/* * linux/arch/arm/mach-pxa/cpufreq-pxa2xx.c * * Copyright (C) 2002,2003 Intrinsyc Software * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * History: * 31-Jul-2002 : Initial version [FB] * 29-Jan-2003 : added PXA255 support [FB] * 20-Apr-2003 : ported to v2.5 (Dustin McIntire, Sensoria Corp.) * * Note: * This driver may change the memory bus clock rate, but will not do any * platform specific access timing changes... for example if you have flash * memory connected to CS0, you will need to register a platform specific * notifier which will adjust the memory access strobes to maintain a * minimum strobe width. * */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/cpufreq.h> #include <linux/err.h> #include <linux/regulator/consumer.h> #include <mach/pxa2xx-regs.h> #ifdef DEBUG static unsigned int freq_debug; module_param(freq_debug, uint, 0); MODULE_PARM_DESC(freq_debug, "Set the debug messages to on=1/off=0"); #else #define freq_debug 0 #endif static struct regulator *vcc_core; static unsigned int pxa27x_maxfreq; module_param(pxa27x_maxfreq, uint, 0); MODULE_PARM_DESC(pxa27x_maxfreq, "Set the pxa27x maxfreq in MHz" "(typically 624=>pxa270, 416=>pxa271, 520=>pxa272)"); typedef struct { unsigned int khz; unsigned int membus; unsigned int cccr; unsigned int div2; unsigned int cclkcfg; int vmin; int vmax; } pxa_freqs_t; /* Define the refresh period in mSec for the SDRAM and the number of rows */ #define SDRAM_TREF 64 /* standard 64ms SDRAM */ static unsigned int sdram_rows; #define CCLKCFG_TURBO 0x1 #define CCLKCFG_FCS 0x2 #define CCLKCFG_HALFTURBO 0x4 #define CCLKCFG_FASTBUS 0x8 #define MDREFR_DB2_MASK (MDREFR_K2DB2 | MDREFR_K1DB2) #define MDREFR_DRI_MASK 0xFFF #define MDCNFG_DRAC2(mdcnfg) (((mdcnfg) >> 21) & 0x3) #define MDCNFG_DRAC0(mdcnfg) (((mdcnfg) >> 5) & 0x3) /* * PXA255 definitions */ /* Use the run mode frequencies for the CPUFREQ_POLICY_PERFORMANCE policy */ #define CCLKCFG CCLKCFG_TURBO | CCLKCFG_FCS static pxa_freqs_t pxa255_run_freqs[] = { /* CPU MEMBUS CCCR DIV2 CCLKCFG run turbo PXbus SDRAM */ { 99500, 99500, 0x121, 1, CCLKCFG, -1, -1}, /* 99, 99, 50, 50 */ {132700, 132700, 0x123, 1, CCLKCFG, -1, -1}, /* 133, 133, 66, 66 */ {199100, 99500, 0x141, 0, CCLKCFG, -1, -1}, /* 199, 199, 99, 99 */ {265400, 132700, 0x143, 1, CCLKCFG, -1, -1}, /* 265, 265, 133, 66 */ {331800, 165900, 0x145, 1, CCLKCFG, -1, -1}, /* 331, 331, 166, 83 */ {398100, 99500, 0x161, 0, CCLKCFG, -1, -1}, /* 398, 398, 196, 99 */ }; /* Use the turbo mode frequencies for the CPUFREQ_POLICY_POWERSAVE policy */ static pxa_freqs_t pxa255_turbo_freqs[] = { /* CPU MEMBUS CCCR DIV2 CCLKCFG run turbo PXbus SDRAM */ { 99500, 99500, 0x121, 1, CCLKCFG, -1, -1}, /* 99, 99, 50, 50 */ {199100, 99500, 0x221, 0, CCLKCFG, -1, -1}, /* 99, 199, 50, 99 */ {298500, 99500, 0x321, 0, CCLKCFG, -1, -1}, /* 99, 287, 50, 99 */ {298600, 99500, 0x1c1, 0, CCLKCFG, -1, -1}, /* 199, 287, 99, 99 */ {398100, 99500, 0x241, 0, CCLKCFG, -1, -1}, /* 199, 398, 99, 99 */ }; #define NUM_PXA25x_RUN_FREQS ARRAY_SIZE(pxa255_run_freqs) #define NUM_PXA25x_TURBO_FREQS ARRAY_SIZE(pxa255_turbo_freqs) static struct cpufreq_frequency_table pxa255_run_freq_table[NUM_PXA25x_RUN_FREQS+1]; static struct cpufreq_frequency_table pxa255_turbo_freq_table[NUM_PXA25x_TURBO_FREQS+1]; static unsigned int pxa255_turbo_table; module_param(pxa255_turbo_table, uint, 