From 0ec88413f0a04b31149c6850e6938b4b0f33a748 Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Fri, 12 May 2017 08:14:47 -0300 Subject: docs-rst: convert libata book to ReST Use pandoc to convert documentation to ReST by calling Documentation/sphinx/tmplcvt script. Signed-off-by: Mauro Carvalho Chehab --- Documentation/driver-api/index.rst | 1 + Documentation/driver-api/libata.rst | 1027 +++++++++++++++++++++++++++++++++++ 2 files changed, 1028 insertions(+) create mode 100644 Documentation/driver-api/libata.rst (limited to 'Documentation/driver-api') diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index 8058a87c1c74..c3c50b1bb96c 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -32,6 +32,7 @@ available subsections can be seen below. i2c hsi edac + libata miscellaneous vme 80211/index diff --git a/Documentation/driver-api/libata.rst b/Documentation/driver-api/libata.rst new file mode 100644 index 000000000000..774bf238ff79 --- /dev/null +++ b/Documentation/driver-api/libata.rst @@ -0,0 +1,1027 @@ +======================== +libATA Developer's Guide +======================== + +:Author: Jeff Garzik + +Introduction +============ + +libATA is a library used inside the Linux kernel to support ATA host +controllers and devices. libATA provides an ATA driver API, class +transports for ATA and ATAPI devices, and SCSI<->ATA translation for ATA +devices according to the T10 SAT specification. + +This Guide documents the libATA driver API, library functions, library +internals, and a couple sample ATA low-level drivers. + +libata Driver API +================= + +struct ata_port_operations is defined for every low-level libata +hardware driver, and it controls how the low-level driver interfaces +with the ATA and SCSI layers. + +FIS-based drivers will hook into the system with ->qc_prep() and +->qc_issue() high-level hooks. Hardware which behaves in a manner +similar to PCI IDE hardware may utilize several generic helpers, +defining at a bare minimum the bus I/O addresses of the ATA shadow +register blocks. + +struct ata_port_operations +---------------------------- + +Disable ATA port +~~~~~~~~~~~~~~~~ + +:: + + void (*port_disable) (struct ata_port *); + + +Called from ata_bus_probe() error path, as well as when unregistering +from the SCSI module (rmmod, hot unplug). This function should do +whatever needs to be done to take the port out of use. In most cases, +ata_port_disable() can be used as this hook. + +Called from ata_bus_probe() on a failed probe. Called from +ata_scsi_release(). + +Post-IDENTIFY device configuration +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*dev_config) (struct ata_port *, struct ata_device *); + + +Called after IDENTIFY [PACKET] DEVICE is issued to each device found. +Typically used to apply device-specific fixups prior to issue of SET +FEATURES - XFER MODE, and prior to operation. + +This entry may be specified as NULL in ata_port_operations. + +Set PIO/DMA mode +~~~~~~~~~~~~~~~~ + +:: + + void (*set_piomode) (struct ata_port *, struct ata_device *); + void (*set_dmamode) (struct ata_port *, struct ata_device *); + void (*post_set_mode) (struct ata_port *); + unsigned int (*mode_filter) (struct ata_port *, struct ata_device *, unsigned int); + + +Hooks called prior to the issue of SET FEATURES - XFER MODE command. The +optional ->mode_filter() hook is called when libata has built a mask of +the possible modes. This is passed to the ->mode_filter() function +which should return a mask of valid modes after filtering those +unsuitable due to hardware limits. It is not valid to use this interface +to add modes. + +dev->pio_mode and dev->dma_mode are guaranteed to be valid when +->set_piomode() and when ->set_dmamode() is called. The timings for +any other drive sharing the cable will also be valid at this point. That +is the library records the decisions for the modes of each drive on a +channel before it attempts to set any of them. + +->post_set_mode() is called unconditionally, after the SET FEATURES - +XFER MODE command completes successfully. + +->set_piomode() is always called (if present), but ->set_dma_mode() +is only called if DMA is possible. + +Taskfile read/write +~~~~~~~~~~~~~~~~~~~ + +:: + + void (*sff_tf_load) (struct ata_port *ap, struct ata_taskfile *tf); + void (*sff_tf_read) (struct ata_port *ap, struct ata_taskfile *tf); + + +->tf_load() is called to load the given taskfile into hardware +registers / DMA buffers. ->tf_read() is called to read the hardware +registers / DMA buffers, to obtain the current set of taskfile register +values. Most drivers for taskfile-based hardware (PIO or MMIO) use +ata_sff_tf_load() and ata_sff_tf_read() for these hooks. + +PIO data read/write +~~~~~~~~~~~~~~~~~~~ + +:: + + void (*sff_data_xfer) (struct ata_device *, unsigned char *, unsigned int, int); + + +All bmdma-style drivers must implement this hook. This is the low-level +operation that actually copies the data bytes during a PIO data +transfer. Typically the driver will choose one of +ata_sff_data_xfer_noirq(), ata_sff_data_xfer(), or +ata_sff_data_xfer32(). + +ATA command execute +~~~~~~~~~~~~~~~~~~~ + +:: + + void (*sff_exec_command)(struct ata_port *ap, struct ata_taskfile *tf); + + +causes an ATA command, previously loaded with ->tf_load(), to be +initiated in hardware. Most drivers for taskfile-based hardware use +ata_sff_exec_command() for this hook. + +Per-cmd ATAPI DMA capabilities filter +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + int (*check_atapi_dma) (struct ata_queued_cmd *qc); + + +Allow low-level driver to filter ATA PACKET commands, returning a status +indicating whether or not it is OK to use DMA for the supplied PACKET +command. + +This hook may be specified as NULL, in which case libata will assume +that atapi dma can be supported. + +Read specific ATA shadow registers +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + u8 (*sff_check_status)(struct ata_port *ap); + u8 (*sff_check_altstatus)(struct ata_port *ap); + + +Reads the Status/AltStatus ATA shadow register from hardware. On some +hardware, reading the Status register has the side effect of clearing +the interrupt condition. Most drivers for taskfile-based hardware use +ata_sff_check_status() for this hook. + +Write specific ATA shadow register +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*sff_set_devctl)(struct ata_port *ap, u8 ctl); + + +Write the device control ATA shadow register to the hardware. Most +drivers don't need to define this. + +Select ATA device on bus +~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*sff_dev_select)(struct ata_port *ap, unsigned int device); + + +Issues the low-level hardware command(s) that causes one of N hardware +devices to be considered 'selected' (active and available for use) on +the ATA bus. This generally has no meaning on FIS-based devices. + +Most drivers for taskfile-based hardware use ata_sff_dev_select() for +this hook. + +Private tuning method +~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*set_mode) (struct ata_port *ap); + + +By default libata performs drive and controller tuning in accordance +with the ATA timing rules and also applies blacklists and cable limits. +Some controllers need special handling and have custom tuning rules, +typically raid controllers that use ATA commands but do not actually do +drive timing. + + **Warning** + + This hook should not be used to replace the standard controller + tuning logic when