/* * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * Derived from "arch/i386/mm/fault.c" * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds * * Modified by Cort Dougan and Paul Mackerras. * * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "icswx.h" static inline bool notify_page_fault(struct pt_regs *regs) { bool ret = false; #ifdef CONFIG_KPROBES /* kprobe_running() needs smp_processor_id() */ if (!user_mode(regs)) { preempt_disable(); if (kprobe_running() && kprobe_fault_handler(regs, 11)) ret = true; preempt_enable(); } #endif /* CONFIG_KPROBES */ if (unlikely(debugger_fault_handler(regs))) ret = true; return ret; } /* * Check whether the instruction at regs->nip is a store using * an update addressing form which will update r1. */ static int store_updates_sp(struct pt_regs *regs) { unsigned int inst; if (get_user(inst, (unsigned int __user *)regs->nip)) return 0; /* check for 1 in the rA field */ if (((inst >> 16) & 0x1f) != 1) return 0; /* check major opcode */ switch (inst >> 26) { case 37: /* stwu */ case 39: /* stbu */ case 45: /* sthu */ case 53: /* stfsu */ case 55: /* stfdu */ return 1; case 62: /* std or stdu */ return (inst & 3) == 1; case 31: /* check minor opcode */ switch ((inst >> 1) & 0x3ff) { case 181: /* stdux */ case 183: /* stwux */ case 247: /* stbux */ case 439: /* sthux */ case 695: /* stfsux */ case 759: /* stfdux */ return 1; } } return 0; } /* * do_page_fault error handling helpers */ static int __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code) { /* * If we are in kernel mode, bail out with a SEGV, this will * be caught by the assembly which will restore the non-volatile * registers before calling bad_page_fault() */ if (!user_mode(regs)) return SIGSEGV; _exception(SIGSEGV, regs, si_code, address); return 0; } static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address) { return __bad_area_nosemaphore(regs, address, SEGV_MAPERR); } static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code) { struct mm_struct *mm = current->mm; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ up_read(&mm->mmap_sem); return __bad_area_nosemaphore(regs, address, si_code); } static noinline int bad_area(struct pt_regs *regs, unsigned long address) { return __bad_area(regs, address, SEGV_MAPERR); } #define MM_FAULT_RETURN 0 #define MM_FAULT_CONTINUE -1 #define MM_FAULT_ERR(sig) (sig) static int do_sigbus(struct pt_regs *regs, unsigned long address, unsigned int fault) { siginfo_t info; unsigned int lsb = 0; if (!user_mode(regs)) return MM_FAULT_ERR(SIGBUS); current->thread.trap_nr = BUS_ADRERR; info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void __user *)address; #ifdef CONFIG_MEMORY_FAILURE if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", current->comm, current->pid, address); info.si_code = BUS_MCEERR_AR; } if (fault & VM_FAULT_HWPOISON_LARGE) lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); if (fault & VM_FAULT_HWPOISON) lsb = PAGE_SHIFT; #endif info.si_addr_lsb = lsb; force_sig_info(SIGBUS, &info, current); return MM_FAULT_RETURN; } static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault) { /* * Pagefault was interrupted by SIGKILL. We have no reason to * continue the pagefault. */ if (fatal_signal_pending(current)) { /* Coming from kernel, we need to deal with uaccess fixups */ if (user_mode(regs)) return MM_FAULT_RETURN; return MM_FAULT_ERR(SIGKILL); } /* No fault: be happy */ if (!(fault & VM_FAULT_ERROR)) return MM_FAULT_CONTINUE; /* Out of memory */ if (fault & VM_FAULT_OOM) { /* * We ran out of memory, or some other thing happened to us that * made us unable to handle the page fault gracefully. */ if (!user_mode(regs)) return MM_FAULT_ERR(SIGKILL); pagefault_out_of_memory(); return MM_FAULT_RETURN; } if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) return do_sigbus(regs, addr, fault); /* We don't understand the fault code, this is fatal */ BUG(); return MM_FAULT_CONTINUE; } /* Is this a bad kernel fault ? */ static bool bad_kernel_fault(bool is_exec, unsigned long error_code, unsigned long address) { if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) { printk_ratelimited(KERN_CRIT "kernel tried to execute" " exec-protected page (%lx) -" "exploit attempt? (uid: %d)\n", address, from_kuid(&init_user_ns, current_uid())); } return is_exec || (address >= TASK_SIZE); } /* * Define the correct "is_write" bit in error_code based * on the processor family */ #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) #define page_fault_is_write(__err) ((__err) & ESR_DST) #define page_fault_is_bad(__err) (0) #else #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE) #if defined(CONFIG_8xx) #define page_fault_is_bad(__err) ((__err) & 0x10000000) #elif defined(CONFIG_PPC64) #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S) #else #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S) #endif #endif /* * For 600- and 800-family processors, the