/* * arch/arm/mach-tegra/pci.c * * PCIe host controller driver for TEGRA(2) SOCs * * Copyright (c) 2010, CompuLab, Ltd. * Author: Mike Rapoport * * Based on NVIDIA PCIe driver * Copyright (c) 2008-2009, NVIDIA Corporation. * * Bits taken from arch/arm/mach-dove/pcie.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "board.h" /* register definitions */ #define AFI_OFFSET 0x3800 #define PADS_OFFSET 0x3000 #define RP0_OFFSET 0x0000 #define RP1_OFFSET 0x1000 #define AFI_AXI_BAR0_SZ 0x00 #define AFI_AXI_BAR1_SZ 0x04 #define AFI_AXI_BAR2_SZ 0x08 #define AFI_AXI_BAR3_SZ 0x0c #define AFI_AXI_BAR4_SZ 0x10 #define AFI_AXI_BAR5_SZ 0x14 #define AFI_AXI_BAR0_START 0x18 #define AFI_AXI_BAR1_START 0x1c #define AFI_AXI_BAR2_START 0x20 #define AFI_AXI_BAR3_START 0x24 #define AFI_AXI_BAR4_START 0x28 #define AFI_AXI_BAR5_START 0x2c #define AFI_FPCI_BAR0 0x30 #define AFI_FPCI_BAR1 0x34 #define AFI_FPCI_BAR2 0x38 #define AFI_FPCI_BAR3 0x3c #define AFI_FPCI_BAR4 0x40 #define AFI_FPCI_BAR5 0x44 #define AFI_CACHE_BAR0_SZ 0x48 #define AFI_CACHE_BAR0_ST 0x4c #define AFI_CACHE_BAR1_SZ 0x50 #define AFI_CACHE_BAR1_ST 0x54 #define AFI_MSI_BAR_SZ 0x60 #define AFI_MSI_FPCI_BAR_ST 0x64 #define AFI_MSI_AXI_BAR_ST 0x68 #define AFI_CONFIGURATION 0xac #define AFI_CONFIGURATION_EN_FPCI (1 << 0) #define AFI_FPCI_ERROR_MASKS 0xb0 #define AFI_INTR_MASK 0xb4 #define AFI_INTR_MASK_INT_MASK (1 << 0) #define AFI_INTR_MASK_MSI_MASK (1 << 8) #define AFI_INTR_CODE 0xb8 #define AFI_INTR_CODE_MASK 0xf #define AFI_INTR_MASTER_ABORT 4 #define AFI_INTR_LEGACY 6 #define AFI_INTR_SIGNATURE 0xbc #define AFI_SM_INTR_ENABLE 0xc4 #define AFI_AFI_INTR_ENABLE 0xc8 #define AFI_INTR_EN_INI_SLVERR (1 << 0) #define AFI_INTR_EN_INI_DECERR (1 << 1) #define AFI_INTR_EN_TGT_SLVERR (1 << 2) #define AFI_INTR_EN_TGT_DECERR (1 << 3) #define AFI_INTR_EN_TGT_WRERR (1 << 4) #define AFI_INTR_EN_DFPCI_DECERR (1 << 5) #define AFI_INTR_EN_AXI_DECERR (1 << 6) #define AFI_INTR_EN_FPCI_TIMEOUT (1 << 7) #define AFI_PCIE_CONFIG 0x0f8 #define AFI_PCIE_CONFIG_PCIEC0_DISABLE_DEVICE (1 << 1) #define AFI_PCIE_CONFIG_PCIEC1_DISABLE_DEVICE (1 << 2) #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20) #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE (0x0 << 20) #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL (0x1 << 20) #define AFI_FUSE 0x104 #define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2) #define AFI_PEX0_CTRL 0x110 #define AFI_PEX1_CTRL 0x118 #define AFI_PEX_CTRL_RST (1 << 0) #define AFI_PEX_CTRL_REFCLK_EN (1 << 3) #define RP_VEND_XP 0x00000F00 #define RP_VEND_XP_DL_UP (1 << 30) #define RP_LINK_CONTROL_STATUS 0x00000090 #define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000 #define PADS_CTL_SEL 0x0000009C #define PADS_CTL 0x000000A0 #define PADS_CTL_IDDQ_1L (1 << 0) #define PADS_CTL_TX_DATA_EN_1L (1 << 6) #define PADS_CTL_RX_DATA_EN_1L (1 << 10) #define PADS_PLL_CTL 0x000000B8 #define PADS_PLL_CTL_RST_B4SM (1 << 1) #define PADS_PLL_CTL_LOCKDET (1 << 8) #define PADS_PLL_CTL_REFCLK_MASK (0x3 << 