a controller has quirks. Replacing the default + tuning logic in that case would bypass handling for drive and bridge + quirks that may be important to data reliability. If a controller + needs to filter the mode selection it should use the mode_filter + hook instead. + +Control PCI IDE BMDMA engine +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*bmdma_setup) (struct ata_queued_cmd *qc); + void (*bmdma_start) (struct ata_queued_cmd *qc); + void (*bmdma_stop) (struct ata_port *ap); + u8 (*bmdma_status) (struct ata_port *ap); + + +When setting up an IDE BMDMA transaction, these hooks arm +(->bmdma_setup), fire (->bmdma_start), and halt (->bmdma_stop) the +hardware's DMA engine. ->bmdma_status is used to read the standard PCI +IDE DMA Status register. + +These hooks are typically either no-ops, or simply not implemented, in +FIS-based drivers. + +Most legacy IDE drivers use ata_bmdma_setup() for the bmdma_setup() +hook. ata_bmdma_setup() will write the pointer to the PRD table to the +IDE PRD Table Address register, enable DMA in the DMA Command register, +and call exec_command() to begin the transfer. + +Most legacy IDE drivers use ata_bmdma_start() for the bmdma_start() +hook. ata_bmdma_start() will write the ATA_DMA_START flag to the DMA +Command register. + +Many legacy IDE drivers use ata_bmdma_stop() for the bmdma_stop() +hook. ata_bmdma_stop() clears the ATA_DMA_START flag in the DMA +command register. + +Many legacy IDE drivers use ata_bmdma_status() as the bmdma_status() +hook. + +High-level taskfile hooks +~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*qc_prep) (struct ata_queued_cmd *qc); + int (*qc_issue) (struct ata_queued_cmd *qc); + + +Higher-level hooks, these two hooks can potentially supercede several of +the above taskfile/DMA engine hooks. ->qc_prep is called after the +buffers have been DMA-mapped, and is typically used to populate the +hardware's DMA scatter-gather table. Most drivers use the standard +ata_qc_prep() helper function, but more advanced drivers roll their +own. + +->qc_issue is used to make a command active, once the hardware and S/G +tables have been prepared. IDE BMDMA drivers use the helper function +ata_qc_issue_prot() for taskfile protocol-based dispatch. More +advanced drivers implement their own ->qc_issue. + +ata_qc_issue_prot() calls ->tf_load(), ->bmdma_setup(), and +->bmdma_start() as necessary to initiate a transfer. + +Exception and probe handling (EH) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + void (*eng_timeout) (struct ata_port *ap); + void (*phy_reset) (struct ata_port *ap); + + +Deprecated. Use ->error_handler() instead. + +:: + + void (*freeze) (struct ata_port *ap); + void (*thaw) (struct ata_port *ap); + + +ata_port_freeze() is called when HSM violations or some other +condition disrupts normal operation of the port. A frozen port is not +allowed to perform any operation until the port is thawed, which usually +follows a successful reset. + +The optional ->freeze() callback can be used for freezing the port +hardware-wise (e.g. mask interrupt and stop DMA engine). If a port +cannot be frozen hardware-wise, the interrupt handler must ack and clear +interrupts unconditionally while the port is frozen. + +The optional ->thaw() callback is called to perform the opposite of +->freeze(): prepare the port for normal operation once again. Unmask +interrupts, start DMA engine, etc. + +:: + + void (*error_handler) (struct ata_port *ap); + + +->error_handler() is a driver's hook into probe, hotplug, and recovery +and other exceptional conditions. The primary responsibility of an +implementation is to call ata_do_eh() or ata_bmdma_drive_eh() with +a set of EH hooks as arguments: + +'prereset' hook (may be NULL) is called during an EH reset, before any +other actions are taken. + +'postreset' hook (may be NULL) is called after the EH reset is +performed. Based on existing conditions, severity of the problem, and +hardware capabilities, + +Either 'softreset' (may be NULL) or 'hardreset' (may be NULL) will be +called to perform the low-level EH reset. + +:: + + void (*post_internal_cmd) (struct ata_queued_cmd *qc); + + +Perform any hardware-specific actions necessary to finish processing +after executing a probe-time or EH-time command via +ata_exec_internal(). + +Hardware interrupt handling +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + irqreturn_t (*irq_handler)(int, void *, struct pt_regs *); + void (*irq_clear) (struct ata_port *); + + +->irq_handler is the interrupt handling routine registered with the +system, by libata. ->irq_clear is called during probe just before the +interrupt handler is registered, to be sure hardware is quiet. + +The second argument, dev_instance, should be cast to a pointer to +struct ata_host_set. + +Most legacy IDE drivers use ata_sff_interrupt() for the irq_handler +hook, which scans all ports in the host_set, determines which queued +command was active (if any), and calls ata_sff_host_intr(ap,qc). + +Most legacy IDE drivers use ata_sff_irq_clear() for the irq_clear() +hook, which simply clears the interrupt and error flags in the DMA +status register. + +SATA phy read/write +~~~~~~~~~~~~~~~~~~~ + +:: + + int (*scr_read) (struct ata_port *ap, unsigned int sc_reg, + u32 *val); + int (*scr_write) (struct ata_port *ap, unsigned int sc_reg, + u32 val); + + +Read and write standard SATA phy registers. Currently only used if +->phy_reset hook called the sata_phy_reset() helper function. sc_reg +is one of SCR_STATUS, SCR_CONTROL, SCR_ERROR, or SCR_ACTIVE. + +Init and shutdown +~~~~~~~~~~~~~~~~~ + +:: + + int (*port_start) (struct ata_port *ap); + void (*port_stop) (struct ata_port *ap); + void (*host_stop) (struct ata_host_set *host_set); + + +->port_start() is called just after the data structures for each port +are initialized. Typically this is used to alloc per-port DMA buffers / +tables / rings, enable DMA engines, and similar tasks. Some drivers also +use this entry point as a chance to allocate driver-private memory for +ap->private_data. + +Many drivers use ata_port_start() as this hook or call it from their +own port_start() hooks. ata_port_start() allocates space for a legacy +IDE PRD table and returns. + +->port_stop() is called after ->host_stop(). Its sole function is to +release DMA/memory resources, now that they are no longer actively being +used. Many drivers also free driver-private data from port at this time. + +->host_stop() is called after all ->port_stop() calls have completed. +The hook must finalize hardware shutdown, release DMA and other +resources, etc. This hook may be specified as NULL, in which case it is +not called. + +Error handling +============== + +This chapter describes how errors are handled under libata. Readers are +advised to read SCSI EH (Documentation/scsi/scsi_eh.txt) and ATA +exceptions doc first. + +Origins of commands +------------------- + +In libata, a command is represented with struct ata_queued_cmd or qc. +qc's are preallocated during port initialization and repetitively used +for command executions. Currently only one qc is allocated per port but +yet-to-be-merged NCQ branch allocates one for each tag and maps each qc +to NCQ tag 1-to-1. + +libata commands can originate from two sources - libata itself and SCSI +midlayer. libata internal commands are used for initialization and error +handling. All normal blk requests and commands for SCSI emulation are +passed as SCSI commands through