error_code parameter is DSISR * for a data fault, SRR1 for an instruction fault. For 400-family processors * the error_code parameter is ESR for a data fault, 0 for an instruction * fault. * For 64-bit processors, the error_code parameter is * - DSISR for a non-SLB data access fault, * - SRR1 & 0x08000000 for a non-SLB instruction access fault * - 0 any SLB fault. * * The return value is 0 if the fault was handled, or the signal * number if this is a kernel fault that can't be handled here. */ static int __do_page_fault(struct pt_regs *regs, unsigned long address, unsigned long error_code) { struct vm_area_struct * vma; struct mm_struct *mm = current->mm; unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; int is_exec = TRAP(regs) == 0x400; int is_user = user_mode(regs); int is_write = page_fault_is_write(error_code); int fault; int rc = 0, store_update_sp = 0; #ifdef CONFIG_PPC_ICSWX /* * we need to do this early because this "data storage * interrupt" does not update the DAR/DEAR so we don't want to * look at it */ if (error_code & ICSWX_DSI_UCT) { rc = acop_handle_fault(regs, address, error_code); if (rc) return rc; } #endif /* CONFIG_PPC_ICSWX */ if (notify_page_fault(regs)) return 0; if (unlikely(page_fault_is_bad(error_code))) { if (is_user) { _exception(SIGBUS, regs, BUS_OBJERR, address); return 0; } return SIGBUS; } /* * The kernel should never take an execute fault nor should it * take a page fault to a kernel address. */ if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address))) return SIGSEGV; /* We restore the interrupt state now */ if (!arch_irq_disabled_regs(regs)) local_irq_enable(); if (faulthandler_disabled() || mm == NULL) { if (!is_user) return SIGSEGV; /* faulthandler_disabled() in user mode is really bad, as is current->mm == NULL. */ printk(KERN_EMERG "Page fault in user mode with " "faulthandler_disabled() = %d mm = %p\n", faulthandler_disabled(), mm); printk(KERN_EMERG "NIP = %lx MSR = %lx\n", regs->nip, regs->msr); die("Weird page fault", regs, SIGSEGV); } perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); /* * We want to do this outside mmap_sem, because reading code around nip * can result in fault, which will cause a deadlock when called with * mmap_sem held */ if (is_write && is_user) store_update_sp = store_updates_sp(regs); if (is_user) flags |= FAULT_FLAG_USER; /* When running in the kernel we expect faults to occur only to * addresses in user space. All other faults represent errors in the * kernel and should generate an OOPS. Unfortunately, in the case of an * erroneous fault occurring in a code path which already holds mmap_sem * we will deadlock attempting to validate the fault against the * address space. Luckily the kernel only validly references user * space from well defined areas of code, which are listed in the * exceptions table. * * As the vast majority of faults will be valid we will only perform * the source reference check when there is a possibility of a deadlock. * Attempt to lock the address space, if we cannot we then validate the * source. If this is invalid we can skip the address space check, * thus avoiding the deadlock. */ if (!down_read_trylock(&mm->mmap_sem)) { if (!is_user && !search_exception_tables(regs->nip)) return bad_area_nosemaphore(regs, address); retry: down_read(&mm->mmap_sem); } else { /* * The above down_read_trylock() might have succeeded in * which case we'll have missed the might_sleep() from * down_read(): */ might_sleep(); } vma = find_vma(mm, address); if (!vma) return bad_area(regs, address); if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) return bad_area(regs, address); /* * N.B. The POWER/Open ABI allows programs to access up to * 288 bytes below the stack pointer. * The kernel signal delivery code writes up to about 1.5kB * below the stack pointer (r1) before decrementing it. * The exec code can write slightly over 640kB to the stack * before setting the user r1. Thus we allow the stack to * expand to 1MB without further checks. */ if (address + 0x100000 < vma->vm_end) { /* get user regs even if this fault is in kernel mode */ struct pt_regs *uregs = current->thread.regs; if (uregs == NULL) return bad_area(regs, address); /* * A user-mode access to an address a long way below * the stack pointer is only valid if the instruction * is one which would update the stack pointer to the * address accessed if the instruction completed, * i.e. either stwu rs,n(r1) or stwux rs,r1,rb * (or the byte, halfword, float or double forms). * * If we don't check this then any write to the area * between the last mapped region and the stack will * expand the stack rather than segfaulting. */ if (address + 2048 < uregs->gpr[1] && !store_update_sp) return bad_area(regs, address); } if (expand_stack(vma, address)) return bad_area(regs, address); good_area: if (is_exec) { /* * Allow execution from readable areas if the MMU does not * provide separate controls over reading and executing. * * Note: That code used to not be enabled for 4xx/BookE. * It is now as I/D cache coherency for these is done at * set_pte_at() time and I see no reason why the test * below wouldn't be valid on those processors. This -may- * break programs compiled with a really old ABI though. */ if (!