ static struct rtas_args args; /* * At this point we have got all the cpus we can into * xmon, so there is hopefully no other cpu calling RTAS * at the moment, even though we don't take rtas.lock. * If we did try to take rtas.lock there would be a * real possibility of deadlock. */ args.token = rtas_token("set-indicator"); if (args.token == RTAS_UNKNOWN_SERVICE) return; args.nargs = 3; args.nret = 1; args.rets = &args.args[3]; args.args[0] = SURVEILLANCE_TOKEN; args.args[1] = 0; args.args[2] = 0; enter_rtas(__pa(&args)); #endif /* CONFIG_PPC_PSERIES */ } #ifdef CONFIG_SMP static int xmon_speaker; static void get_output_lock(void) { int me = smp_processor_id() + 0x100; int last_speaker = 0, prev; long timeout; if (xmon_speaker == me) return; for (;;) { last_speaker = cmpxchg(&xmon_speaker, 0, me); if (last_speaker == 0) return; /* * Wait a full second for the lock, we might be on a slow * console, but check every 100us. */ timeout = 10000; while (xmon_speaker == last_speaker) { if (--timeout > 0) { udelay(100); continue; } /* hostile takeover */ prev = cmpxchg(&xmon_speaker, last_speaker, me); if (prev == last_speaker) return; break; } } } static void release_output_lock(void) { xmon_speaker = 0; } int cpus_are_in_xmon(void) { return !cpumask_empty(&cpus_in_xmon); } #endif static inline int unrecoverable_excp(struct pt_regs *regs) { #if defined(CONFIG_4xx) || defined(CONFIG_PPC_BOOK3E) /* We have no MSR_RI bit on 4xx or Book3e, so we simply return false */ return 0; #else return ((regs->msr & MSR_RI) == 0); #endif } static int xmon_core(struct pt_regs *regs, int fromipi) { int cmd = 0; struct bpt *bp; long recurse_jmp[JMP_BUF_LEN]; unsigned long offset; unsigned long flags; #ifdef CONFIG_SMP int cpu; int secondary; unsigned long timeout; #endif local_irq_save(flags); bp = in_breakpoint_table(regs->nip, &offset); if (bp != NULL) { regs->nip = bp->address + offset; atomic_dec(&bp->ref_count); } remove_cpu_bpts(); #ifdef CONFIG_SMP cpu = smp_processor_id(); if (cpumask_test_cpu(cpu, &cpus_in_xmon)) { get_output_lock(); excprint(regs); printf("cpu 0x%x: Exception %lx %s in xmon, " "returning to main loop\n", cpu, regs->trap, getvecname(TRAP(regs))); release_output_lock(); longjmp(xmon_fault_jmp[cpu], 1); } if (setjmp(recurse_jmp) != 0) { if (!in_xmon || !xmon_gate) { get_output_lock(); printf("xmon: WARNING: bad recursive fault " "on cpu 0x%x\n", cpu); release_output_lock(); goto waiting; } secondary = !(xmon_taken && cpu == xmon_owner); goto cmdloop; } xmon_fault_jmp[cpu] = recurse_jmp; bp = NULL; if ((regs->msr & (MSR_IR|MSR_PR|MSR_64BIT)) == (MSR_IR|MSR_64BIT)) bp = at_breakpoint(regs->nip); if (bp || unrecoverable_excp(regs)) fromipi = 0; if (!fromipi) { get_output_lock(); excprint(regs); if (bp) { printf("cpu 0x%x stopped at breakpoint 0x%lx (", cpu, BP_NUM(bp)); xmon_print_symbol(regs->nip, " ", ")\n"); } if (unrecoverable_excp(regs)) printf("WARNING: exception is not recoverable, " "can't continue\n"); release_output_lock(); } cpumask_set_cpu(cpu, &cpus_in_xmon); waiting: secondary = 1; while (secondary && !xmon_gate) { if (in_xmon == 0) { if (fromipi) goto leave; secondary = test_and_set_bit(0, &in_xmon); } barrier(); } if (!secondary && !xmon_gate) { /* we are the first cpu to come in */ /* interrupt other cpu(s) */ int ncpus = num_online_cpus(); xmon_owner = cpu; mb(); if (ncpus > 1) { smp_send_debugger_break(); /* wait for other cpus to come in */ for (timeout = 100000000; timeout != 0; --timeout) { if (cpumask_weight(&cpus_in_xmon) >= ncpus) break; barrier(); } } remove_bpts(); disable_surveillance(); /* for breakpoint or single step, print the current instr. */ if (bp || TRAP(regs) == 0xd00) ppc_inst_dump(regs->nip, 1, 0); printf("enter ? for help\n"); mb(); xmon_gate = 1; barrier(); } cmdloop: while (in_xmon) { if (secondary) { if (cpu == xmon_owner) { if (!test_and_set_bit(0, &xmon_taken)) { secondary = 0; continue; } /* missed it */ while (cpu == xmon_owner) barrier(); } barrier(); } else { cmd = cmds(regs); if (cmd != 0) { /* exiting xmon */ insert_bpts(); xmon_gate = 0; wmb(); in_xmon = 0; break; } /* have switched to some other cpu */ secondary = 1; } } leave: cpumask_clear_cpu(cpu, &cpus_in_xmon); xmon_fault_jmp[cpu] = NULL; #else /* UP is simple... */ if (in_xmon) { printf("Exception %lx %s in xmon, returning to main loop\n", regs->trap, getvecname(TRAP(regs))); longjmp(xmon_fault_jmp[0], 1); } if (setjmp(recurse_jmp) == 0) { xmon_fault_jmp[0] = recurse_jmp; in_xmon = 1; excprint(regs); bp = at_breakpoint(regs->nip); if (bp) { printf("Stopped at breakpoint %lx (", BP_NUM(bp)); xmon_print_symbol(regs->nip, " ", ")\n"); } if (unrecoverable_excp(regs)) printf("WARNING: exception is not recoverable, " "can't continue\n"); remove_bpts(); disable_surveillance(); /* for breakpoint or single step, print the current instr. */ if (bp || TRAP(regs) == 0xd00) ppc_inst_dump(regs->nip, 1, 0); printf("enter ? for help\n"); } cmd = cmds(regs); insert_bpts(); in_xmon = 0; #endif #ifdef CONFIG_BOOKE if (regs->msr & MSR_DE) { bp = at_breakpoint(regs->nip); if (bp != NULL) { regs->nip = (unsigned long) &bp->instr[0]; atomic_inc(&bp->ref_count); } } #else if ((regs->msr & (MSR_IR|MSR_PR|MSR_64BIT)) == (MSR_IR|MSR_64BIT)) { bp = at_breakpoint(regs->nip); if (bp != NULL) { int stepped = emulate_step(regs, bp->instr[0]); if (stepped == 0) { regs->nip = (unsigned long) &bp->instr[0]; atomic_inc(&bp->ref_count); } else if (stepped < 0) { printf("Couldn't single-step %s instruction\n", (IS_RFID(bp->instr[0])? "rfid": "mtmsrd")); } } } #endif insert_cpu_bpts(); local_irq_restore(flags); return cmd != 'X' && cmd != EOF; } int xmon(struct pt_regs *excp) { struct pt_regs regs; if (excp == NULL) { ppc_save_regs(®s); excp = ®s; } return xmon_core(excp, 0); } EXPORT_SYMBOL(xmon); irqreturn_t xmon_irq(int irq, void *d) { unsigned long flags; local_irq_save(flags); printf("Keyboard interrupt\n"); xmon(get_irq_regs()); local_irq_restore(flags); return IRQ_HANDLED; } static int xmon_bpt(struct pt_regs *regs) { struct bpt *bp; unsigned long offset; if ((regs->msr & (MSR_IR|MSR_PR|MSR_64BIT)) != (MSR_IR|MSR_64BIT)) return 0; /* Are we at the trap at bp->instr[1] for some bp? */ bp = in_breakpoint_table(regs->nip, &offset); if (bp != NULL && offset == 4) { regs->nip = bp->address + 4; atomic_dec(&bp->ref_count); return 1; } /* Are we at a breakpoint? */ bp = at_breakpoint(regs->nip); if (!bp) return 0; xmon_core(regs, 0); return 1; } static int xmon_sstep(struct pt_regs *regs) { if (user_mode(regs)) return 0; xmon_core(regs, 0); return 1; } static int xmon_break_match(struct pt_regs *regs) { if ((regs->msr & (MSR_IR|MSR_PR|MSR_64BIT)) != (MSR_IR|MSR_64BIT)) return 0; if (dabr.enabled == 0) return 0; xmon_core(regs, 0); return 1; } static int xmon_iabr_match(struct pt_regs *regs) { if ((regs->msr & (MSR_IR|MSR_PR|MSR_64BIT)) != (MSR_IR|MSR_64BIT)) return 0; if (iabr == NULL) return 0; xmon_core(regs, 0); return 1; } static int xmon_ipi(struct pt_regs *regs) { #ifdef CONFIG_SMP if (in_xmon && !cpumask_test_cpu(smp_processor_id(), &cpus_in_xmon)) xmon_core(regs, 1); #endif return 0; } static int xmon_fault_handler(struct pt_regs *regs) { struct bpt *bp; unsigned long offset; if (in_xmon && catch_memory_errors) handle_fault(regs); /* doesn't return */ if ((regs->msr & (MSR_IR|MSR_PR|MSR_64BIT)) == (MSR_IR|MSR_64BIT)) { bp = in_breakpoint_table(regs->nip, &offset); if (bp != NULL) { regs->nip = bp->address + offset; atomic_dec(&bp->ref_count); } } return 0; } static struct bpt *at_breakpoint(unsigned long pc) { int i; struct bpt *bp; bp = bpts; for (i = 0; i < NBPTS; ++i, ++bp) if (bp->enabled && pc == bp->address) return bp; return NULL; } static struct bpt *in_breakpoint_table(unsigned long nip, unsigned long *offp) { unsigned long off; off = nip - (unsigned long) bpts; if (off >= sizeof(bpts)) return NULL; off %= sizeof(struct bpt); if (off != offsetof(struct bpt, instr[0]) && off != offsetof(struct bpt, instr[1])) return NULL; *offp = off - offsetof(struct bpt, instr[0]); return (struct bpt *) (nip - off); } static struct bpt *new_breakpoint(unsigned long a) { struct bpt *bp; a &= ~3UL; bp = at_breakpoint(a); if (bp) return bp; for (bp = bpts; bp < &bpts[NBPTS]; ++bp) { if (!bp->enabled && atomic_read(&bp->ref_count) == 0) { bp->address = a; bp->instr[1] = bpinstr; store_inst(&bp->instr[1]); return bp; } } printf("Sorry, no free breakpoints. Please clear one first.\n"); return NULL; } static void insert_bpts(void) { int i; struct bpt *bp; bp = bpts; for (i = 0; i < NBPTS; ++i, ++bp) { if ((bp->enabled & (BP_TRAP|BP_IABR)) == 0) continue; if (mread(bp->address, &bp->instr[0], 4) != 4) { printf("Couldn't read instruction at %lx, " "disabling breakpoint there\n", bp->address); bp->enabled = 0; continue; } if (IS_MTMSRD(bp->instr[0]) || IS_RFID(bp->instr[0])) { printf("Breakpoint at %lx is on an mtmsrd or rfid " "instruction, disabling it\n", bp->address); bp->enabled = 0; continue; } store_inst(&bp->instr[0]); if (bp->enabled & BP_IABR) continue; if (mwrite(bp->address, &bpinstr, 4) != 4) { printf("Couldn't write instruction at %lx, " "disabling breakpoint there\n", bp->address); bp->enabled &= ~BP_TRAP; continue; } store_inst((void *)bp->address); } } static void insert_cpu_bpts(void) { struct arch_hw_breakpoint brk; if (dabr.enabled) { brk.address = dabr.address; brk.type = (dabr.enabled & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL; brk.len = 8; __set_breakpoint(&brk); } if (iabr && cpu_has_feature(CPU_FTR_IABR)) mtspr(SPRN_IABR, iabr->address | (iabr->enabled & (BP_IABR|BP_IABR_TE))); } static void remove_bpts(void) { int i; struct bpt *bp; unsigned instr; bp = bpts; for (i = 0; i < NBPTS; ++i, ++bp) { if ((bp->enabled & (BP_TRAP|BP_IABR)) != BP_TRAP) continue; if (mread(bp->address, &instr, 4) == 4 && instr == bpinstr && mwrite(bp->address, &bp->instr, 4) != 4) printf("Couldn't remove breakpoint at %lx\n", bp->address); else store_inst((void *)bp->address); } } static void remove_cpu_bpts(void) { hw_breakpoint_disable(); if (cpu_has_feature(CPU_FTR_IABR)) mtspr(SPRN_IABR, 0); } /* Command interpreting routine */ static char *last_cmd; static int cmds(struct pt_regs *excp) { int cmd = 0; last_cmd = NULL; xmon_regs = excp; if (!xmon_no_auto_backtrace) { xmon_no_auto_backtrace = 1; xmon_show_stack(excp->gpr[1], excp->link, excp->nip); } for(;;) { #ifdef CONFIG_SMP printf("%x:", smp_processor_id()); #endif /* CONFIG_SMP */ printf("mon> "); flush_input(); termch = 0; cmd = skipbl(); if( cmd == '\n' ) { if (last_cmd == NULL) continue; take_input(last_cmd); last_cmd = NULL; cmd = inchar(); } switch (cmd) { case 'm': cmd = inchar(); switch (cmd) { case 'm': case 's': case 'd': memops(cmd); break; case 'l': memlocate(); break; case 'z': memzcan(); break; case 'i': show_mem(0); break; default: termch = cmd; memex(); } break; case 'd': dump(); break; case 'l': symbol_lookup(); break; case 'r': prregs(excp); /* print regs */ break; case 'e': excprint(excp); break; case 'S': super_regs(); break; case 't': backtrace(excp); break; case 'f': cacheflush(); break; case 's': if (do_spu_cmd() == 0) break; if (do_step(excp)) return cmd; break; case 'x': case 'X': return cmd; case EOF: printf(" \n"); mdelay(2000); return cmd; case '?': xmon_puts(help_string); break; case 'b': bpt_cmds(); break; case 'C': csum(); break; case 'c': if (cpu_cmd()) return 0; break; case 'z': bootcmds(); break; case 'p': proccall(); break; #ifdef CONFIG_PPC_STD_MMU case 'u': dump_segments(); break; #elif defined(CONFIG_4xx) case 'u': dump_tlb_44x(); break; #elif defined(CONFIG_PPC_BOOK3E) case 'u': dump_tlb_book3e(); break; #endif default: printf("Unrecognized command: "); do { if (' ' < cmd && cmd <= '~') putchar(cmd); else printf("\\x%x", cmd); cmd = inchar(); } while (cmd != '\n'); printf(" (type ? for help)\n"); break; } } } #ifdef CONFIG_BOOKE static int do_step(struct pt_regs *regs) { regs->msr |= MSR_DE; mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM); return 1; } #else /* * Step a single instruction. * Some instructions we emulate, others we execute with MSR_SE set. */ static int do_step(struct pt_regs *regs) { unsigned int instr; int stepped; /* check we are in 64-bit kernel mode, translation enabled */ if ((regs->msr & (MSR_64BIT|MSR_PR|MSR_IR)) == (MSR_64BIT|MSR_IR)) { if (mread(regs->nip, &instr, 4) == 4) { stepped = emulate_step(regs, instr); if (stepped < 0) { printf("Couldn't single-step %s instruction\n", (IS_RFID(instr)? "rfid": "mtmsrd")); return 0; } if (stepped > 0) { regs->trap = 0xd00 | (regs->trap & 1); printf("stepped to "); xmon_print_symbol(regs->nip, " ", "\n"); ppc_inst_dump(regs->nip, 1, 0); return 0; } } } regs->msr |= MSR_SE; return 1; } #endif static void bootcmds(void) { int cmd; cmd = inchar(); if (cmd == 'r') ppc_md.restart(NULL); else if (cmd == 'h') ppc_md.halt(); else if (cmd == 'p') ppc_md.power_off(); } static int cpu_cmd(void) { #ifdef CONFIG_SMP unsigned long cpu, first_cpu, last_cpu; int timeout; if (!scanhex(&cpu)) { /* print cpus waiting or in xmon */ printf("cpus stopped:"); last_cpu = first_cpu = NR_CPUS; for_each_possible_cpu(cpu) { if (cpumask_test_cpu(cpu, &cpus_in_xmon)) { if (cpu == last_cpu + 1) { last_cpu = cpu; } else { if (last_cpu != first_cpu) printf("-0x%lx", last_cpu); last_cpu = first_cpu = cpu; printf(" 0x%lx", cpu); } } } if (last_cpu != first_cpu) printf("-0x%lx", last_cpu); printf("\n"); return 0; } /* try to switch to cpu specified */ if (!cpumask_test_cpu(cpu, &cpus_in_xmon)) { printf("cpu 0x%x isn't in xmon\n", cpu); return 0; } xmon_taken = 0; mb(); xmon_owner = cpu; timeout = 10000000; while (!xmon_taken) { if (--timeout == 0) { if (test_and_set_bit(0, &xmon_taken)) break; /* take control back */ mb(); xmon_owner = smp_processor_id(); printf("cpu 0x%x didn't take