queuecommand callback of SCSI host +template. + +How commands are issued +----------------------- + +Internal commands + First, qc is allocated and initialized using ata_qc_new_init(). + Although ata_qc_new_init() doesn't implement any wait or retry + mechanism when qc is not available, internal commands are currently + issued only during initialization and error recovery, so no other + command is active and allocation is guaranteed to succeed. + + Once allocated qc's taskfile is initialized for the command to be + executed. qc currently has two mechanisms to notify completion. One + is via qc->complete_fn() callback and the other is completion + qc->waiting. qc->complete_fn() callback is the asynchronous path + used by normal SCSI translated commands and qc->waiting is the + synchronous (issuer sleeps in process context) path used by internal + commands. + + Once initialization is complete, host_set lock is acquired and the + qc is issued. + +SCSI commands + All libata drivers use ata_scsi_queuecmd() as hostt->queuecommand + callback. scmds can either be simulated or translated. No qc is + involved in processing a simulated scmd. The result is computed + right away and the scmd is completed. + + For a translated scmd, ata_qc_new_init() is invoked to allocate a + qc and the scmd is translated into the qc. SCSI midlayer's + completion notification function pointer is stored into + qc->scsidone. + + qc->complete_fn() callback is used for completion notification. ATA + commands use ata_scsi_qc_complete() while ATAPI commands use + atapi_qc_complete(). Both functions end up calling qc->scsidone to + notify upper layer when the qc is finished. After translation is + completed, the qc is issued with ata_qc_issue(). + + Note that SCSI midlayer invokes hostt->queuecommand while holding + host_set lock, so all above occur while holding host_set lock. + +How commands are processed +-------------------------- + +Depending on which protocol and which controller are used, commands are +processed differently. For the purpose of discussion, a controller which +uses taskfile interface and all standard callbacks is assumed. + +Currently 6 ATA command protocols are used. They can be sorted into the +following four categories according to how they are processed. + +ATA NO DATA or DMA + ATA_PROT_NODATA and ATA_PROT_DMA fall into this category. These + types of commands don't require any software intervention once + issued. Device will raise interrupt on completion. + +ATA PIO + ATA_PROT_PIO is in this category. libata currently implements PIO + with polling. ATA_NIEN bit is set to turn off interrupt and + pio_task on ata_wq performs polling and IO. + +ATAPI NODATA or DMA + ATA_PROT_ATAPI_NODATA and ATA_PROT_ATAPI_DMA are in this + category. packet_task is used to poll BSY bit after issuing PACKET + command. Once BSY is turned off by the device, packet_task + transfers CDB and hands off processing to interrupt handler. + +ATAPI PIO + ATA_PROT_ATAPI is in this category. ATA_NIEN bit is set and, as + in ATAPI NODATA or DMA, packet_task submits cdb. However, after + submitting cdb, further processing (data transfer) is handed off to + pio_task. + +How commands are completed +-------------------------- + +Once issued, all qc's are either completed with ata_qc_complete() or +time out. For commands which are handled by interrupts, +ata_host_intr() invokes ata_qc_complete(), and, for PIO tasks, +pio_task invokes ata_qc_complete(). In error cases, packet_task may +also complete commands. + +ata_qc_complete() does the following. + +1. DMA memory is unmapped. + +2. ATA_QCFLAG_ACTIVE is cleared from qc->flags. + +3. qc->complete_fn() callback is invoked. If the return value of the + callback is not zero. Completion is short circuited and + ata_qc_complete() returns. + +4. __ata_qc_complete() is called, which does + + 1. qc->flags is cleared to zero. + + 2. ap->active_tag and qc->tag are poisoned. + + 3. qc->waiting is cleared & completed (in that order). + + 4. qc is deallocated by clearing appropriate bit in ap->qactive. + +So, it basically notifies upper layer and deallocates qc. One exception +is short-circuit path in #3 which is used by atapi_qc_complete(). + +For all non-ATAPI commands, whether it fails or not, almost the same +code path is taken and very little error handling takes place. A qc is +completed with success status if it succeeded, with failed status +otherwise. + +However, failed ATAPI commands require more handling as REQUEST SENSE is +needed to acquire sense data. If an ATAPI command fails, +ata_qc_complete() is invoked with error status, which in turn invokes +atapi_qc_complete() via qc->complete_fn() callback. + +This makes atapi_qc_complete() set scmd->result to +SAM_STAT_CHECK_CONDITION, complete the scmd and return 1. As the +sense data is empty but scmd->result is CHECK CONDITION, SCSI midlayer +will invoke EH for the scmd, and returning 1 makes ata_qc_complete() +to return without deallocating the qc. This leads us to +ata_scsi_error() with partially completed qc. + +ata_scsi_error() +------------------ + +ata_scsi_error() is the current transportt->eh_strategy_handler() +for libata. As discussed above, this will be entered in two cases - +timeout and ATAPI error completion. This function calls low level libata +driver's eng_timeout() callback, the standard callback for which is +ata_eng_timeout(). It checks if a qc is active and calls +ata_qc_timeout() on the qc if so. Actual error handling occurs in +ata_qc_timeout(). + +If EH is invoked for timeout, ata_qc_timeout() stops BMDMA and +completes the qc. Note that as we're currently in EH, we cannot call +scsi_done. As described in SCSI EH doc, a recovered scmd should be +either retried with scsi_queue_insert() or finished with +scsi_finish_command(). Here, we override qc->scsidone with +scsi_finish_command() and calls ata_qc_complete(). + +If EH is invoked due to a failed ATAPI qc, the qc here is completed but +not deallocated. The purpose of this half-completion is to use the qc as +place holder to make EH code reach this place. This is a bit hackish, +but it works. + +Once control reaches here, the qc is deallocated by invoking +__ata_qc_complete() explicitly. Then, internal qc for REQUEST SENSE +is issued. Once sense data is acquired, scmd is finished by directly +invoking scsi_finish_command() on the scmd. Note that as we already +have completed and deallocated the qc which was associated with the +scmd, we don't need to/cannot call ata_qc_complete() again. + +Problems with the current EH +---------------------------- + +- Error representation is too crude. Currently any and all error + conditions are represented with ATA STATUS and ERROR registers. + Errors which aren't ATA device errors are treated as ATA device + errors by setting ATA_ERR bit. Better error descriptor which can + properly represent ATA and other errors/exceptions is needed. + +- When handling timeouts, no action is taken to make device forget + about the timed out command and ready for new commands. + +- EH handling via ata_scsi_error() is not properly protected from + usual command processing. On EH entrance, the device is not in + quiescent state. Timed out commands may succeed or fail any time. + pio_task and atapi_task may still be running. + +- Too weak error recovery. Devices / controllers causing HSM mismatch + errors and other errors quite often require reset to return to known + state. Also, advanced error