16) #define PADS_PLL_CTL_REFCLK_INTERNAL_CML (0 << 16) #define PADS_PLL_CTL_REFCLK_INTERNAL_CMOS (1 << 16) #define PADS_PLL_CTL_REFCLK_EXTERNAL (2 << 16) #define PADS_PLL_CTL_TXCLKREF_MASK (0x1 << 20) #define PADS_PLL_CTL_TXCLKREF_DIV10 (0 << 20) #define PADS_PLL_CTL_TXCLKREF_DIV5 (1 << 20) /* PMC access is required for PCIE xclk (un)clamping */ #define PMC_SCRATCH42 0x144 #define PMC_SCRATCH42_PCX_CLAMP (1 << 0) static void __iomem *reg_pmc_base = IO_ADDRESS(TEGRA_PMC_BASE); #define pmc_writel(value, reg) \ __raw_writel(value, reg_pmc_base + (reg)) #define pmc_readl(reg) \ __raw_readl(reg_pmc_base + (reg)) /* * Tegra2 defines 1GB in the AXI address map for PCIe. * * That address space is split into different regions, with sizes and * offsets as follows: * * 0x80000000 - 0x80003fff - PCI controller registers * 0x80004000 - 0x80103fff - PCI configuration space * 0x80104000 - 0x80203fff - PCI extended configuration space * 0x80203fff - 0x803fffff - unused * 0x80400000 - 0x8040ffff - downstream IO * 0x80410000 - 0x8fffffff - unused * 0x90000000 - 0x9fffffff - non-prefetchable memory * 0xa0000000 - 0xbfffffff - prefetchable memory */ #define PCIE_REGS_SZ SZ_16K #define PCIE_CFG_OFF PCIE_REGS_SZ #define PCIE_CFG_SZ SZ_1M #define PCIE_EXT_CFG_OFF (PCIE_CFG_SZ + PCIE_CFG_OFF) #define PCIE_EXT_CFG_SZ SZ_1M #define PCIE_IOMAP_SZ (PCIE_REGS_SZ + PCIE_CFG_SZ + PCIE_EXT_CFG_SZ) #define MEM_BASE_0 (TEGRA_PCIE_BASE + SZ_256M) #define MEM_SIZE_0 SZ_128M #define MEM_BASE_1 (MEM_BASE_0 + MEM_SIZE_0) #define MEM_SIZE_1 SZ_128M #define PREFETCH_MEM_BASE_0 (MEM_BASE_1 + MEM_SIZE_1) #define PREFETCH_MEM_SIZE_0 SZ_128M #define PREFETCH_MEM_BASE_1 (PREFETCH_MEM_BASE_0 + PREFETCH_MEM_SIZE_0) #define PREFETCH_MEM_SIZE_1 SZ_128M #define PCIE_CONF_BUS(b) ((b) << 16) #define PCIE_CONF_DEV(d) ((d) << 11) #define PCIE_CONF_FUNC(f) ((f) << 8) #define PCIE_CONF_REG(r) \ (((r) & ~0x3) | (((r) < 256) ? PCIE_CFG_OFF : PCIE_EXT_CFG_OFF)) struct tegra_pcie_port { int index; u8 root_bus_nr; void __iomem *base; bool link_up; char mem_space_name[16]; char prefetch_space_name[20]; struct resource res[2]; }; struct tegra_pcie_info { struct tegra_pcie_port port[2]; int num_ports; void __iomem *regs; struct resource res_mmio; struct clk *pex_clk; struct clk *afi_clk; struct clk *pcie_xclk; struct clk *pll_e; }; static struct tegra_pcie_info tegra_pcie; static inline void afi_writel(u32 value, unsigned long offset) { writel(value, offset + AFI_OFFSET + tegra_pcie.regs); } static inline u32 afi_readl(unsigned long offset) { return readl(offset + AFI_OFFSET + tegra_pcie.regs); } static inline void pads_writel(u32 value, unsigned long offset) { writel(value, offset + PADS_OFFSET + tegra_pcie.regs); } static inline u32 pads_readl(unsigned long offset) { return readl(offset + PADS_OFFSET + tegra_pcie.regs); } static struct tegra_pcie_port *bus_to_port(int bus) { int i; for (i = tegra_pcie.num_ports - 1; i >= 0; i--) { int rbus = tegra_pcie.port[i].root_bus_nr; if (rbus != -1 && rbus == bus) break; } return