control\n", cpu); return 0; } barrier(); } return 1; #else return 0; #endif /* CONFIG_SMP */ } static unsigned short fcstab[256] = { 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7, 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e, 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876, 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd, 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c, 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb, 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3, 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a, 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72, 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9, 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1, 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5, 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134, 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3, 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a, 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78 }; #define FCS(fcs, c) (((fcs) >> 8) ^ fcstab[((fcs) ^ (c)) & 0xff]) static void csum(void) { unsigned int i; unsigned short fcs; unsigned char v; if (!scanhex(&adrs)) return; if (!scanhex(&ncsum)) return; fcs = 0xffff; for (i = 0; i < ncsum; ++i) { if (mread(adrs+i, &v, 1) == 0) { printf("csum stopped at "REG"\n", adrs+i); break; } fcs = FCS(fcs, v); } printf("%x\n", fcs); } /* * Check if this is a suitable place to put a breakpoint. */ static long check_bp_loc(unsigned long addr) { unsigned int instr; addr &= ~3; if (!is_kernel_addr(addr)) { printf("Breakpoints may only be placed at kernel addresses\n"); return 0; } if (!mread(addr, &instr, sizeof(instr))) { printf("Can't read instruction at address %lx\n", addr); return 0; } if (IS_MTMSRD(instr) || IS_RFID(instr)) { printf("Breakpoints may not be placed on mtmsrd or rfid " "instructions\n"); return 0; } return 1; } static char *breakpoint_help_string = "Breakpoint command usage:\n" "b show breakpoints\n" "b [cnt] set breakpoint at given instr addr\n" "bc clear all breakpoints\n" "bc clear breakpoint number n or at addr\n" "bi [cnt] set hardware instr breakpoint (POWER3/RS64 only)\n" "bd [cnt] set hardware data breakpoint\n" ""; static void bpt_cmds(void) { int cmd; unsigned long a; int mode, i; struct bpt *bp; const char badaddr[] = "Only kernel addresses are permitted " "for breakpoints\n"; cmd = inchar(); switch (cmd) { #ifndef CONFIG_8xx case 'd': /* bd - hardware data breakpoint */ mode = 7; cmd = inchar(); if (cmd == 'r') mode = 5; else if (cmd == 'w') mode = 6; else termch = cmd; dabr.address = 0; dabr.enabled = 0; if (scanhex(&dabr.address)) { if (!is_kernel_addr(dabr.address)) { printf(badaddr); break; } dabr.address &= ~HW_BRK_TYPE_DABR; dabr.enabled = mode | BP_DABR; } break; case 'i': /* bi - hardware instr breakpoint */ if (!cpu_has_feature(CPU_FTR_IABR)) { printf("Hardware instruction breakpoint " "not supported on this cpu\n"); break; } if (iabr) { iabr->enabled &= ~(BP_IABR | BP_IABR_TE); iabr = NULL; } if (!scanhex(&a)) break; if (!check_bp_loc(a)) break; bp = new_breakpoint(a); if (bp != NULL) { bp->enabled |= BP_IABR | BP_IABR_TE; iabr = bp; } break; #endif case 'c': if (!scanhex(&a)) { /* clear all breakpoints */ for (i = 0; i < NBPTS; ++i) bpts[i].enabled = 0; iabr = NULL; dabr.enabled = 0; printf("All breakpoints cleared\n"); break; } if (a <= NBPTS && a >= 1) { /* assume a breakpoint number */ bp = &bpts[a-1]; /* bp nums are 1 based */ } else { /* assume a breakpoint address */ bp = at_breakpoint(a); if (bp == NULL) { printf("No breakpoint at %lx\n", a); break; } } printf("Cleared breakpoint %lx (", BP_NUM(bp)); xmon_print_symbol(bp->address, " ", ")\n"); bp->enabled = 0; break; default: termch = cmd; cmd = skipbl(); if (cmd == '?') { printf(breakpoint_help_string); break; } termch = cmd; if (!scanhex(&a)) { /* print all breakpoints */ printf(" type address\n"); if (dabr.enabled) { printf(" data "REG" [", dabr.address); if (dabr.enabled & 1) printf("r"); if (dabr.enabled & 2) printf("w"); printf("]\n"); } for (bp = bpts; bp < &bpts[NBPTS]; ++bp) { if (!bp->enabled) continue; printf("%2x %s ", BP_NUM(bp), (bp->enabled & BP_IABR)? "inst": "trap"); xmon_print_symbol(bp->address, " ", "\n"); } break; } if (!check_bp_loc(a)) break; bp = new_breakpoint(a); if (bp != NULL) bp->enabled |= BP_TRAP; break; } } /* Very cheap human name for vector lookup. */ static const char *getvecname(unsigned long vec) { char *ret; switch (vec) { case 0x100: ret = "(System Reset)"; break; case 0x200: ret = "(Machine Check)"; break; case 0x300: ret = "(Data Access)"; break; case 0x380: ret = "(Data SLB Access)"; break; case 0x400: ret = "(Instruction Access)"; break; case 0x480: ret = "(Instruction SLB Access)"; break; case 0x500: ret = "(Hardware Interrupt)"; break; case 0x600: ret = "(Alignment)"; break; case 0x700: ret = "(Program Check)"; break; case 0x800: ret = "(FPU Unavailable)"; break; case 0x900: ret = "(Decrementer)"; break; case 0x980: ret = "(Hypervisor Decrementer)"; break; case 0xa00: ret = "(Doorbell)"; break; case 0xc00: ret = "(System Call)"; break; case 0xd00: ret = "(Single Step)"; break; case 0xe40: ret = "(Emulation Assist)"; break; case 0xe60: ret = "(HMI)"; break; case 0xe80: ret = "(Hypervisor Doorbell)"; break; case 0xf00: ret = "(Performance Monitor)"; break; case 0xf20: ret = "(Altivec Unavailable)"; break; case 0x1300: ret = "(Instruction Breakpoint)"; break; case 0x1500: ret = "(Denormalisation)"; break; case 0x1700: ret = "(Altivec Assist)"; break; default: ret = ""; } return ret; } static void get_function_bounds(unsigned long pc, unsigned long *startp, unsigned long *endp) { unsigned long size, offset; const char *name; *startp = *endp = 0; if (pc == 0) return; if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); name = kallsyms_lookup(pc, &size, &offset, NULL, tmpstr); if (name != NULL) { *startp = pc - offset; *endp = pc - offset + size; } sync(); } catch_memory_errors = 0; } #define LRSAVE_OFFSET (STACK_FRAME_LR_SAVE * sizeof(unsigned long)) #define MARKER_OFFSET (STACK_FRAME_MARKER * sizeof(unsigned long)) static void xmon_show_stack(unsigned long sp, unsigned long lr, unsigned long pc) { int max_to_print = 64; unsigned long ip; unsigned long newsp; unsigned long marker; struct pt_regs regs; while (max_to_print--) { if (sp < PAGE_OFFSET) { if (sp != 0) printf("SP (%lx) is in userspace\n", sp); break; } if (!mread(sp + LRSAVE_OFFSET, &ip, sizeof(unsigned long)) || !mread(sp, &newsp, sizeof(unsigned long))) { printf("Couldn't read stack frame at %lx\n", sp); break; } /* * For the first stack frame, try to work out if * LR and/or the saved LR value in the bottommost * stack frame are valid. */ if ((pc | lr) != 0) { unsigned long fnstart, fnend; unsigned long nextip; int printip = 1; get_function_bounds(pc, &fnstart, &fnend); nextip = 0; if (newsp > sp) mread(newsp + LRSAVE_OFFSET, &nextip, sizeof(unsigned long)); if (lr == ip) { if (lr < PAGE_OFFSET || (fnstart <= lr && lr < fnend)) printip = 0; } else if (lr == nextip) { printip = 0; } else if (lr >= PAGE_OFFSET && !