/* * OMAP44xx sleep code. * * Copyright (C) 2011 Texas Instruments, Inc. * Santosh Shilimkar <santosh.shilimkar@ti.com> * * This program is free software,you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/linkage.h> #include <asm/assembler.h> #include <asm/smp_scu.h> #include <asm/memory.h> #include <asm/hardware/cache-l2x0.h> #include "omap-secure.h" #include "common.h" #include "omap44xx.h" #include "omap4-sar-layout.h" #if defined(CONFIG_SMP) && defined(CONFIG_PM) .macro DO_SMC dsb smc #0 dsb .endm #ifdef CONFIG_ARCH_OMAP4 /* * ============================= * == CPU suspend finisher == * ============================= * * void omap4_finish_suspend(unsigned long cpu_state) * * This function code saves the CPU context and performs the CPU * power down sequence. Calling WFI effectively changes the CPU * power domains states to the desired target power state. * * @cpu_state : contains context save state (r0) * 0 - No context lost * 1 - CPUx L1 and logic lost: MPUSS CSWR * 2 - CPUx L1 and logic lost + GIC lost: MPUSS OSWR * 3 - CPUx L1 and logic lost + GIC + L2 lost: MPUSS OFF * @return: This function never returns for CPU OFF and DORMANT power states. * Post WFI, CPU transitions to DORMANT or OFF power state and on wake-up * from this follows a full CPU reset path via ROM code to CPU restore code. * The restore function pointer is stored at CPUx_WAKEUP_NS_PA_ADDR_OFFSET. * It returns to the caller for CPU INACTIVE and ON power states or in case * CPU failed to transition to targeted OFF/DORMANT state. * * omap4_finish_suspend() calls v7_flush_dcache_all() which doesn't save * stack frame and it expects the caller to take care of it. Hence the entire * stack frame is saved to avoid possible stack corruption. */ ENTRY(omap4_finish_suspend) stmfd sp!, {r4-r12, lr} cmp r0, #0x0 beq do_WFI @ No lowpower state, jump to WFI /* * Flush all data from the L1 data cache before disabling * SCTLR.C bit. */ bl omap4_get_sar_ram_base ldr r9, [r0, #OMAP_TYPE_OFFSET] cmp r9, #0x1 @ Check for HS device bne skip_secure_l1_clean mov r0, #SCU_PM_NORMAL mov r1, #0xFF @ clean seucre L1 stmfd r13!, {r4-r12, r14} ldr r12, =OMAP4_MON_SCU_PWR_INDEX DO_SMC ldmfd r13!, {r4-r12, r14} skip_secure_l1_clean: bl v7_flush_dcache_all /* * Clear the SCTLR.C bit to prevent further data cache * allocation. Clearing SCTLR.C would make all the data accesses * strongly ordered and would not hit the cache. */ mrc p15, 0, r0, c1, c0, 0 bic r0, r0, #(1 << 2) @ Disable the C bit mcr p15, 0, r0, c1, c0, 0 isb /* * Invalidate L1 data cache. Even though only invalidate is * necessary exported flush API is used here. Doing clean * on already clean cache would be almost NOP. */ bl v7_flush_dcache_all /* * Switch the CPU from Symmetric Multiprocessing (SMP) mode * to AsymmetricMultiprocessing (AMP) mode by programming * the SCU power status to DORMANT or OFF mode. * This enables the CPU to be taken out of coherency by * preventing the CPU from receiving cache, TLB, or BTB * maintenance operations broadcast by other CPUs in the cluster. */ bl omap4_get_sar_ram_base mov r8, r0 ldr r9, [r8, #OMAP_TYPE_OFFSET] cmp r9, #0x1 @ Check for HS device bne scu_gp_set mrc p15, 0, r0, c0, c0, 5 @ Read MPIDR ands r0, r0, #0x0f ldreq r0, [r8, #SCU_OFFSET0] ldrne r0, [r8, #SCU_OFFSET1] mov