handling is necessary to support features + like NCQ and hotplug. + +- ATA errors are directly handled in the interrupt handler and PIO + errors in pio_task. This is problematic for advanced error handling + for the following reasons. + + First, advanced error handling often requires context and internal qc + execution. + + Second, even a simple failure (say, CRC error) needs information + gathering and could trigger complex error handling (say, resetting & + reconfiguring). Having multiple code paths to gather information, + enter EH and trigger actions makes life painful. + + Third, scattered EH code makes implementing low level drivers + difficult. Low level drivers override libata callbacks. If EH is + scattered over several places, each affected callbacks should perform + its part of error handling. This can be error prone and painful. + +libata Library +============== + +.. kernel-doc:: drivers/ata/libata-core.c + :export: + +libata Core Internals +===================== + +.. kernel-doc:: drivers/ata/libata-core.c + :internal: + +libata SCSI translation/emulation +================================= + +.. kernel-doc:: drivers/ata/libata-scsi.c + :export: + +.. kernel-doc:: drivers/ata/libata-scsi.c + :internal: + +ATA errors and exceptions +========================= + +This chapter tries to identify what error/exception conditions exist for +ATA/ATAPI devices and describe how they should be handled in +implementation-neutral way. + +The term 'error' is used to describe conditions where either an explicit +error condition is reported from device or a command has timed out. + +The term 'exception' is either used to describe exceptional conditions +which are not errors (say, power or hotplug events), or to describe both +errors and non-error exceptional conditions. Where explicit distinction +between error and exception is necessary, the term 'non-error exception' +is used. + +Exception categories +-------------------- + +Exceptions are described primarily with respect to legacy taskfile + bus +master IDE interface. If a controller provides other better mechanism +for error reporting, mapping those into categories described below +shouldn't be difficult. + +In the following sections, two recovery actions - reset and +reconfiguring transport - are mentioned. These are described further in +`EH recovery actions <#exrec>`__. + +HSM violation +~~~~~~~~~~~~~ + +This error is indicated when STATUS value doesn't match HSM requirement +during issuing or execution any ATA/ATAPI command. + +- ATA_STATUS doesn't contain !BSY && DRDY && !DRQ while trying to + issue a command. + +- !BSY && !DRQ during PIO data transfer. + +- DRQ on command completion. + +- !BSY && ERR after CDB transfer starts but before the last byte of CDB + is transferred. ATA/ATAPI standard states that "The device shall not + terminate the PACKET command with an error before the last byte of + the command packet has been written" in the error outputs description + of PACKET command and the state diagram doesn't include such + transitions. + +In these cases, HSM is violated and not much information regarding the +error can be acquired from STATUS or ERROR register. IOW, this error can +be anything - driver bug, faulty device, controller and/or cable. + +As HSM is violated, reset is necessary to restore known state. +Reconfiguring transport for lower speed might be helpful too as +transmission errors sometimes cause this kind of errors. + +ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +These are errors detected and reported by ATA/ATAPI devices indicating +device problems. For this type of errors, STATUS and ERROR register +values are valid and describe error condition. Note that some of ATA bus +errors are detected by ATA/ATAPI devices and reported using the same +mechanism as device errors. Those cases are described later in this +section. + +For ATA commands, this type of errors are indicated by !BSY && ERR +during command execution and on completion. + +For ATAPI commands, + +- !BSY && ERR && ABRT right after issuing PACKET indicates that PACKET + command is not supported and falls in this category. + +- !BSY && ERR(==CHK) && !ABRT after the last byte of CDB is transferred + indicates CHECK CONDITION and doesn't fall in this category. + +- !BSY && ERR(==CHK) && ABRT after the last byte of CDB is transferred + \*probably\* indicates CHECK CONDITION and doesn't fall in this + category. + +Of errors detected as above, the following are not ATA/ATAPI device +errors but ATA bus errors and should be handled according to +`ATA bus error <#excatATAbusErr>`__. + +CRC error during data transfer + This is indicated by ICRC bit in the ERROR register and means that + corruption occurred during data transfer. Up to ATA/ATAPI-7, the + standard specifies that this bit is only applicable to UDMA + transfers but ATA/ATAPI-8 draft revision 1f says that the bit may be + applicable to multiword DMA and PIO. + +ABRT error during data transfer or on completion + Up to ATA/ATAPI-7, the standard specifies that ABRT could be set on + ICRC errors and on cases where a device is not able to complete a + command. Combined with the fact that MWDMA and PIO transfer errors + aren't allowed to use ICRC bit up to ATA/ATAPI-7, it seems to imply + that ABRT bit alone could indicate transfer errors. + + However, ATA/ATAPI-8 draft revision 1f removes the part that ICRC + errors can turn on ABRT. So, this is kind of gray area. Some + heuristics are needed here. + +ATA/ATAPI device errors can be further categorized as follows. + +Media errors + This is indicated by UNC bit in the ERROR register. ATA devices + reports UNC error only after certain number of retries cannot + recover the data, so there's nothing much else to do other than + notifying upper layer. + + READ and WRITE commands report CHS or LBA of the first failed sector + but ATA/ATAPI standard specifies that the amount of transferred data + on error completion is indeterminate, so we cannot assume that + sectors preceding the failed sector have been transferred and thus + cannot complete those sectors successfully as SCSI does. + +Media changed / media change requested error + <> + +Address error + This is indicated by IDNF bit in the ERROR register. Report to upper + layer. + +Other errors + This can be invalid command or parameter indicated by ABRT ERROR bit + or some other error condition. Note that ABRT bit can indicate a lot + of things including ICRC and Address errors. Heuristics needed. + +Depending on commands, not all STATUS/ERROR bits are applicable. These +non-applicable bits are marked with "na" in the output descriptions but +up to ATA/ATAPI-7 no definition of "na" can be found. However, +ATA/ATAPI-8 draft revision 1f describes "N/A" as follows. + + 3.2.3.3a N/A + A keyword the indicates a field has no defined value in this + standard and should not be checked by the host or device. N/A + fields should be cleared to zero. + +So, it seems reasonable to assume that "na" bits are cleared to zero by +devices and thus need no explicit masking. + +ATAPI device CHECK CONDITION +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +ATAPI device CHECK CONDITION error is indicated by set CHK bit (ERR bit) +in the STATUS register after the last byte of CDB is transferred for a +PACKET command. For this kind of errors, sense data should be acquired +to gather information regarding the errors. REQUEST SENSE packet command +should be used to