// SPDX-License-Identifier: GPL-2.0-or-later /* * SPU file system * * (C) Copyright IBM Deutschland Entwicklung GmbH 2005 * * Author: Arnd Bergmann <arndb@de.ibm.com> */ #include <linux/file.h> #include <linux/fs.h> #include <linux/fs_context.h> #include <linux/fs_parser.h> #include <linux/fsnotify.h> #include <linux/backing-dev.h> #include <linux/init.h> #include <linux/ioctl.h> #include <linux/module.h> #include <linux/mount.h> #include <linux/namei.h> #include <linux/pagemap.h> #include <linux/poll.h> #include <linux/slab.h> #include <asm/prom.h> #include <asm/spu.h> #include <asm/spu_priv1.h> #include <linux/uaccess.h> #include "spufs.h" struct spufs_sb_info { bool debug; }; static struct kmem_cache *spufs_inode_cache; char *isolated_loader; static int isolated_loader_size; static struct spufs_sb_info *spufs_get_sb_info(struct super_block *sb) { return sb->s_fs_info; } static struct inode * spufs_alloc_inode(struct super_block *sb) { struct spufs_inode_info *ei; ei = kmem_cache_alloc(spufs_inode_cache, GFP_KERNEL); if (!ei) return NULL; ei->i_gang = NULL; ei->i_ctx = NULL; ei->i_openers = 0; return &ei->vfs_inode; } static void spufs_free_inode(struct inode *inode) { kmem_cache_free(spufs_inode_cache, SPUFS_I(inode)); } static void spufs_init_once(void *p) { struct spufs_inode_info *ei = p; inode_init_once(&ei->vfs_inode); } static struct inode * spufs_new_inode(struct super_block *sb, umode_t mode) { struct inode *inode; inode = new_inode(sb); if (!inode) goto out; inode->i_ino = get_next_ino(); inode->i_mode = mode; inode->i_uid = current_fsuid(); inode->i_gid = current_fsgid(); inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); out: return inode; } static int spufs_setattr(struct dentry *dentry, struct iattr *attr) { struct inode *inode = d_inode(dentry); if ((attr->ia_valid & ATTR_SIZE) && (attr->ia_size != inode->i_size)) return -EINVAL; setattr_copy(inode, attr); mark_inode_dirty(inode); return 0; } static int spufs_new_file(struct super_block *sb, struct dentry *dentry, const struct file_operations *fops, umode_t mode, size_t size, struct spu_context *ctx) { static const struct inode_operations spufs_file_iops = { .setattr = spufs_setattr, }; struct inode *inode; int ret; ret = -ENOSPC; inode = spufs_new_inode(sb, S_IFREG | mode); if (!inode) goto out; ret = 0; inode->i_op = &spufs_file_iops; inode->i_fop = fops; inode->i_size = size; inode->i_private = SPUFS_I(inode)->i_ctx = get_spu_context(ctx); d_add(dentry, inode); out: return ret; } static void spufs_evict_inode(struct inode *inode) { struct spufs_inode_info *ei = SPUFS_I(inode); clear_inode(inode); if (ei->i_ctx) put_spu_context(ei->i_ctx); if (ei->i_gang) put_spu_gang(ei->i_gang); } static void spufs_prune_dir(struct dentry *dir) { struct dentry *dentry, *tmp; inode_lock(d_inode(dir)); list_for_each_entry_safe(dentry, tmp, &dir->d_subdirs, d_child) { spin_lock(&dentry->d_lock); if (simple_positive(dentry)) { dget_dlock(dentry); __d_drop(dentry); spin_unlock(&dentry->d_lock); simple_unlink(d_inode(dir), dentry); /* XXX: what was dcache_lock protecting here? Other * filesystems (IB, configfs) release dcache_lock * before unlink */ dput(dentry); } else { spin_unlock(&dentry->d_lock); } } shrink_dcache_parent(dir); inode_unlock(d_inode(dir)); } /* Caller must hold parent->i_mutex */ static int spufs_rmdir(struct inode *parent, struct dentry *dir) { /* remove all entries */ int