i >= 0 ? tegra_pcie.port + i : NULL; } static int tegra_pcie_read_conf(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct tegra_pcie_port *pp = bus_to_port(bus->number); void __iomem *addr; if (pp) { if (devfn != 0) { *val = 0xffffffff; return PCIBIOS_DEVICE_NOT_FOUND; } addr = pp->base + (where & ~0x3); } else { addr = tegra_pcie.regs + (PCIE_CONF_BUS(bus->number) + PCIE_CONF_DEV(PCI_SLOT(devfn)) + PCIE_CONF_FUNC(PCI_FUNC(devfn)) + PCIE_CONF_REG(where)); } *val = readl(addr); if (size == 1) *val = (*val >> (8 * (where & 3))) & 0xff; else if (size == 2) *val = (*val >> (8 * (where & 3))) & 0xffff; return PCIBIOS_SUCCESSFUL; } static int tegra_pcie_write_conf(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct tegra_pcie_port *pp = bus_to_port(bus->number); void __iomem *addr; u32 mask; u32 tmp; if (pp) { if (devfn != 0) return PCIBIOS_DEVICE_NOT_FOUND; addr = pp->base + (where & ~0x3); } else { addr = tegra_pcie.regs + (PCIE_CONF_BUS(bus->number) + PCIE_CONF_DEV(PCI_SLOT(devfn)) + PCIE_CONF_FUNC(PCI_FUNC(devfn)) + PCIE_CONF_REG(where)); } if (size == 4) { writel(val, addr); return PCIBIOS_SUCCESSFUL; } if (size == 2) mask = ~(0xffff << ((where & 0x3) * 8)); else if (size == 1) mask = ~(0xff << ((where & 0x3) * 8)); else return PCIBIOS_BAD_REGISTER_NUMBER; tmp = readl(addr) & mask; tmp |= val << ((where & 0x3) * 8); writel(tmp, addr); return PCIBIOS_SUCCESSFUL; } static struct pci_ops tegra_pcie_ops = { .read = tegra_pcie_read_conf, .write = tegra_pcie_write_conf, }; static void __devinit tegra_pcie_fixup_bridge(struct pci_dev *dev) { u16 reg; if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) { pci_read_config_word(dev, PCI_COMMAND, ®); reg |= (PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_SERR); pci_write_config_word(dev, PCI_COMMAND, reg); } } DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, tegra_pcie_fixup_bridge); /* Tegra PCIE root complex wrongly reports device class */ static void __devinit tegra_pcie_fixup_class(struct pci_dev *dev) { dev->class = PCI_CLASS_BRIDGE_PCI << 8; } DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf0, tegra_pcie_fixup_class); DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf1, tegra_pcie_fixup_class); /* Tegra PCIE requires relaxed ordering */ static void __devinit tegra_pcie_relax_enable(struct pci_dev *dev) { u16 val16; int pos = pci_find_capability(dev, PCI_CAP_ID_EXP); if (pos <= 0) { dev_err(&dev->dev, "skipping relaxed ordering fixup\n"); return; } pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &val16); val16 |= PCI_EXP_DEVCTL_RELAX_EN; pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, val16); } DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, tegra_pcie_relax_enable); static int tegra_pcie_setup(int nr, struct pci_sys_data *sys) { struct tegra_pcie_port *pp; if (nr >= tegra_pcie.num_ports) return 0; pp = tegra_pcie.port + nr; pp->root_bus_nr = sys->busnr; pci_ioremap_io(nr * SZ_64K, TEGRA_PCIE_IO_BASE); /* * IORESOURCE_MEM */ snprintf(pp->mem_space_name, sizeof(pp->mem_space_name), "PCIe %d MEM", pp->index); pp->mem_space_name[sizeof(pp->mem_space_name) - 1] = 0; pp->res[0].name = pp->mem_space_name; if (pp->index == 0) { pp->res[0].start = MEM_BASE_0; pp->res[0].end = pp->res[0].start + MEM_SIZE_0 - 1; } else { pp->res[0].start = MEM_BASE_1; pp->res[0].end = pp->res[0].start + MEM_SIZE_1 - 1; } pp->res[0].flags = IORESOURCE_MEM; if (request_resource(&iomem_resource, &pp->res[0])) panic("Request PCIe Memory resource failed\n"); pci_add_resource_offset(&sys->resources, &pp->res[0], sys->mem_offset); /* * IORESOURCE_MEM | IORESOURCE_PREFETCH */ snprintf(pp->prefetch_space_name, sizeof(pp->prefetch_space_name), "PCIe %d PREFETCH MEM", pp->index); pp->prefetch_space_name[sizeof(pp->prefetch_space_name) - 1] = 0; pp->res[1].name = pp->prefetch_space_name; if (pp->index == 0) { pp->res[1].start = PREFETCH_MEM_BASE_0; pp->res[1].end = pp->res[1].start + PREFETCH_MEM_SIZE_0 - 1; } else { pp->res[1].start = PREFETCH_MEM_BASE_1; pp->res[1].end = pp->res[1].start + PREFETCH_MEM_SIZE_1 - 1; } pp->res[1].flags = IORESOURCE_MEM | IORESOURCE_PREFETCH; if (request_resource(&iomem_resource, &pp->res[1])) panic("Request PCIe Prefetch Memory resource failed\n"); pci_add_resource_offset(&sys->resources, &pp->res[1], sys->mem_offset); return 1; } static int tegra_pcie_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { return INT_PCIE_INTR; } static struct pci_bus __init *tegra_pcie_scan_bus(int nr, struct pci_sys_data *sys) { struct tegra_pcie_port *pp; if (nr >= tegra_pcie.num_ports) return NULL; pp = tegra_pcie.port + nr; pp->root_bus_nr = sys->busnr; return pci_scan_root_bus(NULL, sys->busnr, &tegra_pcie_ops, sys, &sys->resources); } static struct hw_pci tegra_pcie_hw __initdata = { .nr_controllers = 2, .setup = tegra_pcie_setup, .scan = tegra_pcie_scan_bus, .map_irq = tegra_pcie_map_irq, }; static irqreturn_t tegra_pcie_isr(int irq, void *arg) { const char *err_msg[] = { "Unknown", "AXI slave error", "AXI decode error", "Target abort", "Master abort", "Invalid write", "Response decoding error", "AXI response decoding error", "Transcation timeout", }; u32 code, signature; code = afi_readl(AFI_INTR_CODE) & AFI_INTR_CODE_MASK; signature = afi_readl(AFI_INTR_SIGNATURE); afi_writel(0, AFI_INTR_CODE); if (code == AFI_INTR_LEGACY) return IRQ_NONE; if (code >= ARRAY_SIZE(err_msg)) code = 0; /* * do not pollute kernel log with master abort reports since they * happen a lot during enumeration */ if (code == AFI_INTR_MASTER_ABORT) pr_debug("PCIE: %s, signature: %08x\n", err_msg[code], signature); else pr_err("PCIE: %s, signature: %08x\n", err_msg[code], signature); return IRQ_HANDLED; } static void tegra_pcie_setup_translations(void) { u32 fpci_bar; u32 size; u32 axi_address; /* Bar 0: config Bar */ fpci_bar = ((u32)0xfdff << 16); size = PCIE_CFG_SZ; axi_address = TEGRA_PCIE_BASE + PCIE_CFG_OFF; afi_writel(axi_address, AFI_AXI_BAR0_START); afi_writel(size >> 12, AFI_AXI_BAR0_SZ); afi_writel(fpci_bar, AFI_FPCI_BAR0); /* Bar 