acquire sense data. + +Once sense data is acquired, this type of errors can be handled +similarly to other SCSI errors. Note that sense data may indicate ATA +bus error (e.g. Sense Key 04h HARDWARE ERROR && ASC/ASCQ 47h/00h SCSI +PARITY ERROR). In such cases, the error should be considered as an ATA +bus error and handled according to `ATA bus error <#excatATAbusErr>`__. + +ATA device error (NCQ) +~~~~~~~~~~~~~~~~~~~~~~ + +NCQ command error is indicated by cleared BSY and set ERR bit during NCQ +command phase (one or more NCQ commands outstanding). Although STATUS +and ERROR registers will contain valid values describing the error, READ +LOG EXT is required to clear the error condition, determine which +command has failed and acquire more information. + +READ LOG EXT Log Page 10h reports which tag has failed and taskfile +register values describing the error. With this information the failed +command can be handled as a normal ATA command error as in +`ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION) <#excatDevErr>`__ +and all other in-flight commands must be retried. Note that this retry +should not be counted - it's likely that commands retried this way would +have completed normally if it were not for the failed command. + +Note that ATA bus errors can be reported as ATA device NCQ errors. This +should be handled as described in `ATA bus error <#excatATAbusErr>`__. + +If READ LOG EXT Log Page 10h fails or reports NQ, we're thoroughly +screwed. This condition should be treated according to +`HSM violation <#excatHSMviolation>`__. + +ATA bus error +~~~~~~~~~~~~~ + +ATA bus error means that data corruption occurred during transmission +over ATA bus (SATA or PATA). This type of errors can be indicated by + +- ICRC or ABRT error as described in + `ATA/ATAPI device error (non-NCQ / non-CHECK CONDITION) <#excatDevErr>`__. + +- Controller-specific error completion with error information + indicating transmission error. + +- On some controllers, command timeout. In this case, there may be a + mechanism to determine that the timeout is due to transmission error. + +- Unknown/random errors, timeouts and all sorts of weirdities. + +As described above, transmission errors can cause wide variety of +symptoms ranging from device ICRC error to random device lockup, and, +for many cases, there is no way to tell if an error condition is due to +transmission error or not; therefore, it's necessary to employ some kind +of heuristic when dealing with errors and timeouts. For example, +encountering repetitive ABRT errors for known supported command is +likely to indicate ATA bus error. + +Once it's determined that ATA bus errors have possibly occurred, +lowering ATA bus transmission speed is one of actions which may +alleviate the problem. See `Reconfigure transport <#exrecReconf>`__ for +more information. + +PCI bus error +~~~~~~~~~~~~~ + +Data corruption or other failures during transmission over PCI (or other +system bus). For standard BMDMA, this is indicated by Error bit in the +BMDMA Status register. This type of errors must be logged as it +indicates something is very wrong with the system. Resetting host +controller is recommended. + +Late completion +~~~~~~~~~~~~~~~ + +This occurs when timeout occurs and the timeout handler finds out that +the timed out command has completed successfully or with error. This is +usually caused by lost interrupts. This type of errors must be logged. +Resetting host controller is recommended. + +Unknown error (timeout) +~~~~~~~~~~~~~~~~~~~~~~~ + +This is when timeout occurs and the command is still processing or the +host and device are in unknown state. When this occurs, HSM could be in +any valid or invalid state. To bring the device to known state and make +it forget about the timed out command, resetting is necessary. The timed +out command may be retried. + +Timeouts can also be caused by transmission errors. Refer to +`ATA bus error <#excatATAbusErr>`__ for more details. + +Hotplug and power management exceptions +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +<> + +EH recovery actions +------------------- + +This section discusses several important recovery actions. + +Clearing error condition +~~~~~~~~~~~~~~~~~~~~~~~~ + +Many controllers require its error registers to be cleared by error +handler. Different controllers may have different requirements. + +For SATA, it's strongly recommended to clear at least SError register +during error handling. + +Reset +~~~~~ + +During EH, resetting is necessary in the following cases. + +- HSM is in unknown or invalid state + +- HBA is in unknown or invalid state + +- EH needs to make HBA/device forget about in-flight commands + +- HBA/device behaves weirdly + +Resetting during EH might be a good idea regardless of error condition +to improve EH robustness. Whether to reset both or either one of HBA and +device depends on situation but the following scheme is recommended. + +- When it's known that HBA is in ready state but ATA/ATAPI device is in + unknown state, reset only device. + +- If HBA is in unknown state, reset both HBA and device. + +HBA resetting is implementation specific. For a controller complying to +taskfile/BMDMA PCI IDE, stopping active DMA transaction may be +sufficient iff BMDMA state is the only HBA context. But even mostly +taskfile/BMDMA PCI IDE complying controllers may have implementation +specific requirements and mechanism to reset themselves. This must be +addressed by specific drivers. + +OTOH, ATA/ATAPI standard describes in detail ways to reset ATA/ATAPI +devices. + +PATA hardware reset + This is hardware initiated device reset signalled with asserted PATA + RESET- signal. There is no standard way to initiate hardware reset + from software although some hardware provides registers that allow + driver to directly tweak the RESET- signal. + +Software reset + This is achieved by turning CONTROL SRST bit on for at least 5us. + Both PATA and SATA support it but, in case of SATA, this may require + controller-specific support as the second Register FIS to clear SRST + should be transmitted while BSY bit is still set. Note that on PATA, + this resets both master and slave devices on a channel. + +EXECUTE DEVICE DIAGNOSTIC command + Although ATA/ATAPI standard doesn't describe exactly, EDD implies + some level of resetting, possibly similar level with software reset. + Host-side EDD protocol can be handled with normal command processing + and most SATA controllers should be able to handle EDD's just like + other commands. As in software reset, EDD affects both devices on a + PATA bus. + + Although EDD does reset devices, this doesn't suit error handling as + EDD cannot be issued while BSY is set and it's unclear how it will + act when device is in unknown/weird state. + +ATAPI DEVICE RESET command + This is very similar to software reset except that reset can be + restricted to the selected device without affecting the other device + sharing the cable. + +SATA phy reset + This is the preferred way of resetting a SATA device. In effect, + it's identical to PATA hardware reset. Note that this can be done + with the standard SCR Control register. As such, it's usually easier + to implement than software reset. + +One more thing to consider when resetting devices is that resetting +clears certain configuration parameters and they need to be set to their +previous or newly adjusted values after reset. + +Parameters affected are. + +- CHS