res; spufs_prune_dir(dir); d_drop(dir); res = simple_rmdir(parent, dir); /* We have to give up the mm_struct */ spu_forget(SPUFS_I(d_inode(dir))->i_ctx); return res; } static int spufs_fill_dir(struct dentry *dir, const struct spufs_tree_descr *files, umode_t mode, struct spu_context *ctx) { while (files->name && files->name[0]) { int ret; struct dentry *dentry = d_alloc_name(dir, files->name); if (!dentry) return -ENOMEM; ret = spufs_new_file(dir->d_sb, dentry, files->ops, files->mode & mode, files->size, ctx); if (ret) return ret; files++; } return 0; } static int spufs_dir_close(struct inode *inode, struct file *file) { struct spu_context *ctx; struct inode *parent; struct dentry *dir; int ret; dir = file->f_path.dentry; parent = d_inode(dir->d_parent); ctx = SPUFS_I(d_inode(dir))->i_ctx; inode_lock_nested(parent, I_MUTEX_PARENT); ret = spufs_rmdir(parent, dir); inode_unlock(parent); WARN_ON(ret); return dcache_dir_close(inode, file); } const struct file_operations spufs_context_fops = { .open = dcache_dir_open, .release = spufs_dir_close, .llseek = dcache_dir_lseek, .read = generic_read_dir, .iterate_shared = dcache_readdir, .fsync = noop_fsync, }; EXPORT_SYMBOL_GPL(spufs_context_fops); static int spufs_mkdir(struct inode *dir, struct dentry *dentry, unsigned int flags, umode_t mode) { int ret; struct inode *inode; struct spu_context *ctx; inode = spufs_new_inode(dir->i_sb, mode | S_IFDIR); if (!inode) return -ENOSPC; if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; inode->i_mode &= S_ISGID; } ctx = alloc_spu_context(SPUFS_I(dir)->i_gang); /* XXX gang */ SPUFS_I(inode)->i_ctx = ctx; if (!ctx) { iput(inode); return -ENOSPC; } ctx->flags = flags; inode->i_op = &simple_dir_inode_operations; inode->i_fop = &simple_dir_operations; inode_lock(inode); dget(dentry); inc_nlink(dir); inc_nlink(inode); d_instantiate(dentry, inode); if (flags & SPU_CREATE_NOSCHED) ret = spufs_fill_dir(dentry, spufs_dir_nosched_contents, mode, ctx); else ret = spufs_fill_dir(dentry, spufs_dir_contents, mode, ctx); if (!ret && spufs_get_sb_info(dir->i_sb)->debug) ret = spufs_fill_dir(dentry, spufs_dir_debug_contents, mode, ctx); if (ret) spufs_rmdir(dir, dentry); inode_unlock(inode); return ret; } static int spufs_context_open(struct path *path) { int ret; struct file *filp; ret = get_unused_fd_flags(0); if (ret < 0) return ret; filp = dentry_open(path, O_RDONLY, current_cred()); if (IS_ERR(filp)) { put_unused_fd(ret); return PTR_ERR(filp); } filp->f_op = &spufs_context_fops; fd_install(ret, filp); return ret; } static struct spu_context * spufs_assert_affinity(unsigned int flags, struct spu_gang *gang, struct file *filp) { struct spu_context *tmp, *neighbor, *err; int count, node; int aff_supp; aff_supp = !list_empty(&(list_entry(cbe_spu_info[0].spus.next, struct spu, cbe_list))->aff_list); if (!aff_supp) return ERR_PTR(-EINVAL); if (flags & SPU_CREATE_GANG) return ERR_PTR(-EINVAL); if (flags & SPU_CREATE_AFFINITY_MEM && gang->aff_ref_ctx && gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM) return ERR_PTR(-EEXIST); if (gang->aff_flags & AFF_MERGED) return ERR_PTR(-EBUSY); neighbor = NULL; if (flags & SPU_CREATE_AFFINITY_SPU) { if (!filp || filp->f_op != &spufs_context_fops) return ERR_PTR(-EINVAL); neighbor = get_spu_context( SPUFS_I(file_inode(filp))->i_ctx); if (!list_empty(&neighbor->aff_list) && !