r1, #0x00 stmfd r13!, {r4-r12, r14} ldr r12, =OMAP4_MON_SCU_PWR_INDEX DO_SMC ldmfd r13!, {r4-r12, r14} b skip_scu_gp_set scu_gp_set: mrc p15, 0, r0, c0, c0, 5 @ Read MPIDR ands r0, r0, #0x0f ldreq r1, [r8, #SCU_OFFSET0] ldrne r1, [r8, #SCU_OFFSET1] bl omap4_get_scu_base bl scu_power_mode skip_scu_gp_set: mrc p15, 0, r0, c1, c1, 2 @ Read NSACR data tst r0, #(1 << 18) mrcne p15, 0, r0, c1, c0, 1 bicne r0, r0, #(1 << 6) @ Disable SMP bit mcrne p15, 0, r0, c1, c0, 1 isb dsb #ifdef CONFIG_CACHE_L2X0 /* * Clean and invalidate the L2 cache. * Common cache-l2x0.c functions can't be used here since it * uses spinlocks. We are out of coherency here with data cache * disabled. The spinlock implementation uses exclusive load/store * instruction which can fail without data cache being enabled. * OMAP4 hardware doesn't support exclusive monitor which can * overcome exclusive access issue. Because of this, CPU can * lead to deadlock. */ bl omap4_get_sar_ram_base mov r8, r0 mrc p15, 0, r5, c0, c0, 5 @ Read MPIDR ands r5, r5, #0x0f ldreq r0, [r8, #L2X0_SAVE_OFFSET0] @ Retrieve L2 state from SAR ldrne r0, [r8, #L2X0_SAVE_OFFSET1] @ memory. cmp r0, #3 bne do_WFI #ifdef CONFIG_PL310_ERRATA_727915 mov r0, #0x03 mov r12, #OMAP4_MON_L2X0_DBG_CTRL_INDEX DO_SMC #endif bl omap4_get_l2cache_base mov r2, r0 ldr r0, =0xffff str r0, [r2, #L2X0_CLEAN_INV_WAY] wait: ldr r0, [r2, #L2X0_CLEAN_INV_WAY] ldr r1, =0xffff ands r0, r0, r1 bne wait #ifdef CONFIG_PL310_ERRATA_727915 mov r0, #0x00 mov r12, #OMAP4_MON_L2X0_DBG_CTRL_INDEX DO_SMC #endif l2x_sync: bl omap4_get_l2cache_base mov r2, r0 mov r0, #0x0 str r0, [r2, #L2X0_CACHE_SYNC] sync: ldr r0, [r2, #L2X0_CACHE_SYNC] ands r0, r0, #0x1 bne sync #endif do_WFI: bl omap_do_wfi /* * CPU is here when it failed to enter OFF/DORMANT or * no low power state was attempted. */ mrc p15, 0, r0, c1, c0, 0 tst r0, #(1 << 2) @ Check C bit enabled? orreq r0, r0, #(1 << 2) @ Enable the C bit mcreq p15, 0, r0, c1, c0, 0 isb /* * Ensure the CPU power state is set to NORMAL in * SCU power state so that CPU is back in coherency. * In non-coherent mode CPU can lock-up and lead to * system deadlock. */ mrc p15, 0, r0, c1, c0, 1 tst r0, #(1 << 6) @ Check SMP bit enabled? orreq r0, r0, #(1 << 6) mcreq p15, 0, r0, c1, c0, 1 isb bl omap4_get_sar_ram_base mov r8, r0 ldr r9, [r8, #OMAP_TYPE_OFFSET] cmp r9, #0x1 @ Check for HS device bne scu_gp_clear mov r0, #SCU_PM_NORMAL mov r1, #0x00 stmfd r13!, {r4-r12, r14} ldr r12, =OMAP4_MON_SCU_PWR_INDEX DO_SMC ldmfd r13!, {r4-r12, r14} b skip_scu_gp_clear scu_gp_clear: bl omap4_get_scu_base mov r1, #SCU_PM_NORMAL bl scu_power_mode skip_scu_gp_clear: isb dsb ldmfd sp!, {r4-r12, pc} ENDPROC(omap4_finish_suspend) /* * ============================ * == CPU resume entry point == * ============================ * * void omap4_cpu_resume(void) * * ROM code jumps to this function while waking up from CPU * OFF or DORMANT state. Physical address of the function is * stored in the SAR RAM while entering to OFF or DORMANT mode. * The restore function pointer is stored at CPUx_WAKEUP_NS_PA_ADDR_OFFSET. */ ENTRY(omap4_cpu_resume) /* * Configure ACTRL and enable NS SMP bit access on CPU1 on HS device. * OMAP44XX EMU/HS devices - CPU0 SMP bit access is enabled in PPA * init and for CPU1, a secure PPA API