set up with INITIALIZE DEVICE PARAMETERS (seldom used) + +- Parameters set with SET FEATURES including transfer mode setting + +- Block count set with SET MULTIPLE MODE + +- Other parameters (SET MAX, MEDIA LOCK...) + +ATA/ATAPI standard specifies that some parameters must be maintained +across hardware or software reset, but doesn't strictly specify all of +them. Always reconfiguring needed parameters after reset is required for +robustness. Note that this also applies when resuming from deep sleep +(power-off). + +Also, ATA/ATAPI standard requires that IDENTIFY DEVICE / IDENTIFY PACKET +DEVICE is issued after any configuration parameter is updated or a +hardware reset and the result used for further operation. OS driver is +required to implement revalidation mechanism to support this. + +Reconfigure transport +~~~~~~~~~~~~~~~~~~~~~ + +For both PATA and SATA, a lot of corners are cut for cheap connectors, +cables or controllers and it's quite common to see high transmission +error rate. This can be mitigated by lowering transmission speed. + +The following is a possible scheme Jeff Garzik suggested. + + If more than $N (3?) transmission errors happen in 15 minutes, + + - if SATA, decrease SATA PHY speed. if speed cannot be decreased, + + - decrease UDMA xfer speed. if at UDMA0, switch to PIO4, + + - decrease PIO xfer speed. if at PIO3, complain, but continue + +ata_piix Internals +=================== + +.. kernel-doc:: drivers/ata/ata_piix.c + :internal: + +sata_sil Internals +=================== + +.. kernel-doc:: drivers/ata/sata_sil.c + :internal: + +Thanks +====== + +The bulk of the ATA knowledge comes thanks to long conversations with +Andre Hedrick (www.linux-ide.org), and long hours pondering the ATA and +SCSI specifications. + +Thanks to Alan Cox for pointing out similarities between SATA and SCSI, +and in general for motivation to hack on libata. + +libata's device detection method, ata_pio_devchk, and in general all +the early probing was based on extensive study of Hale Landis's +probe/reset code in his ATADRVR driver (www.ata-atapi.com). -- cgit v1.2.3 From 6b46c2b156d052172d73b0ac486898bf993ab70c Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Fri, 12 May 2017 08:53:33 -0300 Subject: libata.rst: add c function and struct cross-references Instead of just using text for functions and structs, use the C domain tags, in order to allow cross-referencing with the kernel-doc markups. Signed-off-by: Mauro Carvalho Chehab --- Documentation/driver-api/libata.rst | 244 ++++++++++++++++++------------------ 1 file changed, 124 insertions(+), 120 deletions(-) (limited to 'Documentation/driver-api') diff --git a/Documentation/driver-api/libata.rst b/Documentation/driver-api/libata.rst index 774bf238ff79..4adc056f7635 100644 --- a/Documentation/driver-api/libata.rst +++ b/Documentation/driver-api/libata.rst @@ -18,18 +18,19 @@ internals, and a couple sample ATA low-level drivers. libata Driver API ================= -struct ata_port_operations is defined for every low-level libata +:c:type:`struct ata_port_operations ` +is defined for every low-level libata hardware driver, and it controls how the low-level driver interfaces with the ATA and SCSI layers. -FIS-based drivers will hook into the system with ->qc_prep() and -->qc_issue() high-level hooks. Hardware which behaves in a manner +FIS-based drivers will hook into the system with ``->qc_prep()`` and +``->qc_issue()`` high-level hooks. Hardware which behaves in a manner similar to PCI IDE hardware may utilize several generic helpers, defining at a bare minimum the bus I/O addresses of the ATA shadow register blocks. -struct ata_port_operations ----------------------------- +:c:type:`struct ata_port_operations ` +---------------------------------------------------------- Disable ATA port ~~~~~~~~~~~~~~~~ @@ -39,13 +40,13 @@ Disable ATA port void (*port_disable) (struct ata_port *); -Called from ata_bus_probe() error path, as well as when unregistering +Called from :c:func:`ata_bus_probe` error path, as well as when unregistering from the SCSI module (rmmod, hot unplug). This function should do whatever needs to be done to take the port out of use. In most cases, -ata_port_disable() can be used as this hook. +:c:func:`ata_port_disable` can be used as this hook. -Called from ata_bus_probe() on a failed probe. Called from -ata_scsi_release(). +Called from :c:func:`ata_bus_probe` on a failed probe. Called from +:c:func:`ata_scsi_release`. Post-IDENTIFY device configuration ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -73,22 +74,22 @@ Set PIO/DMA mode Hooks called prior to the issue of SET FEATURES - XFER MODE command. The -optional ->mode_filter() hook is called when libata has built a mask of -the possible modes. This is passed to the ->mode_filter() function +optional ``->mode_filter()`` hook is called when libata has built a mask of +the possible modes. This is passed to the ``->mode_filter()`` function which should return a mask of valid modes after filtering those unsuitable due to hardware limits. It is not valid to use this interface to add modes. -dev->pio_mode and dev->dma_mode are guaranteed to be valid when -->set_piomode() and when ->set_dmamode() is called. The timings for +``dev->pio_mode`` and ``dev->dma_mode`` are guaranteed to be valid when +``->set_piomode()`` and when ``->set_dmamode()`` is called. The timings for any other drive sharing the cable will also be valid at this point. That is the library records the decisions for the modes of each drive on a channel before it attempts to set any of them. -->post_set_mode() is called unconditionally, after the SET FEATURES - +``->post_set_mode()`` is called unconditionally, after the SET FEATURES - XFER MODE command completes successfully. -->set_piomode() is always called (if present), but ->set_dma_mode() +``->set_piomode()`` is always called (if present), but ``->set_dma_mode()`` is only called if DMA is possible. Taskfile read/write @@ -100,11 +101,11 @@ Taskfile read/write void (*sff_tf_read) (struct ata_port *ap, struct ata_taskfile *tf); -->tf_load() is called to load the given taskfile into hardware -registers / DMA buffers. ->tf_read() is called to read the hardware +``->tf_load()`` is called to load the given taskfile into hardware +registers / DMA buffers. ``->tf_read()`` is called to read the hardware registers / DMA buffers, to obtain the current set of taskfile register values. Most drivers for taskfile-based hardware (PIO or MMIO) use -ata_sff_tf_load() and ata_sff_tf_read() for these hooks. +:c:func:`ata_sff_tf_load` and :c:func:`ata_sff_tf_read` for these hooks. PIO data read/write ~~~~~~~~~~~~~~~~~~~ @@ -117,8 +118,8 @@ PIO data read/write All bmdma-style drivers must implement this hook. This is the low-level operation that actually copies the data bytes during a PIO data transfer. Typically the driver will choose one of -ata_sff_data_xfer_noirq(), ata_sff_data_xfer(), or -ata_sff_data_xfer32(). +:c:func:`ata_sff_data_xfer_noirq`, :c:func:`ata_sff_data_xfer`, or +:c:func:`ata_sff_data_xfer32`. ATA command execute ~~~~~~~~~~~~~~~~~~~ @@ -128,9 +129,9 @@ ATA command execute void (*sff_exec_command)(struct ata_port *ap, struct ata_taskfile *tf); -causes an ATA command, previously loaded with ->tf_load(), to be +causes an ATA command, previously loaded with ``->tf_load()``, to be initiated in hardware. Most drivers for taskfile-based hardware use -ata_sff_exec_command() for this