(neighbor->aff_head) && !list_is_last(&neighbor->aff_list, &gang->aff_list_head) && !list_entry(neighbor->aff_list.next, struct spu_context, aff_list)->aff_head) { err = ERR_PTR(-EEXIST); goto out_put_neighbor; } if (gang != neighbor->gang) { err = ERR_PTR(-EINVAL); goto out_put_neighbor; } count = 1; list_for_each_entry(tmp, &gang->aff_list_head, aff_list) count++; if (list_empty(&neighbor->aff_list)) count++; for (node = 0; node < MAX_NUMNODES; node++) { if ((cbe_spu_info[node].n_spus - atomic_read( &cbe_spu_info[node].reserved_spus)) >= count) break; } if (node == MAX_NUMNODES) { err = ERR_PTR(-EEXIST); goto out_put_neighbor; } } return neighbor; out_put_neighbor: put_spu_context(neighbor); return err; } static void spufs_set_affinity(unsigned int flags, struct spu_context *ctx, struct spu_context *neighbor) { if (flags & SPU_CREATE_AFFINITY_MEM) ctx->gang->aff_ref_ctx = ctx; if (flags & SPU_CREATE_AFFINITY_SPU) { if (list_empty(&neighbor->aff_list)) { list_add_tail(&neighbor->aff_list, &ctx->gang->aff_list_head); neighbor->aff_head = 1; } if (list_is_last(&neighbor->aff_list, &ctx->gang->aff_list_head) || list_entry(neighbor->aff_list.next, struct spu_context, aff_list)->aff_head) { list_add(&ctx->aff_list, &neighbor->aff_list); } else { list_add_tail(&ctx->aff_list, &neighbor->aff_list); if (neighbor->aff_head) { neighbor->aff_head = 0; ctx->aff_head = 1; } } if (!ctx->gang->aff_ref_ctx) ctx->gang->aff_ref_ctx = ctx; } } static int spufs_create_context(struct inode *inode, struct dentry *dentry, struct vfsmount *mnt, int flags, umode_t mode, struct file *aff_filp) { int ret; int affinity; struct spu_gang *gang; struct spu_context *neighbor; struct path path = {.mnt = mnt, .dentry = dentry}; if ((flags & SPU_CREATE_NOSCHED) && !capable(CAP_SYS_NICE)) return -EPERM; if ((flags & (SPU_CREATE_NOSCHED | SPU_CREATE_ISOLATE)) == SPU_CREATE_ISOLATE) return -EINVAL; if ((flags & SPU_CREATE_ISOLATE) && !isolated_loader) return -ENODEV; gang = NULL; neighbor = NULL; affinity = flags & (SPU_CREATE_AFFINITY_MEM | SPU_CREATE_AFFINITY_SPU); if (affinity) { gang = SPUFS_I(inode)->i_gang; if (!gang) return -EINVAL; mutex_lock(&gang->aff_mutex); neighbor = spufs_assert_affinity(flags, gang, aff_filp); if (IS_ERR(neighbor)) { ret = PTR_ERR(neighbor); goto out_aff_unlock; } } ret = spufs_mkdir(inode, dentry, flags, mode & 0777); if (ret) goto out_aff_unlock; if (affinity) { spufs_set_affinity(flags, SPUFS_I(d_inode(dentry))->i_ctx, neighbor); if (neighbor) put_spu_context(neighbor); } ret = spufs_context_open(&path); if (ret < 0) WARN_ON(spufs_rmdir(inode, dentry)); out_aff_unlock: if (affinity) mutex_unlock(&gang->aff_mutex); return ret; } static int spufs_mkgang(struct inode *dir, struct dentry *dentry, umode_t mode) { int ret; struct inode *inode; struct spu_gang *gang; ret = -ENOSPC; inode = spufs_new_inode(dir->i_sb, mode | S_IFDIR); if (!inode) goto out; ret = 0; if (dir->i_mode & S_ISGID) { inode->i_gid = dir->i_gid; inode->i_mode &= S_ISGID; } gang = alloc_spu_gang(); SPUFS_I(inode)->i_ctx = NULL; SPUFS_I(inode)->i_gang = gang; if (!gang) { ret = -ENOMEM; goto out_iput; } inode->i_op = &simple_dir_inode_operations; inode->i_fop = &simple_dir_operations; d_instantiate(dentry, inode); inc_nlink(dir); inc_nlink(d_inode(dentry)); return ret; out_iput: iput(inode); out: return ret; } static int spufs_gang_open(struct path *path) { int ret; struct file *filp; ret = get_unused_fd_flags(0); if (ret < 0) return