/* IEEE754 floating point arithmetic * double precision square root */ /* * MIPS floating point support * Copyright (C) 1994-2000 Algorithmics Ltd. * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "ieee754dp.h" static const unsigned table[] = { 0, 1204, 3062, 5746, 9193, 13348, 18162, 23592, 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581, 16499, 12183, 8588, 5674, 3403, 1742, 661, 130 }; union ieee754dp ieee754dp_sqrt(union ieee754dp x) { struct _ieee754_csr oldcsr; union ieee754dp y, z, t; unsigned scalx, yh; COMPXDP; EXPLODEXDP; ieee754_clearcx(); FLUSHXDP; /* x == INF or NAN? */ switch (xc) { case IEEE754_CLASS_QNAN: /* sqrt(Nan) = Nan */ return ieee754dp_nanxcpt(x); case IEEE754_CLASS_SNAN: ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_nanxcpt(ieee754dp_indef()); case IEEE754_CLASS_ZERO: /* sqrt(0) = 0 */ return x; case IEEE754_CLASS_INF: if (xs) { /* sqrt(-Inf) = Nan */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_nanxcpt(ieee754dp_indef()); } /* sqrt(+Inf) = Inf */ return x; case IEEE754_CLASS_DNORM: DPDNORMX; /* fall through */ case IEEE754_CLASS_NORM: if (xs) { /* sqrt(-x) = Nan */ ieee754_setcx(IEEE754_INVALID_OPERATION); return ieee754dp_nanxcpt(ieee754dp_indef()); } break; } /* save old csr; switch off INX enable & flag; set RN rounding */ oldcsr = ieee754_csr; ieee754_csr.mx &= ~IEEE754_INEXACT; ieee754_csr.sx &= ~IEEE754_INEXACT; ieee754_csr.rm = IEEE754_RN; /* adjust exponent to prevent overflow */ scalx = 0; if (xe > 512) { /* x > 2**-512? */ xe -= 512; /* x = x / 2**512 */ scalx += 256; } else if (xe < -512) { /* x < 2**-512? */ xe += 512; /* x = x * 2**512 */ scalx -= 256; } y = x = builddp(0, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT); /* magic initial approximation to almost 8 sig. bits */ yh = y.bits >> 32; yh = (yh >> 1) + 0x1ff80000; yh = yh - table[(yh >> 15) & 31]; y.bits = ((u64) yh << 32) | (y.bits & 0xffffffff); /* Heron's rule once with correction to improve to ~18 sig. bits */ /* t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0; */ t = ieee754dp_div(x, y); y = ieee754dp_add(y, t); y.bits -= 0x0010000600000000LL; y.bits &= 0xffffffff00000000LL; /* triple to almost 56 sig. bits: y ~= sqrt(x) to within 1 ulp */ /* t=y*y; z=t; pt[n0]+=0x00100000; t+=z; z=(x-z)*y; */ z = t = ieee754dp_mul(y, y); t.bexp += 0x001; t = ieee754dp_add(t, z); z = ieee754dp_mul(ieee754dp_sub(x, z), y); /* t=z/(t+x) ; pt[n0]+=0x00100000; y+=t; */ t = ieee754dp_div(z, ieee754dp_add(t, x)); t.bexp += 0x001; y = ieee754dp_add(y, t); /* twiddle last bit to force y correctly rounded */ /* set RZ, clear INEX flag */ ieee754_csr.rm = IEEE754_RZ; ieee754_csr.sx &= ~IEEE754_INEXACT; /* t=x/y; ...chopped quotient, possibly inexact */ t = ieee754dp_div(x, y); if (ieee754_csr.sx & IEEE754_INEXACT || t.bits != y.bits) { if (!(ieee754_csr.sx & IEEE754_INEXACT)) /* t = t-ulp */ t.bits -= 1; /* add inexact to result status */ oldcsr.cx |= IEEE754_INEXACT; oldcsr.sx |= IEEE754_INEXACT; switch (oldcsr.rm) { case IEEE754_RP: y.bits += 1; /* drop through */ case IEEE754_RN: t.bits += 1; break; } /* y=y+t; ...chopped sum */ y = ieee754dp_add(y, t); /* adjust scalx for correctly rounded sqrt(x) */ scalx -= 1; } /* py[n0]=py[n0]+scalx; ...scale back y */ y.bexp += scalx; /* restore rounding mode, possibly set inexact */ ieee754_csr = oldcsr; return y; }