(fnstart <= lr && lr < fnend)) { printf("[link register ] "); xmon_print_symbol(lr, " ", "\n"); } if (printip) { printf("["REG"] ", sp); xmon_print_symbol(ip, " ", " (unreliable)\n"); } pc = lr = 0; } else { printf("["REG"] ", sp); xmon_print_symbol(ip, " ", "\n"); } /* Look for "regshere" marker to see if this is an exception frame. */ if (mread(sp + MARKER_OFFSET, &marker, sizeof(unsigned long)) && marker == STACK_FRAME_REGS_MARKER) { if (mread(sp + STACK_FRAME_OVERHEAD, ®s, sizeof(regs)) != sizeof(regs)) { printf("Couldn't read registers at %lx\n", sp + STACK_FRAME_OVERHEAD); break; } printf("--- Exception: %lx %s at ", regs.trap, getvecname(TRAP(®s))); pc = regs.nip; lr = regs.link; xmon_print_symbol(pc, " ", "\n"); } if (newsp == 0) break; sp = newsp; } } static void backtrace(struct pt_regs *excp) { unsigned long sp; if (scanhex(&sp)) xmon_show_stack(sp, 0, 0); else xmon_show_stack(excp->gpr[1], excp->link, excp->nip); scannl(); } static void print_bug_trap(struct pt_regs *regs) { #ifdef CONFIG_BUG const struct bug_entry *bug; unsigned long addr; if (regs->msr & MSR_PR) return; /* not in kernel */ addr = regs->nip; /* address of trap instruction */ if (addr < PAGE_OFFSET) return; bug = find_bug(regs->nip); if (bug == NULL) return; if (is_warning_bug(bug)) return; #ifdef CONFIG_DEBUG_BUGVERBOSE printf("kernel BUG at %s:%u!\n", bug->file, bug->line); #else printf("kernel BUG at %p!\n", (void *)bug->bug_addr); #endif #endif /* CONFIG_BUG */ } static void excprint(struct pt_regs *fp) { unsigned long trap; #ifdef CONFIG_SMP printf("cpu 0x%x: ", smp_processor_id()); #endif /* CONFIG_SMP */ trap = TRAP(fp); printf("Vector: %lx %s at [%lx]\n", fp->trap, getvecname(trap), fp); printf(" pc: "); xmon_print_symbol(fp->nip, ": ", "\n"); printf(" lr: ", fp->link); xmon_print_symbol(fp->link, ": ", "\n"); printf(" sp: %lx\n", fp->gpr[1]); printf(" msr: %lx\n", fp->msr); if (trap == 0x300 || trap == 0x380 || trap == 0x600 || trap == 0x200) { printf(" dar: %lx\n", fp->dar); if (trap != 0x380) printf(" dsisr: %lx\n", fp->dsisr); } printf(" current = 0x%lx\n", current); #ifdef CONFIG_PPC64 printf(" paca = 0x%lx\t softe: %d\t irq_happened: 0x%02x\n", local_paca, local_paca->soft_enabled, local_paca->irq_happened); #endif if (current) { printf(" pid = %ld, comm = %s\n", current->pid, current->comm); } if (trap == 0x700) print_bug_trap(fp); } static void prregs(struct pt_regs *fp) { int n, trap; unsigned long base; struct pt_regs regs; if (scanhex(&base)) { if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); regs = *(struct pt_regs *)base; sync(); __delay(200); } else { catch_memory_errors = 0; printf("*** Error reading registers from "REG"\n", base); return; } catch_memory_errors = 0; fp = ®s; } #ifdef CONFIG_PPC64 if (FULL_REGS(fp)) { for (n = 0; n < 16; ++n) printf("R%.2ld = "REG" R%.2ld = "REG"\n", n, fp->gpr[n], n+16, fp->gpr[n+16]); } else { for (n = 0; n < 7; ++n) printf("R%.2ld = "REG" R%.2ld = "REG"\n", n, fp->gpr[n], n+7, fp->gpr[n+7]); } #else for (n = 0; n < 32; ++n) { printf("R%.2d = %.8x%s", n, fp->gpr[n], (n & 3) == 3? "\n": " "); if (n == 12 && !FULL_REGS(fp)) { printf("\n"); break; } } #endif printf("pc = "); xmon_print_symbol(fp->nip, " ", "\n"); if (TRAP(fp) != 0xc00 && cpu_has_feature(CPU_FTR_CFAR)) { printf("cfar= "); xmon_print_symbol(fp->orig_gpr3, " ", "\n"); } printf("lr = "); xmon_print_symbol(fp->link, " ", "\n"); printf("msr = "REG" cr = %.8lx\n", fp->msr, fp->ccr); printf("ctr = "REG" xer = "REG" trap = %4lx\n", fp->ctr, fp->xer, fp->trap); trap = TRAP(fp); if (trap == 0x300 || trap == 0x380 || trap == 0x600) printf("dar = "REG" dsisr = %.8lx\n", fp->dar, fp->dsisr); } static void cacheflush(void) { int cmd; unsigned long nflush; cmd = inchar(); if (cmd != 'i') termch = cmd; scanhex((void *)&adrs); if (termch != '\n') termch = 0; nflush = 1; scanhex(&nflush); nflush = (nflush + L1_CACHE_BYTES - 1) / L1_CACHE_BYTES; if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); if (cmd != 'i') { for (; nflush > 0; --nflush, adrs += L1_CACHE_BYTES) cflush((void *) adrs); } else { for (; nflush > 0; --nflush, adrs += L1_CACHE_BYTES) cinval((void *) adrs); } sync(); /* wait a little while to see if we get a machine check */ __delay(200); } catch_memory_errors = 0; } static unsigned long read_spr(int n) { unsigned int instrs[2]; unsigned long (*code)(void); unsigned long ret = -1UL; #ifdef CONFIG_PPC64 unsigned long opd[3]; opd[0] = (unsigned long)instrs; opd[1] = 0; opd[2] = 0; code = (unsigned long (*)(void)) opd; #else code = (unsigned long (*)(void)) instrs; #endif /* mfspr r3,n; blr */ instrs[0] = 0x7c6002a6 + ((n & 0x1F) << 16) + ((n & 0x3e0) << 6); instrs[1] = 0x4e800020; store_inst(instrs); store_inst(instrs+1); if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); ret = code(); sync(); /* wait a little while to see if we get a machine check */ __delay(200); n = size; } return ret; } static void write_spr(int n, unsigned long val) { unsigned int instrs[2]; unsigned long (*code)(unsigned long); #ifdef CONFIG_PPC64 unsigned long opd[3]; opd[0] = (unsigned long)instrs; opd[1] = 0; opd[2] = 0; code = (unsigned long (*)(unsigned long)) opd; #else code = (unsigned long (*)(unsigned long)) instrs; #endif instrs[0] = 0x7c6003a6 + ((n & 0x1F) << 16) + ((n & 0x3e0) << 6); instrs[1] = 0x4e800020; store_inst(instrs); store_inst(instrs+1); if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); code(val); sync(); /* wait a little while to see if we get a machine check */ __delay(200); n = size; } } static unsigned long regno; extern char exc_prolog; extern char dec_exc; static void super_regs(void) { int cmd; unsigned long val; cmd = skipbl(); if (cmd == '\n') { unsigned long sp, toc; asm("mr %0,1" : "=r" (sp) :); asm("mr %0,2" : "=r" (toc) :); printf("msr = "REG" sprg0= "REG"\n", mfmsr(), mfspr(SPRN_SPRG0)); printf("pvr = "REG" sprg1= "REG"\n", mfspr(SPRN_PVR), mfspr(SPRN_SPRG1)); printf("dec = "REG" sprg2= "REG"\n", mfspr(SPRN_DEC), mfspr(SPRN_SPRG2)); printf("sp = "REG" sprg3= "REG"\n", sp, mfspr(SPRN_SPRG3)); printf("toc = "REG" dar = "REG"\n", toc, mfspr(SPRN_DAR)); return; } scanhex(®no); switch (cmd) { case 'w': val = read_spr(regno); scanhex(&val); write_spr(regno, val); /* fall through */ case 'r': printf("spr %lx = %lx\n", regno, read_spr(regno)); break; } scannl(); } /* * Stuff for reading and writing memory safely */ static int mread(unsigned long adrs, void *buf, int size) { volatile int n; char *p, *q; n = 0; if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); p = (char *)adrs; q = (char *)buf; switch (size) { case 2: *(u16 *)q = *(u16 *)p; break; case 4: *(u32 *)q = *(u32 *)p; break; case 8: *(u64 *)q = *(u64 *)p; break; default: for( ; n < size; ++n) { *q++ = *p++; sync(); } } sync(); /* wait a little while to see if we get a machine check */ __delay(200); n = size; } catch_memory_errors = 0; return n; } static int mwrite(unsigned long adrs, void *buf, int size) { volatile int n; char *p, *q; n = 0; if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); p = (char *) adrs; q = (char *) buf; switch (size) { case 2: *(u16 *)p = *(u16 *)q; break; case 4: *(u32 *)p = *(u32 *)q; break; case 8: *(u64 *)p = *(u64 *)q; break; default: for ( ; n < size; ++n) { *p++ = *q++; sync(); } } sync(); /* wait a little while to see if we get a machine check */ __delay(200); n = size; } else { printf("*** Error writing address "REG"\n", adrs + n); } catch_memory_errors = 0; return n; } static int fault_type; static int fault_except; static char *fault_chars[] = { "--", "**", "##" }; static int handle_fault(struct pt_regs *regs) { fault_except = TRAP(regs); switch (TRAP(regs)) { case 0x200: fault_type = 0; break; case 0x300: case 0x380: fault_type = 1; break; default: fault_type = 2; } longjmp(bus_error_jmp, 1); return 0; } #define SWAP(a, b, t) ((t) = (a), (a) = (b), (b) = (t)) static void byterev(unsigned char *val, int size) { int t; switch (size) { case 2: SWAP(val[0], val[1], t); break; case 4: SWAP(val[0], val[3], t); SWAP(val[1], val[2], t); break; case 8: /* is there really any use for this? */ SWAP(val[0], val[7], t); SWAP(val[1], val[6], t); SWAP(val[2], val[5], t); SWAP(val[3], val[4], t); break; } } static int brev; static int mnoread; static char *memex_help_string = "Memory examine command usage:\n" "m [addr] [flags] examine/change memory\n" " addr is optional. will start where left off.\n" " flags may include chars from this set:\n" " b modify by bytes (default)\n" " w modify by words (2 byte)\n" " l modify by longs (4 byte)\n" " d modify by doubleword (8 byte)\n" " r toggle reverse byte order mode\n" " n do not read memory (for i/o spaces)\n" " . ok to read (default)\n" "NOTE: flags are saved as defaults\n" ""; static char *memex_subcmd_help_string = "Memory examine subcommands:\n" " hexval write this val to current location\n" " 'string' write chars from string to this location\n" " ' increment address\n" " ^ decrement address\n" " / increment addr by 0x10. //=0x100, ///=0x1000, etc\n" " \\ decrement addr by 0x10. \\\\=0x100, \\\\\\=0x1000, etc\n" " ` clear no-read flag\n" " ; stay at this addr\n" " v change to byte mode\n" " w change to word (2 byte) mode\n" " l change to long (4 byte) mode\n" " u change to doubleword (8 byte) mode\n" " m addr change current addr\n" " n toggle no-read flag\n" " r toggle byte reverse flag\n" " < count back up count bytes\n" " > count skip forward count bytes\n" " x exit this mode\n" ""; static void memex(void) { int cmd, inc, i, nslash; unsigned long n; unsigned char val[16]; scanhex((void *)&adrs); cmd = skipbl(); if (cmd == '?') { printf(memex_help_string); return; } else { termch = cmd; } last_cmd = "m\n"; while ((cmd = skipbl()) != '\n') { switch( cmd ){ case 'b': size = 1; break; case 'w': size = 2; break; case 'l': size = 4; break; case 'd': size = 8; break; case 'r': brev = !brev; break; case 'n': mnoread = 1; break; case '.': mnoread = 0; break; } } if( size <= 0 ) size = 1; else if( size > 8 ) size = 8; for(;;){ if (!mnoread) n = mread(adrs, val, size); printf(REG"%c", adrs, brev? 'r': ' '); if (!mnoread) { if (brev) byterev(val, size); putchar(' '); for (i = 0; i < n; ++i) printf("%.2x", val[i]); for (; i < size; ++i) printf("%s", fault_chars[fault_type]); } putchar(' '); inc = size; nslash = 0; for(;;){ if( scanhex(&n) ){ for (i = 0; i < size; ++i) val[i] = n >> (i * 8); if (!brev) byterev(val, size); mwrite(adrs, val, size); inc = size; } cmd = skipbl(); if (cmd == '\n') break; inc = 0; switch (cmd) { case '\'': for(;;){ n = inchar(); if( n == '\\' ) n = bsesc(); else if( n == '\'' ) break; for (i = 0; i < size; ++i) val[i] = n >> (i * 8); if (!brev) byterev(val, size); mwrite(adrs, val, size); adrs += size; } adrs -= size; inc = size; break; case ',': adrs += size; break; case '.': mnoread = 0; break; case ';': break; case 'x': case EOF: scannl(); return; case 'b': case 'v': size = 1; break; case 'w': size = 2; break; case 'l': size = 4; break; case 'u': size = 8; break; case '^': adrs -= size; break; break; case '/': if (nslash > 0) adrs -= 1 << nslash; else nslash = 0; nslash += 4; adrs += 1 << nslash; break; case '\\': if (nslash < 0) adrs += 1 << -nslash; else nslash = 0; nslash -= 4; adrs -= 1 << -nslash; break; case 'm': scanhex((void *)&adrs); break; case 'n': mnoread = 1; break; case 'r': brev = !brev; break; case '<': n = size; scanhex(&n); adrs -= n; break; case '>': n = size; scanhex(&n); adrs += n; break; case '?': printf(memex_subcmd_help_string); break; } } adrs += inc; } } static int bsesc(void) { int c; c = inchar(); switch( c ){ case 'n': c = '\n'; break; case 'r': c = '\r'; break; case 'b': c = '\b'; break; case 't': c = '\t'; break; } return c; } static void xmon_rawdump (unsigned long adrs, long ndump) { long n, m, r, nr; unsigned char temp[16]; for (n = ndump; n > 0;) { r = n < 16? n: 16; nr = mread(adrs, temp, r); adrs += nr; for (m = 0; m < r; ++m) { if (m < nr) printf("%.2x", temp[m]); else printf("%s", fault_chars[fault_type]); } n -= r; if (nr < r) break; } printf("\n"); } #ifdef CONFIG_PPC64 static void dump_one_paca(int cpu) { struct paca_struct *p; if (setjmp(bus_error_jmp) != 0) { printf("*** Error dumping paca for cpu 0x%x!\n", cpu); return; } catch_memory_errors = 1; sync(); p = &paca[cpu]; printf("paca for cpu 0x%x @ %p:\n", cpu, p); printf(" %-*s = %s\n", 16, "possible", cpu_possible(cpu) ? "yes" : "no"); printf(" %-*s = %s\n", 16, "present", cpu_present(cpu) ? "yes" : "no"); printf(" %-*s = %s\n", 16, "online", cpu_online(cpu) ? "yes" : "no"); #define DUMP(paca, name, format) \ printf(" %-*s = %#-*"format"\t(0x%lx)\n", 16, #name, 18, paca->name, \ offsetof(struct paca_struct, name)); DUMP(p, lock_token, "x"); DUMP(p, paca_index, "x"); DUMP(p, kernel_toc, "lx"); DUMP(p, kernelbase, "lx"); DUMP(p, kernel_msr, "lx"); DUMP(p, emergency_sp, "p"); #ifdef CONFIG_PPC_BOOK3S_64 DUMP(p, mc_emergency_sp, "p"); DUMP(p, in_mce, "x"); #endif DUMP(p, data_offset, "lx"); DUMP(p, hw_cpu_id, "x"); DUMP(p, cpu_start, "x"); DUMP(p, kexec_state, "x"); DUMP(p, __current, "p"); DUMP(p, kstack, "lx"); DUMP(p, stab_rr, "lx"); DUMP(p, saved_r1, "lx"); DUMP(p, trap_save, "x"); DUMP(p, soft_enabled, "x"); DUMP(p, irq_happened, "x"); DUMP(p, io_sync, "x"); DUMP(p, irq_work_pending, "x"); DUMP(p, nap_state_lost, "x"); #undef DUMP catch_memory_errors = 0; sync(); } static void dump_all_pacas(void) { int cpu; if (num_possible_cpus() == 0) { printf("No possible cpus, use 'dp #' to dump individual cpus\n"); return; } for_each_possible_cpu(cpu) dump_one_paca(cpu); } static void dump_pacas(void) { unsigned