hook. +:c:func:`ata_sff_exec_command` for this hook. Per-cmd ATAPI DMA capabilities filter ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -159,7 +160,7 @@ Read specific ATA shadow registers Reads the Status/AltStatus ATA shadow register from hardware. On some hardware, reading the Status register has the side effect of clearing the interrupt condition. Most drivers for taskfile-based hardware use -ata_sff_check_status() for this hook. +:c:func:`ata_sff_check_status` for this hook. Write specific ATA shadow register ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -184,7 +185,7 @@ Issues the low-level hardware command(s) that causes one of N hardware devices to be considered 'selected' (active and available for use) on the ATA bus. This generally has no meaning on FIS-based devices. -Most drivers for taskfile-based hardware use ata_sff_dev_select() for +Most drivers for taskfile-based hardware use :c:func:`ata_sff_dev_select` for this hook. Private tuning method @@ -222,28 +223,28 @@ Control PCI IDE BMDMA engine When setting up an IDE BMDMA transaction, these hooks arm -(->bmdma_setup), fire (->bmdma_start), and halt (->bmdma_stop) the -hardware's DMA engine. ->bmdma_status is used to read the standard PCI +(``->bmdma_setup``), fire (``->bmdma_start``), and halt (``->bmdma_stop``) the +hardware's DMA engine. ``->bmdma_status`` is used to read the standard PCI IDE DMA Status register. These hooks are typically either no-ops, or simply not implemented, in FIS-based drivers. -Most legacy IDE drivers use ata_bmdma_setup() for the bmdma_setup() -hook. ata_bmdma_setup() will write the pointer to the PRD table to the -IDE PRD Table Address register, enable DMA in the DMA Command register, -and call exec_command() to begin the transfer. +Most legacy IDE drivers use :c:func:`ata_bmdma_setup` for the +:c:func:`bmdma_setup` hook. :c:func:`ata_bmdma_setup` will write the pointer +to the PRD table to the IDE PRD Table Address register, enable DMA in the DMA +Command register, and call :c:func:`exec_command` to begin the transfer. -Most legacy IDE drivers use ata_bmdma_start() for the bmdma_start() -hook. ata_bmdma_start() will write the ATA_DMA_START flag to the DMA -Command register. +Most legacy IDE drivers use :c:func:`ata_bmdma_start` for the +:c:func:`bmdma_start` hook. :c:func:`ata_bmdma_start` will write the +ATA_DMA_START flag to the DMA Command register. -Many legacy IDE drivers use ata_bmdma_stop() for the bmdma_stop() -hook. ata_bmdma_stop() clears the ATA_DMA_START flag in the DMA -command register. +Many legacy IDE drivers use :c:func:`ata_bmdma_stop` for the +:c:func:`bmdma_stop` hook. :c:func:`ata_bmdma_stop` clears the ATA_DMA_START +flag in the DMA command register. -Many legacy IDE drivers use ata_bmdma_status() as the bmdma_status() -hook. +Many legacy IDE drivers use :c:func:`ata_bmdma_status` as the +:c:func:`bmdma_status` hook. High-level taskfile hooks ~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -255,19 +256,19 @@ High-level taskfile hooks Higher-level hooks, these two hooks can potentially supercede several of -the above taskfile/DMA engine hooks. ->qc_prep is called after the +the above taskfile/DMA engine hooks. ``->qc_prep`` is called after the buffers have been DMA-mapped, and is typically used to populate the hardware's DMA scatter-gather table. Most drivers use the standard -ata_qc_prep() helper function, but more advanced drivers roll their +:c:func:`ata_qc_prep` helper function, but more advanced drivers roll their own. -->qc_issue is used to make a command active, once the hardware and S/G +``->qc_issue`` is used to make a command active, once the hardware and S/G tables have been prepared. IDE BMDMA drivers use the helper function -ata_qc_issue_prot() for taskfile protocol-based dispatch. More -advanced drivers implement their own ->qc_issue. +:c:func:`ata_qc_issue_prot` for taskfile protocol-based dispatch. More +advanced drivers implement their own ``->qc_issue``. -ata_qc_issue_prot() calls ->tf_load(), ->bmdma_setup(), and -->bmdma_start() as necessary to initiate a transfer. +:c:func:`ata_qc_issue_prot` calls ``->tf_load()``, ``->bmdma_setup()``, and +``->bmdma_start()`` as necessary to initiate a transfer. Exception and probe handling (EH) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -278,7 +279,7 @@ Exception and probe handling (EH) void (*phy_reset) (struct ata_port *ap); -Deprecated. Use ->error_handler() instead. +Deprecated. Use ``->error_handler()`` instead. :: @@ -286,18 +287,18 @@ Deprecated. Use ->error_handler() instead. void (*thaw) (struct ata_port *ap); -ata_port_freeze() is called when HSM violations or some other +:c:func:`ata_port_freeze` is called when HSM violations or some other condition disrupts normal operation of the port. A frozen port is not allowed to perform any operation until the port is thawed, which usually follows a successful reset. -The optional ->freeze() callback can be used for freezing the port +The optional ``->freeze()`` callback can be used for freezing the port hardware-wise (e.g. mask interrupt and stop DMA engine). If a port cannot be frozen hardware-wise, the interrupt handler must ack and clear interrupts unconditionally while the port is frozen. -The optional ->thaw() callback is called to perform the opposite of -->freeze(): prepare the port for normal operation once again. Unmask +The optional ``->thaw()`` callback is called to perform the opposite of +``->freeze()``: prepare the port for normal operation once again. Unmask interrupts, start DMA engine, etc. :: @@ -305,10 +306,10 @@ interrupts, start DMA engine, etc. void (*error_handler) (struct ata_port *ap); -->error_handler() is a driver's hook into probe, hotplug, and recovery +``->error_handler()`` is a driver's hook into probe, hotplug, and recovery and other exceptional conditions. The primary responsibility of an -implementation is to call ata_do_eh() or ata_bmdma_drive_eh() with -a set of EH hooks as arguments: +implementation is to call :c:func:`ata_do_eh` or :c:func:`ata_bmdma_drive_eh` +with a set of EH hooks as arguments: 'prereset' hook (may be NULL) is called during an EH reset, before any other actions are taken. @@ -327,7 +328,7 @@ called to perform the low-level EH reset. Perform any hardware-specific actions necessary to finish processing after executing a probe-time or EH-time command via -ata_exec_internal(). +:c:func:`ata_exec_internal`. Hardware interrupt handling ~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -338,20 +339,20 @@ Hardware interrupt handling void (*irq_clear) (struct ata_port *); -->irq_handler is the interrupt handling routine registered with the -system, by libata. ->irq_clear is called during probe just before the +``->irq_handler`` is the interrupt handling routine registered with the +system, by libata. ``->irq_clear`` is called during probe just before the interrupt handler is registered, to be sure hardware is quiet. The second argument, dev_instance, should be cast to a pointer to -struct ata_host_set. +:c:type:`struct ata_host_set `. -Most legacy IDE drivers use ata_sff_interrupt() for the irq_handler +Most legacy IDE drivers use :c:func:`ata_sff_interrupt` for the irq_handler hook, which scans all ports in the host_set, determines which queued command was active (if any), and calls ata_sff_host_intr(ap,qc). -Most legacy IDE drivers use ata_sff_irq_clear() for the irq_clear() -hook, which simply clears the interrupt and error flags in the DMA -status