1: extended config Bar */ fpci_bar = ((u32)0xfe1 << 20); size = PCIE_EXT_CFG_SZ; axi_address = TEGRA_PCIE_BASE + PCIE_EXT_CFG_OFF; afi_writel(axi_address, AFI_AXI_BAR1_START); afi_writel(size >> 12, AFI_AXI_BAR1_SZ); afi_writel(fpci_bar, AFI_FPCI_BAR1); /* Bar 2: downstream IO bar */ fpci_bar = ((__u32)0xfdfc << 16); size = SZ_128K; axi_address = TEGRA_PCIE_IO_BASE; afi_writel(axi_address, AFI_AXI_BAR2_START); afi_writel(size >> 12, AFI_AXI_BAR2_SZ); afi_writel(fpci_bar, AFI_FPCI_BAR2); /* Bar 3: prefetchable memory BAR */ fpci_bar = (((PREFETCH_MEM_BASE_0 >> 12) & 0x0fffffff) << 4) | 0x1; size = PREFETCH_MEM_SIZE_0 + PREFETCH_MEM_SIZE_1; axi_address = PREFETCH_MEM_BASE_0; afi_writel(axi_address, AFI_AXI_BAR3_START); afi_writel(size >> 12, AFI_AXI_BAR3_SZ); afi_writel(fpci_bar, AFI_FPCI_BAR3); /* Bar 4: non prefetchable memory BAR */ fpci_bar = (((MEM_BASE_0 >> 12) & 0x0FFFFFFF) << 4) | 0x1; size = MEM_SIZE_0 + MEM_SIZE_1; axi_address = MEM_BASE_0; afi_writel(axi_address, AFI_AXI_BAR4_START); afi_writel(size >> 12, AFI_AXI_BAR4_SZ); afi_writel(fpci_bar, AFI_FPCI_BAR4); /* Bar 5: NULL out the remaining BAR as it is not used */ fpci_bar = 0; size = 0; axi_address = 0; afi_writel(axi_address, AFI_AXI_BAR5_START); afi_writel(size >> 12, AFI_AXI_BAR5_SZ); afi_writel(fpci_bar, AFI_FPCI_BAR5); /* map all upstream transactions as uncached */ afi_writel(PHYS_OFFSET, AFI_CACHE_BAR0_ST); afi_writel(0, AFI_CACHE_BAR0_SZ); afi_writel(0, AFI_CACHE_BAR1_ST); afi_writel(0, AFI_CACHE_BAR1_SZ); /* No MSI */ afi_writel(0, AFI_MSI_FPCI_BAR_ST); afi_writel(0, AFI_MSI_BAR_SZ); afi_writel(0, AFI_MSI_AXI_BAR_ST); afi_writel(0, AFI_MSI_BAR_SZ); } static int tegra_pcie_enable_controller(void) { u32 val, reg; int i, timeout; /* Enable slot clock and pulse the reset signals */ for (i = 0, reg = AFI_PEX0_CTRL; i < 2; i++, reg += 0x8) { val = afi_readl(reg) | AFI_PEX_CTRL_REFCLK_EN; afi_writel(val, reg); val &= ~AFI_PEX_CTRL_RST; afi_writel(val, reg); val = afi_readl(reg) | AFI_PEX_CTRL_RST; afi_writel(val, reg); } /* Enable dual controller and both ports */ val = afi_readl(AFI_PCIE_CONFIG); val &= ~(AFI_PCIE_CONFIG_PCIEC0_DISABLE_DEVICE | AFI_PCIE_CONFIG_PCIEC1_DISABLE_DEVICE | AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK); val |= AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL; afi_writel(val, AFI_PCIE_CONFIG); val = afi_readl(AFI_FUSE) & ~AFI_FUSE_PCIE_T0_GEN2_DIS; afi_writel(val, AFI_FUSE); /* Initialze internal PHY, enable up to 16 PCIE lanes */ pads_writel(0x0, PADS_CTL_SEL); /* override IDDQ to 1 on all 4 lanes */ val = pads_readl(PADS_CTL) | PADS_CTL_IDDQ_1L; pads_writel(val, PADS_CTL); /* * set up PHY PLL inputs select PLLE output as refclock, * set TX ref sel to div10 (not div5) */ val = pads_readl(PADS_PLL_CTL); val &= ~(PADS_PLL_CTL_REFCLK_MASK | PADS_PLL_CTL_TXCLKREF_MASK); val |= (PADS_PLL_CTL_REFCLK_INTERNAL_CML | PADS_PLL_CTL_TXCLKREF_DIV10); pads_writel(val, PADS_PLL_CTL); /* take PLL out of reset */ val = pads_readl(PADS_PLL_CTL) | PADS_PLL_CTL_RST_B4SM; pads_writel(val, PADS_PLL_CTL); /* * Hack, set the clock voltage to the DEFAULT provided by hw folks. * This doesn't exist in the documentation */ pads_writel(0xfa5cfa5c, 0xc8); /* Wait for the PLL to lock */ timeout = 300; do { val = pads_readl(PADS_PLL_CTL); usleep_range(1000, 1000); if (--timeout == 0) { pr_err("Tegra PCIe error: timeout waiting for PLL\n"); return -EBUSY; } } while (!