From 5926ff502f6b93ca0c1654f8a5c5317ea236dbdb Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Thu, 9 Feb 2012 11:05:20 -0300 Subject: edac: Initialize the dimm label with the known information While userspace doesn't fill the dimm labels, add there the dimm location, as described by the used memory model. This could eventually match what is described at the dmidecode, making easier for people to identify the memory. For example, on an Intel motherboard where the DMI table is reliable, the first memory stick is described as: Memory Device Array Handle: 0x0029 Error Information Handle: Not Provided Total Width: 64 bits Data Width: 64 bits Size: 2048 MB Form Factor: DIMM Set: 1 Locator: A1_DIMM0 Bank Locator: A1_Node0_Channel0_Dimm0 Type: Type Detail: Synchronous Speed: 800 MHz Manufacturer: A1_Manufacturer0 Serial Number: A1_SerNum0 Asset Tag: A1_AssetTagNum0 Part Number: A1_PartNum0 The memory named as "A1_DIMM0" is physically located at the first memory controller (node 0), at channel 0, dimm slot 0. After this patch, the memory label will be filled with: /sys/devices/system/edac/mc/csrow0/ch0_dimm_label:mc#0channel#0slot#0 And (after the new EDAC API patches) as: /sys/devices/system/edac/mc/mc0/dimm0/dimm_label:mc#0channel#0slot#0 So, even if the memory label is not initialized on userspace, an useful information with the error location is filled there, expecially since several systems/motherboards are provided with enough info to map from channel/slot (or branch/channel/slot) into the DIMM label. So, letting the EDAC core fill it by default is a good thing. It should noticed that, as the label filling happens at the edac_mc_alloc(), drivers can override it to better describe the memories (and some actually do it). Cc: Aristeu Rozanski Cc: Doug Thompson Signed-off-by: Mauro Carvalho Chehab --- drivers/edac/edac_mc.c | 28 ++++++++++++++++++++++------ 1 file changed, 22 insertions(+), 6 deletions(-) (limited to 'drivers/edac/edac_mc.c') diff --git a/drivers/edac/edac_mc.c b/drivers/edac/edac_mc.c index 06028de5fe1b..10f375032e96 100644 --- a/drivers/edac/edac_mc.c +++ b/drivers/edac/edac_mc.c @@ -210,10 +210,10 @@ struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, struct dimm_info *dimm; u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; unsigned pos[EDAC_MAX_LAYERS]; - void *pvt, *ptr = NULL; unsigned size, tot_dimms = 1, count = 1; unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0; - int i, j, err, row, chn; + void *pvt, *p, *ptr = NULL; + int i, j, err, row, chn, n, len; bool per_rank = false; BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0); @@ -325,10 +325,26 @@ struct mem_ctl_info *edac_mc_alloc(unsigned mc_num, i, per_rank ? "rank" : "dimm", (dimm - mci->dimms), pos[0], pos[1], pos[2], row, chn); - /* Copy DIMM location */ - for (j = 0; j < n_layers; j++) + /* + * Copy DIMM location and initialize it. + */ + len = sizeof(dimm->label); + p = dimm->label; + n = snprintf(p, len, "mc#%u", mc_num); + p += n; + len -= n; + for (j = 0; j < n_layers; j++) { + n = snprintf(p, len, "%s#%u", + edac_layer_name[layers[j].type], + pos[j]); + p += n; + len -= n; dimm->location[j] = pos[j]; + if (len <= 0) + break; + } + /* Link it to the csrows old API data */ chan->dimm = dimm; dimm->csrow = row; @@ -834,7 +850,7 @@ static void edac_inc_ce_error(struct mem_ctl_info *mci, { int i, index = 0; - mci->ce_count++; + mci->ce_mc++; if (!enable_per_layer_report) { mci->ce_noinfo_count++; @@ -858,7 +874,7 @@ static void edac_inc_ue_error(struct mem_ctl_info *mci, { int i, index = 0; - mci->ue_count++; + mci->ue_mc++; if (!enable_per_layer_report) { mci->ce_noinfo_count++; -- cgit v1.2.3