0); MODULE_PARM_DESC(pxa255_turbo_table, "Selects the frequency table (0 = run table, !0 = turbo table)"); /* * PXA270 definitions * * For the PXA27x: * Control variables are A, L, 2N for CCCR; B, HT, T for CLKCFG. * * A = 0 => memory controller clock from table 3-7, * A = 1 => memory controller clock = system bus clock * Run mode frequency = 13 MHz * L * Turbo mode frequency = 13 MHz * L * N * System bus frequency = 13 MHz * L / (B + 1) * * In CCCR: * A = 1 * L = 16 oscillator to run mode ratio * 2N = 6 2 * (turbo mode to run mode ratio) * * In CCLKCFG: * B = 1 Fast bus mode * HT = 0 Half-Turbo mode * T = 1 Turbo mode * * For now, just support some of the combinations in table 3-7 of * PXA27x Processor Family Developer's Manual to simplify frequency * change sequences. */ #define PXA27x_CCCR(A, L, N2) (A << 25 | N2 << 7 | L) #define CCLKCFG2(B, HT, T) \ (CCLKCFG_FCS | \ ((B) ? CCLKCFG_FASTBUS : 0) | \ ((HT) ? CCLKCFG_HALFTURBO : 0) | \ ((T) ? CCLKCFG_TURBO : 0)) static pxa_freqs_t pxa27x_freqs[] = { {104000, 104000, PXA27x_CCCR(1, 8, 2), 0, CCLKCFG2(1, 0, 1), 900000, 1705000 }, {156000, 104000, PXA27x_CCCR(1, 8, 3), 0, CCLKCFG2(1, 0, 1), 1000000, 1705000 }, {208000, 208000, PXA27x_CCCR(0, 16, 2), 1, CCLKCFG2(0, 0, 1), 1180000, 1705000 }, {312000, 208000, PXA27x_CCCR(1, 16, 3), 1, CCLKCFG2(1, 0, 1), 1250000, 1705000 }, {416000, 208000, PXA27x_CCCR(1, 16, 4), 1, CCLKCFG2(1, 0, 1), 1350000, 1705000 }, {520000, 208000, PXA27x_CCCR(1, 16, 5), 1, CCLKCFG2(1, 0, 1), 1450000, 1705000 }, {624000, 208000, PXA27x_CCCR(1, 16, 6), 1, CCLKCFG2(1, 0, 1), 1550000, 1705000 } }; #define NUM_PXA27x_FREQS ARRAY_SIZE(pxa27x_freqs) static struct cpufreq_frequency_table pxa27x_freq_table[NUM_PXA27x_FREQS+1]; extern unsigned get_clk_frequency_khz(int info); #ifdef CONFIG_REGULATOR static int pxa_cpufreq_change_voltage(pxa_freqs_t *pxa_freq) { int ret = 0; int vmin, vmax; if (!cpu_is_pxa27x()) return 0; vmin = pxa_freq->vmin; vmax = pxa_freq->vmax; if ((vmin == -1) || (vmax == -1)) return 0; ret = regulator_set_voltage(vcc_core, vmin, vmax); if (ret) pr_err("cpufreq: Failed to set vcc_core in [%dmV..%dmV]\n", vmin, vmax); return ret; } static __init void pxa_cpufreq_init_voltages(void) { vcc_core = regulator_get(NULL, "vcc_core"); if (IS_ERR(vcc_core)) { pr_info("cpufreq: Didn't find vcc_core regulator\n"); vcc_core = NULL; } else { pr_info("cpufreq: Found vcc_core regulator\n"); } } #else static int pxa_cpufreq_change_voltage(pxa_freqs_t *pxa_freq) { return 0; } static __init void pxa_cpufreq_init_voltages(void) { } #endif static void find_freq_tables(struct cpufreq_frequency_table **freq_table, pxa_freqs_t **pxa_freqs) { if (cpu_is_pxa25x()) { if (!pxa255_turbo_table) { *pxa_freqs = pxa255_run_freqs; *freq_table = pxa255_run_freq_table; } else { *pxa_freqs = pxa255_turbo_freqs; *freq_table = pxa255_turbo_freq_table; } } if (cpu_is_pxa27x()) { *pxa_freqs = pxa27x_freqs; *freq_table = pxa27x_freq_table; } } static void pxa27x_guess_max_freq(void) { if (!pxa27x_maxfreq) { pxa27x_maxfreq = 416000; printk(KERN_INFO "PXA CPU 27x max frequency not defined " "(pxa27x_maxfreq), assuming pxa271 with %dkHz maxfreq\n", pxa27x_maxfreq); } else { pxa27x_maxfreq *= 1000; } } static void init_sdram_rows(void) { uint32_t mdcnfg = MDCNFG; unsigned int drac2 = 0, drac0 = 0; if (mdcnfg & (MDCNFG_DE2 | MDCNFG_DE3)) drac2 = MDCNFG_DRAC2(mdcnfg); if (mdcnfg & (MDCNFG_DE0 | MDCNFG_DE1)) drac0 = MDCNFG_DRAC0(mdcnfg); sdram_rows = 1 << (11 + max(drac0, drac2)); } static u32 mdrefr_dri(unsigned int freq) { u32 interval = freq * SDRAM_TREF / sdram_rows; return (interval - (cpu_is_pxa27x() ? 