(val & PADS_PLL_CTL_LOCKDET)); /* turn off IDDQ override */ val = pads_readl(PADS_CTL) & ~PADS_CTL_IDDQ_1L; pads_writel(val, PADS_CTL); /* enable TX/RX data */ val = pads_readl(PADS_CTL); val |= (PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L); pads_writel(val, PADS_CTL); /* Take the PCIe interface module out of reset */ tegra_periph_reset_deassert(tegra_pcie.pcie_xclk); /* Finally enable PCIe */ val = afi_readl(AFI_CONFIGURATION) | AFI_CONFIGURATION_EN_FPCI; afi_writel(val, AFI_CONFIGURATION); val = (AFI_INTR_EN_INI_SLVERR | AFI_INTR_EN_INI_DECERR | AFI_INTR_EN_TGT_SLVERR | AFI_INTR_EN_TGT_DECERR | AFI_INTR_EN_TGT_WRERR | AFI_INTR_EN_DFPCI_DECERR); afi_writel(val, AFI_AFI_INTR_ENABLE); afi_writel(0xffffffff, AFI_SM_INTR_ENABLE); /* FIXME: No MSI for now, only INT */ afi_writel(AFI_INTR_MASK_INT_MASK, AFI_INTR_MASK); /* Disable all execptions */ afi_writel(0, AFI_FPCI_ERROR_MASKS); return 0; } static void tegra_pcie_xclk_clamp(bool clamp) { u32 reg; reg = pmc_readl(PMC_SCRATCH42) & ~PMC_SCRATCH42_PCX_CLAMP; if (clamp) reg |= PMC_SCRATCH42_PCX_CLAMP; pmc_writel(reg, PMC_SCRATCH42); } static void tegra_pcie_power_off(void) { tegra_periph_reset_assert(tegra_pcie.pcie_xclk); tegra_periph_reset_assert(tegra_pcie.afi_clk); tegra_periph_reset_assert(tegra_pcie.pex_clk); tegra_powergate_power_off(TEGRA_POWERGATE_PCIE); tegra_pcie_xclk_clamp(true); } static int tegra_pcie_power_regate(void) { int err; tegra_pcie_power_off(); tegra_pcie_xclk_clamp(true); tegra_periph_reset_assert(tegra_pcie.pcie_xclk); tegra_periph_reset_assert(tegra_pcie.afi_clk); err = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_PCIE, tegra_pcie.pex_clk); if (err) { pr_err("PCIE: powerup sequence failed: %d\n", err); return err; } tegra_periph_reset_deassert(tegra_pcie.afi_clk); tegra_pcie_xclk_clamp(false); clk_enable(tegra_pcie.afi_clk); clk_enable(tegra_pcie.pex_clk); return clk_enable(tegra_pcie.pll_e); } static int tegra_pcie_clocks_get(void) { int err; tegra_pcie.pex_clk = clk_get(NULL, "pex"); if (IS_ERR(tegra_pcie.pex_clk)) return PTR_ERR(tegra_pcie.pex_clk); tegra_pcie.afi_clk = clk_get(NULL, "afi"); if (IS_ERR(tegra_pcie.afi_clk)) { err = PTR_ERR(tegra_pcie.afi_clk); goto err_afi_clk; } tegra_pcie.pcie_xclk = clk_get(NULL, "pcie_xclk"); if (IS_ERR(tegra_pcie.pcie_xclk)) { err = PTR_ERR(tegra_pcie.pcie_xclk); goto err_pcie_xclk; } tegra_pcie.pll_e = clk_get_sys(NULL, "pll_e"); if (IS_ERR(tegra_pcie.pll_e)) { err = PTR_ERR(tegra_pcie.pll_e); goto err_pll_e; } return 0; err_pll_e: clk_put(tegra_pcie.pcie_xclk); err_pcie_xclk: clk_put(tegra_pcie.afi_clk); err_afi_clk: clk_put(tegra_pcie.pex_clk); return err; } static void tegra_pcie_clocks_put(void) { clk_put(tegra_pcie.pll_e); clk_put(tegra_pcie.pcie_xclk); clk_put(tegra_pcie.afi_clk); clk_put(tegra_pcie.pex_clk); } static int __init tegra_pcie_get_resources(void) { int err; err = tegra_pcie_clocks_get(); if (err) { pr_err("PCIE: failed to get clocks: %d\n", err); return err; } err = tegra_pcie_power_regate(); if (err) { pr_err("PCIE: failed to power up: %d\n", err); goto err_pwr_on; } tegra_pcie.regs = ioremap_nocache(TEGRA_PCIE_BASE, PCIE_IOMAP_SZ); if (tegra_pcie.regs == NULL) { pr_err("PCIE: Failed to map PCI/AFI registers\n"); err = -ENOMEM; goto err_map_reg; } err = request_irq(INT_PCIE_INTR, tegra_pcie_isr, IRQF_SHARED, "PCIE", &tegra_pcie); if (err) { pr_err("PCIE: Failed to register IRQ: %d\n", err); goto err_req_io; } set_irq_flags(INT_PCIE_INTR, IRQF_VALID); return 0; err_req_io: iounmap(tegra_pcie.regs); err_map_reg: tegra_pcie_power_off(); err_pwr_on: tegra_pcie_clocks_put(); return err; } /* * FIXME: If there are no PCIe cards attached, then calling this function * can result in the increase of the bootup time as there are big timeout * loops. */ #define TEGRA_PCIE_LINKUP_TIMEOUT 200 /* up to 1.2 seconds */ static bool tegra_pcie_check_link(struct tegra_pcie_port *pp, int idx, u32 reset_reg) { u32 reg; int retries = 3; int timeout; do { timeout = TEGRA_PCIE_LINKUP_TIMEOUT; while (timeout) { reg = readl(pp->base + RP_VEND_XP); if (reg & RP_VEND_XP_DL_UP) break; mdelay(1); timeout--; } if (!timeout) { pr_err("PCIE: port %d: link down, retrying\n", idx); goto retry; } timeout = TEGRA_PCIE_LINKUP_TIMEOUT; while (timeout) { reg = readl(pp->base + RP_LINK_CONTROL_STATUS); if (reg & 0x20000000) return true; mdelay(1); timeout--; } retry: /* Pulse the PEX reset */ reg = afi_readl(reset_reg) | AFI_PEX_CTRL_RST; afi_writel(reg, reset_reg); mdelay(1); reg = afi_readl(reset_reg) & ~AFI_PEX_CTRL_RST; afi_writel(reg, reset_reg); retries--; } while (retries); return false; } static void __init tegra_pcie_add_port(int index, u32 offset, u32 reset_reg) { struct tegra_pcie_port *pp; pp = tegra_pcie.port + tegra_pcie.num_ports; pp->index = -1; pp->base = tegra_pcie.regs + offset; pp->link_up = tegra_pcie_check_link(pp, index, reset_reg); if (!pp->link_up) { pp->base = NULL; printk(KERN_INFO "PCIE: port %d: link down, ignoring\n", index); return; } tegra_pcie.num_ports++; pp->index = index; pp->root_bus_nr = -1; memset(pp->res, 0, sizeof(pp->res)); } int __init tegra_pcie_init(bool init_port0, bool init_port1) { int err; if (!(init_port0 || init_port1)) return -ENODEV; pcibios_min_mem = 0; err = tegra_pcie_get_resources(); if (err) return err; err = tegra_pcie_enable_controller(); if (err) return err; /* setup the AFI address translations */ tegra_pcie_setup_translations(); if (init_port0) tegra_pcie_add_port(0, RP0_OFFSET, AFI_PEX0_CTRL); if (init_port1) tegra_pcie_add_port(1, RP1_OFFSET, AFI_PEX1_CTRL); pci_common_init(&tegra_pcie_hw); return 0; }