ret; /* * get references for dget and mntget, will be released * in error path of *_open(). */ filp = dentry_open(path, O_RDONLY, current_cred()); if (IS_ERR(filp)) { put_unused_fd(ret); return PTR_ERR(filp); } filp->f_op = &simple_dir_operations; fd_install(ret, filp); return ret; } static int spufs_create_gang(struct inode *inode, struct dentry *dentry, struct vfsmount *mnt, umode_t mode) { struct path path = {.mnt = mnt, .dentry = dentry}; int ret; ret = spufs_mkgang(inode, dentry, mode & 0777); if (!ret) { ret = spufs_gang_open(&path); if (ret < 0) { int err = simple_rmdir(inode, dentry); WARN_ON(err); } } return ret; } static struct file_system_type spufs_type; long spufs_create(struct path *path, struct dentry *dentry, unsigned int flags, umode_t mode, struct file *filp) { struct inode *dir = d_inode(path->dentry); int ret; /* check if we are on spufs */ if (path->dentry->d_sb->s_type != &spufs_type) return -EINVAL; /* don't accept undefined flags */ if (flags & (~SPU_CREATE_FLAG_ALL)) return -EINVAL; /* only threads can be underneath a gang */ if (path->dentry != path->dentry->d_sb->s_root) if ((flags & SPU_CREATE_GANG) || !SPUFS_I(dir)->i_gang) return -EINVAL; mode &= ~current_umask(); if (flags & SPU_CREATE_GANG) ret = spufs_create_gang(dir, dentry, path->mnt, mode); else ret = spufs_create_context(dir, dentry, path->mnt, flags, mode, filp); if (ret >= 0) fsnotify_mkdir(dir, dentry); return ret; } /* File system initialization */ struct spufs_fs_context { kuid_t uid; kgid_t gid; umode_t mode; }; enum { Opt_uid, Opt_gid, Opt_mode, Opt_debug, }; static const struct fs_parameter_spec spufs_param_specs[] = { fsparam_u32 ("gid", Opt_gid), fsparam_u32oct ("mode", Opt_mode), fsparam_u32 ("uid", Opt_uid), fsparam_flag ("debug", Opt_debug), {} }; static const struct fs_parameter_description spufs_fs_parameters = { .name = "spufs", .specs = spufs_param_specs, }; static int spufs_show_options(struct seq_file *m, struct dentry *root) { struct spufs_sb_info *sbi = spufs_get_sb_info(root->d_sb); struct inode *inode = root->d_inode; if (!uid_eq(inode->i_uid, GLOBAL_ROOT_UID)) seq_printf(m, ",uid=%u", from_kuid_munged(&init_user_ns, inode->i_uid)); if (!gid_eq(inode->i_gid, GLOBAL_ROOT_GID)) seq_printf(m, ",gid=%u", from_kgid_munged(&init_user_ns, inode->i_gid)); if ((inode->i_mode & S_IALLUGO) != 0775) seq_printf(m, ",mode=%o", inode->i_mode); if (sbi->debug) seq_puts(m, ",debug"); return 0; } static int spufs_parse_param(struct fs_context *fc, struct fs_parameter *param) { struct spufs_fs_context *ctx = fc->fs_private; struct spufs_sb_info *sbi = fc->s_fs_info; struct fs_parse_result result; kuid_t uid; kgid_t gid; int opt; opt = fs_parse(fc, &spufs_fs_parameters, param, &result); if (opt < 0) return opt; switch (opt) { case Opt_uid: uid = make_kuid(current_user_ns(), result.uint_32); if (!uid_valid(uid)) return invalf(fc, "Unknown uid"); ctx->uid = uid; break; case Opt_gid: gid = make_kgid(current_user_ns(), result.uint_32); if (!gid_valid(gid)) return invalf(fc, "Unknown gid"); ctx->gid = gid; break; case Opt_mode: ctx->mode = result.uint_32 & S_IALLUGO; break; case Opt_debug: sbi->debug = true; break; } return 0; } static void spufs_exit_isolated_loader(void) { free_pages((unsigned long) isolated_loader, get_order(isolated_loader_size)); } static void spufs_init_isolated_loader(void) { struct device_node *dn; const char *loader; int size; dn = of_find_node_by_path("/spu-isolation"); if (!dn) return; loader = of_get_property(dn, "loader", &size); if (!loader) return; /* the loader must be align on a 16 byte boundary */ isolated_loader = (char *)__get_free_pages(GFP_KERNEL, get_order(size)); if (!isolated_loader) return; isolated_loader_size = size; memcpy(isolated_loader, loader, size); printk(KERN_INFO "spufs: SPU isolation mode enabled\n"); } static int spufs_create_root(struct super_block *sb, struct fs_context *fc) { struct spufs_fs_context *ctx = fc->fs_private; struct inode *inode; if (!spu_management_ops) return -ENODEV; inode = spufs_new_inode(sb, S_IFDIR | ctx->mode); if (!inode) return -ENOMEM; inode->i_uid = ctx->uid; inode->i_gid = ctx->gid; inode->i_op = &simple_dir_inode_operations; inode->i_fop = &simple_dir_operations; SPUFS_I(inode)->i_ctx = NULL; inc_nlink(inode); sb->s_root = d_make_root(inode); if (!sb->s_root) return -ENOMEM; return 0; } static const struct super_operations spufs_ops = { .alloc_inode = spufs_alloc_inode, .free_inode = spufs_free_inode, .statfs = simple_statfs, .evict_inode = spufs_evict_inode, .show_options = spufs_show_options, }; static int spufs_fill_super(struct super_block *sb, struct fs_context *fc) { sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_blocksize = PAGE_SIZE; sb->s_blocksize_bits = PAGE_SHIFT; sb->s_magic = SPUFS_MAGIC; sb->s_op = &spufs_ops; return spufs_create_root(sb, fc); } static int spufs_get_tree(struct fs_context *fc) { return get_tree_single(fc, spufs_fill_super); } static void spufs_free_fc(struct fs_context *fc) { kfree(fc->s_fs_info); } static const struct fs_context_operations spufs_context_ops = { .free = spufs_free_fc, .parse_param = spufs_parse_param, .get_tree = spufs_get_tree, }; static int spufs_init_fs_context(struct fs_context *fc) { struct spufs_fs_context *ctx; struct spufs_sb_info *sbi; ctx = kzalloc(sizeof(struct spufs_fs_context), GFP_KERNEL); if (!ctx) goto nomem; sbi = kzalloc(sizeof(struct spufs_sb_info), GFP_KERNEL); if (!sbi) goto nomem_ctx; ctx->uid = current_uid(); ctx->gid = current_gid(); ctx->mode = 0755; fc->s_fs_info = sbi; fc->ops = &spufs_context_ops; return 0; nomem_ctx: kfree(ctx); nomem: return -ENOMEM; } static struct file_system_type spufs_type = { .owner = THIS_MODULE, .name = "spufs", .init_fs_context = spufs_init_fs_context, .parameters = &spufs_fs_parameters, .kill_sb = kill_litter_super, }; MODULE_ALIAS_FS("spufs"); static int __init spufs_init(void) { int ret; ret = -ENODEV; if (!spu_management_ops) goto out; ret = -ENOMEM; spufs_inode_cache = kmem_cache_create("spufs_inode_cache", sizeof(struct spufs_inode_info), 0, SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, spufs_init_once); if (!spufs_inode_cache) goto out; ret = spu_sched_init(); if (ret) goto out_cache; ret = register_spu_syscalls(&spufs_calls); if (ret) goto out_sched; ret = register_filesystem(&spufs_type); if (ret) goto out_syscalls; spufs_init_isolated_loader(); return 0; out_syscalls: unregister_spu_syscalls(&spufs_calls); out_sched: spu_sched_exit(); out_cache: kmem_cache_destroy(spufs_inode_cache); out: return ret; } module_init(spufs_init); static void __exit spufs_exit(void) { spu_sched_exit(); spufs_exit_isolated_loader(); unregister_spu_syscalls(&spufs_calls); unregister_filesystem(&spufs_type); kmem_cache_destroy(spufs_inode_cache); } module_exit(spufs_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");