long num; int c; c = inchar(); if (c == 'a') { dump_all_pacas(); return; } termch = c; /* Put c back, it wasn't 'a' */ if (scanhex(&num)) dump_one_paca(num); else dump_one_paca(xmon_owner); } #endif #define isxdigit(c) (('0' <= (c) && (c) <= '9') \ || ('a' <= (c) && (c) <= 'f') \ || ('A' <= (c) && (c) <= 'F')) static void dump(void) { int c; c = inchar(); #ifdef CONFIG_PPC64 if (c == 'p') { dump_pacas(); return; } #endif if ((isxdigit(c) && c != 'f' && c != 'd') || c == '\n') termch = c; scanhex((void *)&adrs); if (termch != '\n') termch = 0; if (c == 'i') { scanhex(&nidump); if (nidump == 0) nidump = 16; else if (nidump > MAX_DUMP) nidump = MAX_DUMP; adrs += ppc_inst_dump(adrs, nidump, 1); last_cmd = "di\n"; } else if (c == 'l') { dump_log_buf(); } else if (c == 'r') { scanhex(&ndump); if (ndump == 0) ndump = 64; xmon_rawdump(adrs, ndump); adrs += ndump; last_cmd = "dr\n"; } else { scanhex(&ndump); if (ndump == 0) ndump = 64; else if (ndump > MAX_DUMP) ndump = MAX_DUMP; prdump(adrs, ndump); adrs += ndump; last_cmd = "d\n"; } } static void prdump(unsigned long adrs, long ndump) { long n, m, c, r, nr; unsigned char temp[16]; for (n = ndump; n > 0;) { printf(REG, adrs); putchar(' '); r = n < 16? n: 16; nr = mread(adrs, temp, r); adrs += nr; for (m = 0; m < r; ++m) { if ((m & (sizeof(long) - 1)) == 0 && m > 0) putchar(' '); if (m < nr) printf("%.2x", temp[m]); else printf("%s", fault_chars[fault_type]); } for (; m < 16; ++m) { if ((m & (sizeof(long) - 1)) == 0) putchar(' '); printf(" "); } printf(" |"); for (m = 0; m < r; ++m) { if (m < nr) { c = temp[m]; putchar(' ' <= c && c <= '~'? c: '.'); } else putchar(' '); } n -= r; for (; m < 16; ++m) putchar(' '); printf("|\n"); if (nr < r) break; } } typedef int (*instruction_dump_func)(unsigned long inst, unsigned long addr); static int generic_inst_dump(unsigned long adr, long count, int praddr, instruction_dump_func dump_func) { int nr, dotted; unsigned long first_adr; unsigned long inst, last_inst = 0; unsigned char val[4]; dotted = 0; for (first_adr = adr; count > 0; --count, adr += 4) { nr = mread(adr, val, 4); if (nr == 0) { if (praddr) { const char *x = fault_chars[fault_type]; printf(REG" %s%s%s%s\n", adr, x, x, x, x); } break; } inst = GETWORD(val); if (adr > first_adr && inst == last_inst) { if (!dotted) { printf(" ...\n"); dotted = 1; } continue; } dotted = 0; last_inst = inst; if (praddr) printf(REG" %.8x", adr, inst); printf("\t"); dump_func(inst, adr); printf("\n"); } return adr - first_adr; } static int ppc_inst_dump(unsigned long adr, long count, int praddr) { return generic_inst_dump(adr, count, praddr, print_insn_powerpc); } void print_address(unsigned long addr) { xmon_print_symbol(addr, "\t# ", ""); } void dump_log_buf(void) { struct kmsg_dumper dumper = { .active = 1 }; unsigned char buf[128]; size_t len; if (setjmp(bus_error_jmp) != 0) { printf("Error dumping printk buffer!\n"); return; } catch_memory_errors = 1; sync(); kmsg_dump_rewind_nolock(&dumper); while (kmsg_dump_get_line_nolock(&dumper, false, buf, sizeof(buf), &len)) { buf[len] = '\0'; printf("%s", buf); } sync(); /* wait a little while to see if we get a machine check */ __delay(200); catch_memory_errors = 0; } /* * Memory operations - move, set, print differences */ static unsigned long mdest; /* destination address */ static unsigned long msrc; /* source address */ static unsigned long mval; /* byte value to set memory to */ static unsigned long mcount; /* # bytes to affect */ static unsigned long mdiffs; /* max # differences to print */ static void memops(int cmd) { scanhex((void *)&mdest); if( termch != '\n' ) termch = 0; scanhex((void *)(cmd == 's'? &mval: &msrc)); if( termch != '\n' ) termch = 0; scanhex((void *)&mcount); switch( cmd ){ case 'm': memmove((void *)mdest, (void *)msrc, mcount); break; case 's': memset((void *)mdest, mval, mcount); break; case 'd': if( termch != '\n' ) termch = 0; scanhex((void *)&mdiffs); memdiffs((unsigned char *)mdest, (unsigned char *)msrc, mcount, mdiffs); break; } } static void memdiffs(unsigned char *p1, unsigned char *p2, unsigned nb, unsigned maxpr) { unsigned n, prt; prt = 0; for( n = nb; n > 0; --n ) if( *p1++ != *p2++ ) if( ++prt <= maxpr ) printf("%.16x %.2x # %.16x %.2x\n", p1 - 1, p1[-1], p2 - 1, p2[-1]); if( prt > maxpr ) printf("Total of %d differences\n", prt); } static unsigned mend; static unsigned mask; static void memlocate(void) { unsigned a, n; unsigned char val[4]; last_cmd = "ml"; scanhex((void *)&mdest); if (termch != '\n') { termch = 0; scanhex((void *)&mend); if (termch != '\n') { termch = 0; scanhex((void *)&mval); mask = ~0; if (termch != '\n') termch = 0; scanhex((void *)&mask); } } n = 0; for (a = mdest; a < mend; a += 4) { if (mread(a, val, 4) == 4 && ((GETWORD(val) ^ mval) & mask) == 0) { printf("%.16x: %.16x\n", a, GETWORD(val)); if (++n >= 10) break; } } } static unsigned long mskip = 0x1000; static unsigned long mlim = 0xffffffff; static void memzcan(void) { unsigned char v; unsigned a; int ok, ook; scanhex(&mdest); if (termch != '\n') termch = 0; scanhex(&mskip); if (termch != '\n') termch = 0; scanhex(&mlim); ook = 0; for (a = mdest; a < mlim; a += mskip) { ok = mread(a, &v, 1); if (ok && !ook) { printf("%.8x .. ", a); } else if (!ok && ook) printf("%.8x\n", a - mskip); ook = ok; if (a + mskip < a) break; } if (ook) printf("%.8x\n", a - mskip); } static void proccall(void) { unsigned long args[8]; unsigned long ret; int i; typedef unsigned long (*callfunc_t)(unsigned long, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); callfunc_t func; if (!scanhex(&adrs)) return; if (termch != '\n') termch = 0; for (i = 0; i < 8; ++i) args[i] = 0; for (i = 0; i < 8; ++i) { if (!scanhex(&args[i]) || termch == '\n') break; termch = 0; } func = (callfunc_t) adrs; ret = 0; if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); ret = func(args[0], args[1], args[2], args[3], args[4], args[5], args[6], args[7]); sync(); printf("return value is 0x%lx\n", ret); } else { printf("*** %x exception occurred\n", fault_except); } catch_memory_errors = 0; } /* Input scanning routines */ int skipbl(void) { int c; if( termch != 0 ){ c = termch; termch = 0; } else c = inchar(); while( c == ' ' || c == '\t' ) c = inchar(); return c; } #define N_PTREGS 44 static char *regnames[N_PTREGS] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", "pc", "msr", "or3", "ctr", "lr", "xer", "ccr", #ifdef CONFIG_PPC64 "softe", #else "mq", #endif "trap", "dar", "dsisr", "res" }; int scanhex(unsigned long *vp) { int c, d; unsigned long v; c = skipbl(); if (c == '%') { /* parse register name */ char regname[8]; int i; for (i = 0; i < sizeof(regname) - 1; ++i) { c = inchar(); if (!isalnum(c)) { termch = c; break; } regname[i] = c; } regname[i] = 0; for (i = 0; i < N_PTREGS; ++i) { if (strcmp(regnames[i], regname) == 0) { if (xmon_regs == NULL) { printf("regs not available\n"); return 0; } *vp = ((unsigned long *)xmon_regs)[i]; return 1; } } printf("invalid register name '%%%s'\n", regname); return 0; } /* skip leading "0x" if any */ if (c == '0') { c = inchar(); if (c == 'x') { c = inchar(); } else { d = hexdigit(c); if (d == EOF) { termch = c; *vp = 0; return 1; } } } else if (c == '$') { int i; for (i=0; i<63; i++) { c = inchar(); if (isspace(c)) { termch = c; break; } tmpstr[i] = c; } tmpstr[i++] = 0; *vp = 0; if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); *vp = kallsyms_lookup_name(tmpstr); sync(); } catch_memory_errors = 0; if (!