/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2004-2008, 2009, 2010 Cavium Networks */ #include <linux/cpu.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/smp.h> #include <linux/interrupt.h> #include <linux/kernel_stat.h> #include <linux/sched.h> #include <linux/module.h> #include <asm/mmu_context.h> #include <asm/system.h> #include <asm/time.h> #include <asm/octeon/octeon.h> #include "octeon_boot.h" volatile unsigned long octeon_processor_boot = 0xff; volatile unsigned long octeon_processor_sp; volatile unsigned long octeon_processor_gp; #ifdef CONFIG_HOTPLUG_CPU uint64_t octeon_bootloader_entry_addr; EXPORT_SYMBOL(octeon_bootloader_entry_addr); #endif static irqreturn_t mailbox_interrupt(int irq, void *dev_id) { const int coreid = cvmx_get_core_num(); uint64_t action; /* Load the mailbox register to figure out what we're supposed to do */ action = cvmx_read_csr(CVMX_CIU_MBOX_CLRX(coreid)) & 0xffff; /* Clear the mailbox to clear the interrupt */ cvmx_write_csr(CVMX_CIU_MBOX_CLRX(coreid), action); if (action & SMP_CALL_FUNCTION) smp_call_function_interrupt(); if (action & SMP_RESCHEDULE_YOURSELF) scheduler_ipi(); /* Check if we've been told to flush the icache */ if (action & SMP_ICACHE_FLUSH) asm volatile ("synci 0($0)\n"); return IRQ_HANDLED; } /** * Cause the function described by call_data to be executed on the passed * cpu. When the function has finished, increment the finished field of * call_data. */ void octeon_send_ipi_single(int cpu, unsigned int action) { int coreid = cpu_logical_map(cpu); /* pr_info("SMP: Mailbox send cpu=%d, coreid=%d, action=%u\n", cpu, coreid, action); */ cvmx_write_csr(CVMX_CIU_MBOX_SETX(coreid), action); } static inline void octeon_send_ipi_mask(const struct cpumask *mask, unsigned int action) { unsigned int i; for_each_cpu_mask(i, *mask) octeon_send_ipi_single(i, action); } /** * Detect available CPUs, populate cpu_possible_map */ static void octeon_smp_hotplug_setup(void) { #ifdef CONFIG_HOTPLUG_CPU struct linux_app_boot_info *labi; labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER); if (labi->labi_signature != LABI_SIGNATURE) panic("The bootloader version on this board is incorrect."); octeon_bootloader_entry_addr = labi->InitTLBStart_addr; #endif } static void octeon_smp_setup(void) { const int coreid = cvmx_get_core_num(); int cpus; int id; int core_mask = octeon_get_boot_coremask(); #ifdef CONFIG_HOTPLUG_CPU unsigned int num_cores = cvmx_octeon_num_cores(); #endif /* The present CPUs are initially just the boot cpu (CPU 0). */ for (id = 0; id < NR_CPUS; id++) { set_cpu_possible(id, id == 0); set_cpu_present(id, id == 0); } __cpu_number_map[coreid] = 0; __cpu_logical_map[0] = coreid; /* The present CPUs get the lowest CPU numbers. */ cpus = 1; for (id = 0; id < NR_CPUS; id++) { if ((id != coreid) && (core_mask & (1 << id))) { set_cpu_possible(cpus, true); set_cpu_present(cpus, true); __cpu_number_map[id] = cpus; __cpu_logical_map[cpus] = id; cpus++; } } #ifdef CONFIG_HOTPLUG_CPU /* * The possible CPUs are all those present on the chip. We * will assign CPU numbers for possible cores as well. Cores * are always consecutively numberd from 0. */ for (id = 0; id < num_cores && id < NR_CPUS; id++) { if (!