provided. CPU0 must be ON * while executing NS_SMP API on CPU1 and PPA version must be 1.4.0+. * OMAP443X GP devices- SMP bit isn't accessible. * OMAP446X GP devices - SMP bit access is enabled on both CPUs. */ ldr r8, =OMAP44XX_SAR_RAM_BASE ldr r9, [r8, #OMAP_TYPE_OFFSET] cmp r9, #0x1 @ Skip if GP device bne skip_ns_smp_enable mrc p15, 0, r0, c0, c0, 5 ands r0, r0, #0x0f beq skip_ns_smp_enable ppa_actrl_retry: mov r0, #OMAP4_PPA_CPU_ACTRL_SMP_INDEX adr r1, ppa_zero_params_offset ldr r3, [r1] add r3, r3, r1 @ Pointer to ppa_zero_params mov r1, #0x0 @ Process ID mov r2, #0x4 @ Flag mov r6, #0xff mov r12, #0x00 @ Secure Service ID DO_SMC cmp r0, #0x0 @ API returns 0 on success. beq enable_smp_bit b ppa_actrl_retry enable_smp_bit: mrc p15, 0, r0, c1, c0, 1 tst r0, #(1 << 6) @ Check SMP bit enabled? orreq r0, r0, #(1 << 6) mcreq p15, 0, r0, c1, c0, 1 isb skip_ns_smp_enable: #ifdef CONFIG_CACHE_L2X0 /* * Restore the L2 AUXCTRL and enable the L2 cache. * OMAP4_MON_L2X0_AUXCTRL_INDEX = Program the L2X0 AUXCTRL * OMAP4_MON_L2X0_CTRL_INDEX = Enable the L2 using L2X0 CTRL * register r0 contains value to be programmed. * L2 cache is already invalidate by ROM code as part * of MPUSS OFF wakeup path. */ ldr r2, =OMAP44XX_L2CACHE_BASE ldr r0, [r2, #L2X0_CTRL] and r0, #0x0f cmp r0, #1 beq skip_l2en @ Skip if already enabled ldr r3, =OMAP44XX_SAR_RAM_BASE ldr r1, [r3, #OMAP_TYPE_OFFSET] cmp r1, #0x1 @ Check for HS device bne set_gp_por ldr r0, =OMAP4_PPA_L2_POR_INDEX ldr r1, =OMAP44XX_SAR_RAM_BASE ldr r4, [r1, #L2X0_PREFETCH_CTRL_OFFSET] adr r1, ppa_por_params_offset ldr r3, [r1] add r3, r3, r1 @ Pointer to ppa_por_params str r4, [r3, #0x04] mov r1, #0x0 @ Process ID mov r2, #0x4 @ Flag mov r6, #0xff mov r12, #0x00 @ Secure Service ID DO_SMC b set_aux_ctrl set_gp_por: ldr r1, =OMAP44XX_SAR_RAM_BASE ldr r0, [r1, #L2X0_PREFETCH_CTRL_OFFSET] ldr r12, =OMAP4_MON_L2X0_PREFETCH_INDEX @ Setup L2 PREFETCH DO_SMC set_aux_ctrl: ldr r1, =OMAP44XX_SAR_RAM_BASE ldr r0, [r1, #L2X0_AUXCTRL_OFFSET] ldr r12, =OMAP4_MON_L2X0_AUXCTRL_INDEX @ Setup L2 AUXCTRL DO_SMC mov r0, #0x1 ldr r12, =OMAP4_MON_L2X0_CTRL_INDEX @ Enable L2 cache DO_SMC skip_l2en: #endif b cpu_resume @ Jump to generic resume ppa_por_params_offset: .long ppa_por_params - . ENDPROC(omap4_cpu_resume) #endif /* CONFIG_ARCH_OMAP4 */ #endif /* defined(CONFIG_SMP) && defined(CONFIG_PM) */ ENTRY(omap_do_wfi) stmfd sp!, {lr} #ifdef CONFIG_OMAP_INTERCONNECT_BARRIER /* Drain interconnect write buffers. */ bl omap_interconnect_sync #endif /* * Execute an ISB instruction to ensure that all of the * CP15 register changes have been committed. */ isb /* * Execute a barrier instruction to ensure that all cache, * TLB and branch predictor maintenance operations issued * by any CPU in the cluster have completed. */ dsb dmb /* * Execute a WFI instruction and wait until the * STANDBYWFI output is asserted to indicate that the * CPU is in idle and low power state. CPU can specualatively * prefetch the instructions so add NOPs after WFI. Sixteen * NOPs as per Cortex-A9 pipeline. */ wfi @ Wait For Interrupt nop nop nop nop nop nop nop nop nop nop nop nop nop nop nop nop ldmfd sp!, {pc} ppa_zero_params_offset: .long ppa_zero_params - . ENDPROC(omap_do_wfi) .data ppa_zero_params: .word 0 ppa_por_params: .word 1, 0