(vma->vm_flags & VM_EXEC) && (cpu_has_feature(CPU_FTR_NOEXECUTE) || !(vma->vm_flags & (VM_READ | VM_WRITE)))) return bad_area(regs, address); /* a write */ } else if (is_write) { if (!(vma->vm_flags & VM_WRITE)) return bad_area(regs, address); flags |= FAULT_FLAG_WRITE; /* a read */ } else { if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) return bad_area(regs, address); } #ifdef CONFIG_PPC_STD_MMU /* * For hash translation mode, we should never get a * PROTFAULT. Any update to pte to reduce access will result in us * removing the hash page table entry, thus resulting in a DSISR_NOHPTE * fault instead of DSISR_PROTFAULT. * * A pte update to relax the access will not result in a hash page table * entry invalidate and hence can result in DSISR_PROTFAULT. * ptep_set_access_flags() doesn't do a hpte flush. This is why we have * the special !is_write in the below conditional. * * For platforms that doesn't supports coherent icache and do support * per page noexec bit, we do setup things such that we do the * sync between D/I cache via fault. But that is handled via low level * hash fault code (hash_page_do_lazy_icache()) and we should not reach * here in such case. * * For wrong access that can result in PROTFAULT, the above vma->vm_flags * check should handle those and hence we should fall to the bad_area * handling correctly. * * For embedded with per page exec support that doesn't support coherent * icache we do get PROTFAULT and we handle that D/I cache sync in * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON * is conditional for server MMU. * * For radix, we can get prot fault for autonuma case, because radix * page table will have them marked noaccess for user. */ if (!radix_enabled() && !is_write) WARN_ON_ONCE(error_code & DSISR_PROTFAULT); #endif /* CONFIG_PPC_STD_MMU */ /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ fault = handle_mm_fault(vma, address, flags); /* * Handle the retry right now, the mmap_sem has been released in that * case. */ if (unlikely(fault & VM_FAULT_RETRY)) { /* We retry only once */ if (flags & FAULT_FLAG_ALLOW_RETRY) { /* * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk * of starvation. */ flags &= ~FAULT_FLAG_ALLOW_RETRY; flags |= FAULT_FLAG_TRIED; if (!fatal_signal_pending(current)) goto retry; } /* We will enter mm_fault_error() below */ } else up_read(¤t->mm->mmap_sem); if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) { if (fault & VM_FAULT_SIGSEGV) return bad_area_nosemaphore(regs, address); rc = mm_fault_error(regs, address, fault); if (rc >= MM_FAULT_RETURN) return rc; } /* * Major/minor page fault accounting. */ if (fault & VM_FAULT_MAJOR) { current->maj_flt++; perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); #ifdef CONFIG_PPC_SMLPAR if (firmware_has_feature(FW_FEATURE_CMO)) { u32 page_ins; preempt_disable(); page_ins = be32_to_cpu(get_lppaca()->page_ins); page_ins += 1 << PAGE_FACTOR; get_lppaca()->page_ins = cpu_to_be32(page_ins); preempt_enable(); } #endif /* CONFIG_PPC_SMLPAR */ } else { current->min_flt++; perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); } return 0; } NOKPROBE_SYMBOL(__do_page_fault); int do_page_fault(struct pt_regs *regs, unsigned long address, unsigned long error_code) { enum ctx_state prev_state = exception_enter(); int rc = __do_page_fault(regs, address, error_code); exception_exit(prev_state); return rc; } NOKPROBE_SYMBOL(do_page_fault); /* * bad_page_fault is called when we have a bad access from the kernel. * It is called from the DSI and ISI handlers in head.S and from some * of the procedures in traps.c. */ void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) { const struct exception_table_entry *entry; /* Are we prepared to handle this fault? */ if ((entry = search_exception_tables(regs->nip)) != NULL) { regs->nip = extable_fixup(entry); return; } /* kernel has accessed a bad area */ switch (regs->trap) { case 0x300: case 0x380: printk(KERN_ALERT "Unable to handle kernel paging request for " "data at address 0x%08lx\n", regs->dar); break; case 0x400: case 0x480: printk(KERN_ALERT "Unable to handle kernel paging request for " "instruction fetch\n"); break; case 0x600: printk(KERN_ALERT "Unable to handle kernel paging request for " "unaligned access at address 0x%08lx\n", regs->dar); break; default: printk(KERN_ALERT "Unable to handle kernel paging request for " "unknown fault\n"); break; } printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", regs->nip); if (task_stack_end_corrupted(current)) printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); die("Kernel access of bad area", regs, sig); }