(*vp)) { printf("unknown symbol '%s'\n", tmpstr); return 0; } return 1; } d = hexdigit(c); if (d == EOF) { termch = c; return 0; } v = 0; do { v = (v << 4) + d; c = inchar(); d = hexdigit(c); } while (d != EOF); termch = c; *vp = v; return 1; } static void scannl(void) { int c; c = termch; termch = 0; while( c != '\n' ) c = inchar(); } static int hexdigit(int c) { if( '0' <= c && c <= '9' ) return c - '0'; if( 'A' <= c && c <= 'F' ) return c - ('A' - 10); if( 'a' <= c && c <= 'f' ) return c - ('a' - 10); return EOF; } void getstring(char *s, int size) { int c; c = skipbl(); do { if( size > 1 ){ *s++ = c; --size; } c = inchar(); } while( c != ' ' && c != '\t' && c != '\n' ); termch = c; *s = 0; } static char line[256]; static char *lineptr; static void flush_input(void) { lineptr = NULL; } static int inchar(void) { if (lineptr == NULL || *lineptr == 0) { if (xmon_gets(line, sizeof(line)) == NULL) { lineptr = NULL; return EOF; } lineptr = line; } return *lineptr++; } static void take_input(char *str) { lineptr = str; } static void symbol_lookup(void) { int type = inchar(); unsigned long addr; static char tmp[64]; switch (type) { case 'a': if (scanhex(&addr)) xmon_print_symbol(addr, ": ", "\n"); termch = 0; break; case 's': getstring(tmp, 64); if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); addr = kallsyms_lookup_name(tmp); if (addr) printf("%s: %lx\n", tmp, addr); else printf("Symbol '%s' not found.\n", tmp); sync(); } catch_memory_errors = 0; termch = 0; break; } } /* Print an address in numeric and symbolic form (if possible) */ static void xmon_print_symbol(unsigned long address, const char *mid, const char *after) { char *modname; const char *name = NULL; unsigned long offset, size; printf(REG, address); if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); name = kallsyms_lookup(address, &size, &offset, &modname, tmpstr); sync(); /* wait a little while to see if we get a machine check */ __delay(200); } catch_memory_errors = 0; if (name) { printf("%s%s+%#lx/%#lx", mid, name, offset, size); if (modname) printf(" [%s]", modname); } printf("%s", after); } #ifdef CONFIG_PPC_BOOK3S_64 static void dump_slb(void) { int i; unsigned long esid,vsid,valid; unsigned long llp; printf("SLB contents of cpu 0x%x\n", smp_processor_id()); for (i = 0; i < mmu_slb_size; i++) { asm volatile("slbmfee %0,%1" : "=r" (esid) : "r" (i)); asm volatile("slbmfev %0,%1" : "=r" (vsid) : "r" (i)); valid = (esid & SLB_ESID_V); if (valid | esid | vsid) { printf("%02d %016lx %016lx", i, esid, vsid); if (valid) { llp = vsid & SLB_VSID_LLP; if (vsid & SLB_VSID_B_1T) { printf(" 1T ESID=%9lx VSID=%13lx LLP:%3lx \n", GET_ESID_1T(esid), (vsid & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp); } else { printf(" 256M ESID=%9lx VSID=%13lx LLP:%3lx \n", GET_ESID(esid), (vsid & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp); } } else printf("\n"); } } } void dump_segments(void) { if (mmu_has_feature(MMU_FTR_SLB)) dump_slb(); } #endif #ifdef CONFIG_PPC_STD_MMU_32 void dump_segments(void) { int i; printf("sr0-15 ="); for (i = 0; i < 16; ++i) printf(" %x", mfsrin(i)); printf("\n"); } #endif #ifdef CONFIG_44x static void dump_tlb_44x(void) { int i; for (i = 0; i < PPC44x_TLB_SIZE; i++) { unsigned long w0,w1,w2; asm volatile("tlbre %0,%1,0" : "=r" (w0) : "r" (i)); asm volatile("tlbre %0,%1,1" : "=r" (w1) : "r" (i)); asm volatile("tlbre %0,%1,2" : "=r" (w2) : "r" (i)); printf("[%02x] %08x %08x %08x ", i, w0, w1, w2); if (w0 & PPC44x_TLB_VALID) { printf("V %08x -> %01x%08x %c%c%c%c%c", w0 & PPC44x_TLB_EPN_MASK, w1 & PPC44x_TLB_ERPN_MASK, w1 & PPC44x_TLB_RPN_MASK, (w2 & PPC44x_TLB_W) ? 'W' : 'w', (w2 & PPC44x_TLB_I) ? 'I' : 'i', (w2 & PPC44x_TLB_M) ? 'M' : 'm', (w2 & PPC44x_TLB_G) ? 'G' : 'g', (w2 & PPC44x_TLB_E) ? 'E' : 'e'); } printf("\n"); } } #endif /* CONFIG_44x */ #ifdef CONFIG_PPC_BOOK3E static void dump_tlb_book3e(void) { u32 mmucfg, pidmask, lpidmask; u64 ramask; int i, tlb, ntlbs, pidsz, lpidsz, rasz, lrat = 0; int mmu_version; static const char *pgsz_names[] = { " 1K", " 2K", " 4K", " 8K", " 16K", " 32K", " 64K", "128K", "256K", "512K", " 1M", " 2M", " 4M", " 8M", " 16M", " 32M", " 64M", "128M", "256M", "512M", " 1G", " 2G", " 4G", " 8G", " 16G", " 32G", " 64G", "128G", "256G", "512G", " 1T", " 2T", }; /* Gather some infos about the MMU */ mmucfg = mfspr(SPRN_MMUCFG); mmu_version = (mmucfg & 3) + 1; ntlbs = ((mmucfg >> 2) & 3) + 1; pidsz = ((mmucfg >> 6) & 0x1f) + 1; lpidsz = (mmucfg >> 24) & 0xf; rasz = (mmucfg >> 16) & 0x7f; if ((mmu_version > 1) && (mmucfg & 0x10000)) lrat = 1; printf("Book3E MMU MAV=%d.0,%d TLBs,%d-bit PID,%d-bit LPID,%d-bit RA\n", mmu_version, ntlbs, pidsz, lpidsz, rasz); pidmask = (1ul << pidsz) - 1; lpidmask = (1ul << lpidsz) - 1; ramask = (1ull << rasz) - 1; for (tlb = 0; tlb < ntlbs; tlb++) { u32 tlbcfg; int nent, assoc, new_cc = 1; printf("TLB %d:\n------\n", tlb); switch(tlb) { case 0: tlbcfg = mfspr(SPRN_TLB0CFG); break; case 1: tlbcfg = mfspr(SPRN_TLB1CFG); break; case 2: tlbcfg = mfspr(SPRN_TLB2CFG); break; case 3: tlbcfg = mfspr(SPRN_TLB3CFG); break; default: printf("Unsupported TLB number !\n"); continue; } nent = tlbcfg & 0xfff; assoc = (tlbcfg >> 24) & 0xff; for (i = 0; i < nent; i++) { u32 mas0 = MAS0_TLBSEL(tlb); u32 mas1 = MAS1_TSIZE(BOOK3E_PAGESZ_4K); u64 mas2 = 0; u64 mas7_mas3; int esel = i, cc = i; if (assoc != 0) { cc = i / assoc; esel = i % assoc; mas2 = cc * 0x1000; } mas0 |= MAS0_ESEL(esel); mtspr(SPRN_MAS0, mas0); mtspr(SPRN_MAS1, mas1); mtspr(SPRN_MAS2, mas2); asm volatile("tlbre 0,0,0" : : : "memory"); mas1 = mfspr(SPRN_MAS1); mas2 = mfspr(SPRN_MAS2); mas7_mas3 = mfspr(SPRN_MAS7_MAS3); if (assoc && (i % assoc) == 0) new_cc = 1; if (!(mas1 & MAS1_VALID)) continue; if (assoc == 0) printf("%04x- ", i); else if (new_cc) printf("%04x-%c", cc, 'A' + esel); else printf(" |%c", 'A' + esel); new_cc = 0; printf(" %016llx %04x %s %c%c AS%c", mas2 & ~0x3ffull, (mas1 >> 16) & 0x3fff, pgsz_names[(mas1 >> 7) & 0x1f], mas1 & MAS1_IND ? 'I' : ' ', mas1 & MAS1_IPROT ? 'P' : ' ', mas1 & MAS1_TS ? '1' : '0'); printf(" %c%c%c%c%c%c%c", mas2 & MAS2_X0 ? 'a' : ' ', mas2 & MAS2_X1 ? 'v' : ' ', mas2 & MAS2_W ? 'w' : ' ', mas2 & MAS2_I ? 'i' : ' ', mas2 & MAS2_M ? 'm' : ' ', mas2 & MAS2_G ? 'g' : ' ', mas2 & MAS2_E ? 