31 : 0)) / 32; } /* find a valid frequency point */ static int pxa_verify_policy(struct cpufreq_policy *policy) { struct cpufreq_frequency_table *pxa_freqs_table; pxa_freqs_t *pxa_freqs; int ret; find_freq_tables(&pxa_freqs_table, &pxa_freqs); ret = cpufreq_frequency_table_verify(policy, pxa_freqs_table); if (freq_debug) pr_debug("Verified CPU policy: %dKhz min to %dKhz max\n", policy->min, policy->max); return ret; } static unsigned int pxa_cpufreq_get(unsigned int cpu) { return get_clk_frequency_khz(0); } static int pxa_set_target(struct cpufreq_policy *policy, unsigned int target_freq, unsigned int relation) { struct cpufreq_frequency_table *pxa_freqs_table; pxa_freqs_t *pxa_freq_settings; struct cpufreq_freqs freqs; unsigned int idx; unsigned long flags; unsigned int new_freq_cpu, new_freq_mem; unsigned int unused, preset_mdrefr, postset_mdrefr, cclkcfg; int ret = 0; /* Get the current policy */ find_freq_tables(&pxa_freqs_table, &pxa_freq_settings); /* Lookup the next frequency */ if (cpufreq_frequency_table_target(policy, pxa_freqs_table, target_freq, relation, &idx)) { return -EINVAL; } new_freq_cpu = pxa_freq_settings[idx].khz; new_freq_mem = pxa_freq_settings[idx].membus; freqs.old = policy->cur; freqs.new = new_freq_cpu; freqs.cpu = policy->cpu; if (freq_debug) pr_debug("Changing CPU frequency to %d Mhz, (SDRAM %d Mhz)\n", freqs.new / 1000, (pxa_freq_settings[idx].div2) ? (new_freq_mem / 2000) : (new_freq_mem / 1000)); if (vcc_core && freqs.new > freqs.old) ret = pxa_cpufreq_change_voltage(&pxa_freq_settings[idx]); if (ret) return ret; /* * Tell everyone what we're about to do... * you should add a notify client with any platform specific * Vcc changing capability */ cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); /* Calculate the next MDREFR. If we're slowing down the SDRAM clock * we need to preset the smaller DRI before the change. If we're * speeding up we need to set the larger DRI value after the change. */ preset_mdrefr = postset_mdrefr = MDREFR; if ((MDREFR & MDREFR_DRI_MASK) > mdrefr_dri(new_freq_mem)) { preset_mdrefr = (preset_mdrefr & ~MDREFR_DRI_MASK); preset_mdrefr |= mdrefr_dri(new_freq_mem); } postset_mdrefr = (postset_mdrefr & ~MDREFR_DRI_MASK) | mdrefr_dri(new_freq_mem); /* If we're dividing the memory clock by two for the SDRAM clock, this * must be set prior to the change. Clearing the divide must be done * after the change. */ if (pxa_freq_settings[idx].div2) { preset_mdrefr |= MDREFR_DB2_MASK; postset_mdrefr |= MDREFR_DB2_MASK; } else { postset_mdrefr &= ~MDREFR_DB2_MASK; } local_irq_save(flags); /* Set new the CCCR and prepare CCLKCFG */ CCCR = pxa_freq_settings[idx].cccr; cclkcfg = pxa_freq_settings[idx].cclkcfg; asm volatile(" \n\ ldr r4, [%1] /* load MDREFR */ \n\ b 2f \n\ .align 5 \n\ 1: \n\ str %3, [%1] /* preset the MDREFR */ \n\ mcr p14, 0, %2, c6, c0, 0 /* set CCLKCFG[FCS] */ \n\ str %4, [%1] /* postset the MDREFR */ \n\ \n\ b 3f \n\ 2: b 1b \n\ 3: nop \n\ " : "=&r" (unused) : "r" (&MDREFR), "r" (cclkcfg), "r" (preset_mdrefr), "r" (postset_mdrefr) : "r4", "r5"); local_irq_restore(flags); /* * Tell everyone what we've just done... * you should add a notify client with any platform specific * SDRAM refresh timer adjustments */ cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); /* * Even if voltage setting fails, we don't report it, as the frequency * change succeeded. The voltage reduction is not a critical failure, * only power savings will suffer from this. * * Note: if the voltage change fails, and a return value is returned, a * bug is triggered (seems a deadlock). Should anybody find out where, * the "return 0" should become a "return ret". */ if (vcc_core && freqs.new < freqs.old) ret = pxa_cpufreq_change_voltage(&pxa_freq_settings[idx]); return 0; } static int pxa_cpufreq_init(struct cpufreq_policy *policy) { int i; unsigned int freq; struct cpufreq_frequency_table *pxa255_freq_table; pxa_freqs_t *pxa255_freqs; /* try to guess pxa27x cpu */ if (cpu_is_pxa27x()) pxa27x_guess_max_freq(); pxa_cpufreq_init_voltages(); init_sdram_rows(); /* set default policy and cpuinfo */ policy->cpuinfo.transition_latency = 1000; /* FIXME: 1 ms, assumed */ policy->cur = get_clk_frequency_khz(0); /* current freq */ policy->min = policy->max = policy->cur; /* Generate pxa25x the run cpufreq_frequency_table struct */ for (i = 0; i < NUM_PXA25x_RUN_FREQS; i++) { pxa255_run_freq_table[i].frequency = pxa255_run_freqs[i].khz; pxa255_run_freq_table[i].index = i; } pxa255_run_freq_table[i].frequency = CPUFREQ_TABLE_END; /* Generate pxa25x the turbo cpufreq_frequency_table struct */ for (i = 0; i < NUM_PXA25x_TURBO_FREQS; i++) { pxa255_turbo_freq_table[i].frequency = pxa255_turbo_freqs[i].khz; pxa255_turbo_freq_table[i].index = i; } pxa255_turbo_freq_table[i].frequency = CPUFREQ_TABLE_END; pxa255_turbo_table = !!pxa255_turbo_table; /* Generate the pxa27x cpufreq_frequency_table struct */ for (i = 0; i < NUM_PXA27x_FREQS; i++) { freq = pxa27x_freqs[i].khz; if (freq > pxa27x_maxfreq) break; pxa27x_freq_table[i].frequency = freq; pxa27x_freq_table[i].index = i; } pxa27x_freq_table[i].index = i; pxa27x_freq_table[i].frequency = CPUFREQ_TABLE_END; /* * Set the policy's minimum and maximum frequencies from the tables * just constructed. This sets cpuinfo.mxx_freq, min and max. */ if (cpu_is_pxa25x()) { find_freq_tables(&pxa255_freq_table, &pxa255_freqs); pr_info("PXA255 cpufreq using %s frequency table\n", pxa255_turbo_table ? "turbo" : "run"); cpufreq_frequency_table_cpuinfo(policy, pxa255_freq_table); } else if (cpu_is_pxa27x()) cpufreq_frequency_table_cpuinfo(policy, pxa27x_freq_table); printk(KERN_INFO "PXA CPU frequency change support initialized\n"); return 0; } static struct cpufreq_driver pxa_cpufreq_driver = { .verify = pxa_verify_policy, .target = pxa_set_target, .init = pxa_cpufreq_init, .get = pxa_cpufreq_get, .name = "PXA2xx", }; static int __init pxa_cpu_init(void) { int ret = -ENODEV; if (cpu_is_pxa25x() || cpu_is_pxa27x()) ret = cpufreq_register_driver(&pxa_cpufreq_driver); return ret; } static void __exit pxa_cpu_exit(void) { cpufreq_unregister_driver(&pxa_cpufreq_driver); } MODULE_AUTHOR("Intrinsyc Software Inc."); MODULE_DESCRIPTION("CPU frequency changing driver for the PXA architecture"); MODULE_LICENSE("GPL"); module_init(pxa_cpu_init); module_exit(pxa_cpu_exit);