(core_mask & (1 << id))) { set_cpu_possible(cpus, true); __cpu_number_map[id] = cpus; __cpu_logical_map[cpus] = id; cpus++; } } #endif octeon_smp_hotplug_setup(); } /** * Firmware CPU startup hook * */ static void octeon_boot_secondary(int cpu, struct task_struct *idle) { int count; pr_info("SMP: Booting CPU%02d (CoreId %2d)...\n", cpu, cpu_logical_map(cpu)); octeon_processor_sp = __KSTK_TOS(idle); octeon_processor_gp = (unsigned long)(task_thread_info(idle)); octeon_processor_boot = cpu_logical_map(cpu); mb(); count = 10000; while (octeon_processor_sp && count) { /* Waiting for processor to get the SP and GP */ udelay(1); count--; } if (count == 0) pr_err("Secondary boot timeout\n"); } /** * After we've done initial boot, this function is called to allow the * board code to clean up state, if needed */ static void __cpuinit octeon_init_secondary(void) { unsigned int sr; sr = set_c0_status(ST0_BEV); write_c0_ebase((u32)ebase); write_c0_status(sr); octeon_check_cpu_bist(); octeon_init_cvmcount(); octeon_irq_setup_secondary(); raw_local_irq_enable(); } /** * Callout to firmware before smp_init * */ void octeon_prepare_cpus(unsigned int max_cpus) { #ifdef CONFIG_HOTPLUG_CPU struct linux_app_boot_info *labi; labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER); if (labi->labi_signature != LABI_SIGNATURE) panic("The bootloader version on this board is incorrect."); #endif /* * Only the low order mailbox bits are used for IPIs, leave * the other bits alone. */ cvmx_write_csr(CVMX_CIU_MBOX_CLRX(cvmx_get_core_num()), 0xffff); if (request_irq(OCTEON_IRQ_MBOX0, mailbox_interrupt, IRQF_DISABLED, "SMP-IPI", mailbox_interrupt)) { panic("Cannot request_irq(OCTEON_IRQ_MBOX0)\n"); } } /** * Last chance for the board code to finish SMP initialization before * the CPU is "online". */ static void octeon_smp_finish(void) { #ifdef CONFIG_CAVIUM_GDB unsigned long tmp; /* Pulse MCD0 signal on Ctrl-C to stop all the cores. Also set the MCD0 to be not masked by this core so we know the signal is received by someone */ asm volatile ("dmfc0 %0, $22\n" "ori %0, %0, 0x9100\n" "dmtc0 %0, $22\n" : "=r" (tmp)); #endif octeon_user_io_init(); /* to generate the first CPU timer interrupt */ write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ); } /** * Hook for after all CPUs are online */ static void octeon_cpus_done(void) { #ifdef CONFIG_CAVIUM_GDB unsigned long tmp; /* Pulse MCD0 signal on Ctrl-C to stop all the cores. Also set the MCD0 to be not masked by this core so we know the signal is received by someone */ asm volatile ("dmfc0 %0, $22\n" "ori %0, %0, 0x9100\n" "dmtc0 %0, $22\n" : "=r" (tmp)); #endif } #ifdef CONFIG_HOTPLUG_CPU /* State of each CPU. */ DEFINE_PER_CPU(int, cpu_state); extern void fixup_irqs(void); static DEFINE_SPINLOCK(smp_reserve_lock); static int octeon_cpu_disable(void) { unsigned int cpu = smp_processor_id(); if (cpu == 0) return -EBUSY; spin_lock(&smp_reserve_lock); cpu_clear(cpu, cpu_online_map); cpu_clear(cpu, cpu_callin_map); local_irq_disable(); fixup_irqs(); local_irq_enable(); flush_cache_all(); local_flush_tlb_all(); spin_unlock(&smp_reserve_lock); return 0; } static void octeon_cpu_die(unsigned int cpu) { int coreid = cpu_logical_map(cpu); uint32_t mask, new_mask; const struct cvmx_bootmem_named_block_desc *block_desc; while (per_cpu(cpu_state, cpu) != CPU_DEAD) cpu_relax(); /* * This is a bit complicated strategics of getting/settig available * cores mask, copied from bootloader */ mask = 1 << coreid; /* LINUX_APP_BOOT_BLOCK is initialized in bootoct binary */ block_desc = cvmx_bootmem_find_named_block(LINUX_APP_BOOT_BLOCK_NAME); if (!block_desc) { struct linux_app_boot_info *labi; labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER); labi->avail_coremask |= mask; new_mask = labi->avail_coremask; } else { /* alternative, already initialized */ uint32_t *p = (uint32_t *)PHYS_TO_XKSEG_CACHED(block_desc->base_addr + AVAIL_COREMASK_OFFSET_IN_LINUX_APP_BOOT_BLOCK); *p |= mask; new_mask = *p; } pr_info("Reset core %d. Available Coremask = 0x%x \n", coreid, new_mask); mb(); cvmx_write_csr(CVMX_CIU_PP_RST, 1 << coreid); cvmx_write_csr(CVMX_CIU_PP_RST, 0); } void play_dead(void) { int cpu = cpu_number_map(cvmx_get_core_num()); idle_task_exit(); octeon_processor_boot = 0xff; per_cpu(cpu_state, cpu) = CPU_DEAD; mb(); while (1) /* core will be reset here */ ; } extern void kernel_entry(unsigned long arg1, ...); static void start_after_reset(void) { kernel_entry(0, 0, 0); /* set a2 = 0 for secondary core */ } static int octeon_update_boot_vector(unsigned int cpu) { int coreid = cpu_logical_map(cpu); uint32_t avail_coremask; const struct cvmx_bootmem_named_block_desc *block_desc; struct boot_init_vector *boot_vect = (struct boot_init_vector *)PHYS_TO_XKSEG_CACHED(BOOTLOADER_BOOT_VECTOR); block_desc = cvmx_bootmem_find_named_block(LINUX_APP_BOOT_BLOCK_NAME); if (!block_desc) { struct linux_app_boot_info *labi; labi = (struct linux_app_boot_info *)PHYS_TO_XKSEG_CACHED(LABI_ADDR_IN_BOOTLOADER); avail_coremask = labi->avail_coremask; labi->avail_coremask &= ~(1 << coreid); } else { /* alternative, already initialized */ avail_coremask = *(uint32_t *)PHYS_TO_XKSEG_CACHED( block_desc->base_addr + AVAIL_COREMASK_OFFSET_IN_LINUX_APP_BOOT_BLOCK); } if (!(avail_coremask & (1 << coreid))) { /* core not available, assume, that catched by simple-executive */ cvmx_write_csr(CVMX_CIU_PP_RST, 1 << coreid); cvmx_write_csr(CVMX_CIU_PP_RST, 0); } boot_vect[coreid].app_start_func_addr = (uint32_t) (unsigned long) start_after_reset; boot_vect[coreid].code_addr = octeon_bootloader_entry_addr; mb(); cvmx_write_csr(CVMX_CIU_NMI, (1 << coreid) & avail_coremask); return 0; } static int __cpuinit octeon_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { unsigned int cpu = (unsigned long)hcpu; switch (action) { case CPU_UP_PREPARE: octeon_update_boot_vector(cpu); break; case CPU_ONLINE: pr_info("Cpu %d online\n", cpu); break; case CPU_DEAD: break; } return NOTIFY_OK; } static int __cpuinit register_cavium_notifier(void) { hotcpu_notifier(octeon_cpu_callback, 0); return 0; } late_initcall(register_cavium_notifier); #endif /* CONFIG_HOTPLUG_CPU */ struct plat_smp_ops octeon_smp_ops = { .send_ipi_single = octeon_send_ipi_single, .send_ipi_mask = octeon_send_ipi_mask, .init_secondary = octeon_init_secondary, .smp_finish = octeon_smp_finish, .cpus_done = octeon_cpus_done, .boot_secondary = octeon_boot_secondary, .smp_setup = octeon_smp_setup, .prepare_cpus = octeon_prepare_cpus, #ifdef CONFIG_HOTPLUG_CPU .cpu_disable = octeon_cpu_disable, .cpu_die = octeon_cpu_die, #endif };