'e' : ' '); printf(" %016llx", mas7_mas3 & ramask & ~0x7ffull); if (mas1 & MAS1_IND) printf(" %s\n", pgsz_names[(mas7_mas3 >> 1) & 0x1f]); else printf(" U%c%c%c S%c%c%c\n", mas7_mas3 & MAS3_UX ? 'x' : ' ', mas7_mas3 & MAS3_UW ? 'w' : ' ', mas7_mas3 & MAS3_UR ? 'r' : ' ', mas7_mas3 & MAS3_SX ? 'x' : ' ', mas7_mas3 & MAS3_SW ? 'w' : ' ', mas7_mas3 & MAS3_SR ? 'r' : ' '); } } } #endif /* CONFIG_PPC_BOOK3E */ static void xmon_init(int enable) { if (enable) { __debugger = xmon; __debugger_ipi = xmon_ipi; __debugger_bpt = xmon_bpt; __debugger_sstep = xmon_sstep; __debugger_iabr_match = xmon_iabr_match; __debugger_break_match = xmon_break_match; __debugger_fault_handler = xmon_fault_handler; } else { __debugger = NULL; __debugger_ipi = NULL; __debugger_bpt = NULL; __debugger_sstep = NULL; __debugger_iabr_match = NULL; __debugger_break_match = NULL; __debugger_fault_handler = NULL; } } #ifdef CONFIG_MAGIC_SYSRQ static void sysrq_handle_xmon(int key) { /* ensure xmon is enabled */ xmon_init(1); debugger(get_irq_regs()); } static struct sysrq_key_op sysrq_xmon_op = { .handler = sysrq_handle_xmon, .help_msg = "xmon(x)", .action_msg = "Entering xmon", }; static int __init setup_xmon_sysrq(void) { register_sysrq_key('x', &sysrq_xmon_op); return 0; } __initcall(setup_xmon_sysrq); #endif /* CONFIG_MAGIC_SYSRQ */ static int __initdata xmon_early, xmon_off; static int __init early_parse_xmon(char *p) { if (!p || strncmp(p, "early", 5) == 0) { /* just "xmon" is equivalent to "xmon=early" */ xmon_init(1); xmon_early = 1; } else if (strncmp(p, "on", 2) == 0) xmon_init(1); else if (strncmp(p, "off", 3) == 0) xmon_off = 1; else if (strncmp(p, "nobt", 4) == 0) xmon_no_auto_backtrace = 1; else return 1; return 0; } early_param("xmon", early_parse_xmon); void __init xmon_setup(void) { #ifdef CONFIG_XMON_DEFAULT if (!xmon_off) xmon_init(1); #endif if (xmon_early) debugger(NULL); } #ifdef CONFIG_SPU_BASE struct spu_info { struct spu *spu; u64 saved_mfc_sr1_RW; u32 saved_spu_runcntl_RW; unsigned long dump_addr; u8 stopped_ok; }; #define XMON_NUM_SPUS 16 /* Enough for current hardware */ static struct spu_info spu_info[XMON_NUM_SPUS]; void xmon_register_spus(struct list_head *list) { struct spu *spu; list_for_each_entry(spu, list, full_list) { if (spu->number >= XMON_NUM_SPUS) { WARN_ON(1); continue; } spu_info[spu->number].spu = spu; spu_info[spu->number].stopped_ok = 0; spu_info[spu->number].dump_addr = (unsigned long) spu_info[spu->number].spu->local_store; } } static void stop_spus(void) { struct spu *spu; int i; u64 tmp; for (i = 0; i < XMON_NUM_SPUS; i++) { if (!spu_info[i].spu) continue; if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); spu = spu_info[i].spu; spu_info[i].saved_spu_runcntl_RW = in_be32(&spu->problem->spu_runcntl_RW); tmp = spu_mfc_sr1_get(spu); spu_info[i].saved_mfc_sr1_RW = tmp; tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK; spu_mfc_sr1_set(spu, tmp); sync(); __delay(200); spu_info[i].stopped_ok = 1; printf("Stopped spu %.2d (was %s)\n", i, spu_info[i].saved_spu_runcntl_RW ? "running" : "stopped"); } else { catch_memory_errors = 0; printf("*** Error stopping spu %.2d\n", i); } catch_memory_errors = 0; } } static void restart_spus(void) { struct spu *spu; int i; for (i = 0; i < XMON_NUM_SPUS; i++) { if (!spu_info[i].spu) continue; if (!spu_info[i].stopped_ok) { printf("*** Error, spu %d was not successfully stopped" ", not restarting\n", i); continue; } if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); spu = spu_info[i].spu; spu_mfc_sr1_set(spu, spu_info[i].saved_mfc_sr1_RW); out_be32(&spu->problem->spu_runcntl_RW, spu_info[i].saved_spu_runcntl_RW); sync(); __delay(200); printf("Restarted spu %.2d\n", i); } else { catch_memory_errors = 0; printf("*** Error restarting spu %.2d\n", i); } catch_memory_errors = 0; } } #define DUMP_WIDTH 23 #define DUMP_VALUE(format, field, value) \ do { \ if (setjmp(bus_error_jmp) == 0) { \ catch_memory_errors = 1; \ sync(); \ printf(" %-*s = "format"\n", DUMP_WIDTH, \ #field, value); \ sync(); \ __delay(200); \ } else { \ catch_memory_errors = 0; \ printf(" %-*s = *** Error reading field.\n", \ DUMP_WIDTH, #field); \ } \ catch_memory_errors = 0; \ } while (0) #define DUMP_FIELD(obj, format, field) \ DUMP_VALUE(format, field, obj->field) static void dump_spu_fields(struct spu *spu) { printf("Dumping spu fields at address %p:\n", spu); DUMP_FIELD(spu, "0x%x", number); DUMP_FIELD(spu, "%s", name); DUMP_FIELD(spu, "0x%lx", local_store_phys); DUMP_FIELD(spu, "0x%p", local_store); DUMP_FIELD(spu, "0x%lx", ls_size); DUMP_FIELD(spu, "0x%x", node); DUMP_FIELD(spu, "0x%lx", flags); DUMP_FIELD(spu, "%d", class_0_pending); DUMP_FIELD(spu, "0x%lx", class_0_dar); DUMP_FIELD(spu, "0x%lx", class_1_dar); DUMP_FIELD(spu, "0x%lx", class_1_dsisr); DUMP_FIELD(spu, "0x%lx", irqs[0]); DUMP_FIELD(spu, "0x%lx", irqs[1]); DUMP_FIELD(spu, "0x%lx", irqs[2]); DUMP_FIELD(spu, "0x%x", slb_replace); DUMP_FIELD(spu, "%d", pid); DUMP_FIELD(spu, "0x%p", mm); DUMP_FIELD(spu, "0x%p", ctx); DUMP_FIELD(spu, "0x%p", rq); DUMP_FIELD(spu, "0x%p", timestamp); DUMP_FIELD(spu, "0x%lx", problem_phys); DUMP_FIELD(spu, "0x%p", problem); DUMP_VALUE("0x%x", problem->spu_runcntl_RW, in_be32(&spu->problem->spu_runcntl_RW)); DUMP_VALUE("0x%x", problem->spu_status_R, in_be32(&spu->problem->spu_status_R)); DUMP_VALUE("0x%x", problem->spu_npc_RW, in_be32(&spu->problem->spu_npc_RW)); DUMP_FIELD(spu, "0x%p", priv2); DUMP_FIELD(spu, "0x%p", pdata); } int spu_inst_dump(unsigned long adr, long count, int praddr) { return generic_inst_dump(adr, count, praddr, print_insn_spu); } static void dump_spu_ls(unsigned long num, int subcmd) { unsigned long offset, addr, ls_addr; if (setjmp(bus_error_jmp) == 0) { catch_memory_errors = 1; sync(); ls_addr = (unsigned long)spu_info[num].spu->local_store; sync(); __delay(200); } else { catch_memory_errors = 0; printf("*** Error: accessing spu info for spu %d\n", num); return; } catch_memory_errors = 0; if (scanhex(&offset)) addr = ls_addr + offset; else addr = spu_info[num].dump_addr; if (addr >= ls_addr + LS_SIZE) { printf("*** Error: address outside of local store\n"); return; } switch (subcmd) { case 'i': addr += spu_inst_dump(addr, 16, 1); last_cmd = "sdi\n"; break; default: prdump(addr, 64); addr += 64; last_cmd = "sd\n"; break; } spu_info[num].dump_addr = addr; } static int do_spu_cmd(void) { static unsigned long num = 0; int cmd, subcmd = 0; cmd = inchar(); switch (cmd) { case 's': stop_spus(); break; case 'r': restart_spus(); break; case 'd': subcmd = inchar(); if (isxdigit(subcmd) || subcmd == '\n') termch = subcmd; case 'f': scanhex(&num); if (num >= XMON_NUM_SPUS || !spu_info[num].spu) { printf("*** Error: invalid spu number\n"); return 0; } switch (cmd) { case 'f': dump_spu_fields(spu_info[num].spu); break; default: dump_spu_ls(num, subcmd); break; } break; default: return -1; } return 0; } #else /* ! CONFIG_SPU_BASE */ static int do_spu_cmd(void) { return -1; } #endif