register. +Most legacy IDE drivers use :c:func:`ata_sff_irq_clear` for the +:c:func:`irq_clear` hook, which simply clears the interrupt and error flags +in the DMA status register. SATA phy read/write ~~~~~~~~~~~~~~~~~~~ @@ -365,8 +366,8 @@ SATA phy read/write Read and write standard SATA phy registers. Currently only used if -->phy_reset hook called the sata_phy_reset() helper function. sc_reg -is one of SCR_STATUS, SCR_CONTROL, SCR_ERROR, or SCR_ACTIVE. +``->phy_reset`` hook called the :c:func:`sata_phy_reset` helper function. +sc_reg is one of SCR_STATUS, SCR_CONTROL, SCR_ERROR, or SCR_ACTIVE. Init and shutdown ~~~~~~~~~~~~~~~~~ @@ -378,21 +379,21 @@ Init and shutdown void (*host_stop) (struct ata_host_set *host_set); -->port_start() is called just after the data structures for each port +``->port_start()`` is called just after the data structures for each port are initialized. Typically this is used to alloc per-port DMA buffers / tables / rings, enable DMA engines, and similar tasks. Some drivers also use this entry point as a chance to allocate driver-private memory for -ap->private_data. +``ap->private_data``. -Many drivers use ata_port_start() as this hook or call it from their -own port_start() hooks. ata_port_start() allocates space for a legacy -IDE PRD table and returns. +Many drivers use :c:func:`ata_port_start` as this hook or call it from their +own :c:func:`port_start` hooks. :c:func:`ata_port_start` allocates space for +a legacy IDE PRD table and returns. -->port_stop() is called after ->host_stop(). Its sole function is to +``->port_stop()`` is called after ``->host_stop()``. Its sole function is to release DMA/memory resources, now that they are no longer actively being used. Many drivers also free driver-private data from port at this time. -->host_stop() is called after all ->port_stop() calls have completed. +``->host_stop()`` is called after all ``->port_stop()`` calls have completed. The hook must finalize hardware shutdown, release DMA and other resources, etc. This hook may be specified as NULL, in which case it is not called. @@ -407,7 +408,8 @@ exceptions doc first. Origins of commands ------------------- -In libata, a command is represented with struct ata_queued_cmd or qc. +In libata, a command is represented with +:c:type:`struct ata_queued_cmd ` or qc. qc's are preallocated during port initialization and repetitively used for command executions. Currently only one qc is allocated per port but yet-to-be-merged NCQ branch allocates one for each tag and maps each qc @@ -423,17 +425,17 @@ How commands are issued ----------------------- Internal commands - First, qc is allocated and initialized using ata_qc_new_init(). - Although ata_qc_new_init() doesn't implement any wait or retry + First, qc is allocated and initialized using :c:func:`ata_qc_new_init`. + Although :c:func:`ata_qc_new_init` doesn't implement any wait or retry mechanism when qc is not available, internal commands are currently issued only during initialization and error recovery, so no other command is active and allocation is guaranteed to succeed. Once allocated qc's taskfile is initialized for the command to be executed. qc currently has two mechanisms to notify completion. One - is via qc->complete_fn() callback and the other is completion - qc->waiting. qc->complete_fn() callback is the asynchronous path - used by normal SCSI translated commands and qc->waiting is the + is via ``qc->complete_fn()`` callback and the other is completion + ``qc->waiting``. ``qc->complete_fn()`` callback is the asynchronous path + used by normal SCSI translated commands and ``qc->waiting`` is the synchronous (issuer sleeps in process context) path used by internal commands. @@ -441,21 +443,21 @@ Internal commands qc is issued. SCSI commands - All libata drivers use ata_scsi_queuecmd() as hostt->queuecommand - callback. scmds can either be simulated or translated. No qc is - involved in processing a simulated scmd. The result is computed - right away and the scmd is completed. + All libata drivers use :c:func:`ata_scsi_queuecmd` as + ``hostt->queuecommand`` callback. scmds can either be simulated or + translated. No qc is involved in processing a simulated scmd. The + result is computed right away and the scmd is completed. - For a translated scmd, ata_qc_new_init() is invoked to allocate a + For a translated scmd, :c:func:`ata_qc_new_init` is invoked to allocate a qc and the scmd is translated into the qc. SCSI midlayer's completion notification function pointer is stored into - qc->scsidone. + ``qc->scsidone``. - qc->complete_fn() callback is used for completion notification. ATA - commands use ata_scsi_qc_complete() while ATAPI commands use - atapi_qc_complete(). Both functions end up calling qc->scsidone to - notify upper layer when the qc is finished. After translation is - completed, the qc is issued with ata_qc_issue(). + ``qc->complete_fn()`` callback is used for completion notification. ATA + commands use :c:func:`ata_scsi_qc_complete` while ATAPI commands use + :c:func:`atapi_qc_complete`. Both functions end up calling ``qc->scsidone`` + to notify upper layer when the qc is finished. After translation is + completed, the qc is issued with :c:func:`ata_qc_issue`. Note that SCSI midlayer invokes hostt->queuecommand while holding host_set lock, so all above occur while holding host_set lock. @@ -495,34 +497,34 @@ ATAPI PIO How commands are completed -------------------------- -Once issued, all qc's are either completed with ata_qc_complete() or +Once issued, all qc's are either completed with :c:func:`ata_qc_complete` or time out. For commands which are handled by interrupts, -ata_host_intr() invokes ata_qc_complete(), and, for PIO tasks, -pio_task invokes ata_qc_complete(). In error cases, packet_task may +:c:func:`ata_host_intr` invokes :c:func:`ata_qc_complete`, and, for PIO tasks, +pio_task invokes :c:func:`ata_qc_complete`. In error cases, packet_task may also complete commands. -ata_qc_complete() does the following. +:c:func:`ata_qc_complete` does the following. 1. DMA memory is unmapped. 2. ATA_QCFLAG_ACTIVE is cleared from qc->flags. -3. qc->complete_fn() callback is invoked. If the return value of the +3. :c:func:`qc->complete_fn` callback is invoked. If the return value of the callback is not zero. Completion is short circuited and - ata_qc_complete() returns. + :c:func:`ata_qc_complete` returns. -4. __ata_qc_complete() is called, which does +4. :c:func:`__ata_qc_complete` is called, which does - 1. qc->flags is cleared to zero. + 1. ``qc->flags`` is cleared to zero. - 2. ap->active_tag and qc->tag are poisoned. + 2. ``ap->active_tag`` and ``qc->tag`` are poisoned. - 3. qc->waiting is cleared & completed (in that order). + 3. ``qc->waiting`` is cleared & completed (in that order). - 4. qc is deallocated by clearing appropriate bit in ap->qactive. + 4. qc is deallocated by clearing appropriate bit in ``ap->qactive``. So, it basically notifies upper layer and deallocates qc. One exception -is short-circuit path in #3 which is used by atapi_qc_complete(). +is short-circuit path in #3 which is used by :c:func:`atapi_qc_complete`. For all non-ATAPI commands, whether it fails or not, almost the same code path is taken and very little error handling takes place. A qc is @@ -531,33 +533,33 @@ otherwise. However, failed ATAPI commands require more handling as REQUEST SENSE is needed to acquire sense data. If an ATAPI command fails, -ata_qc_complete() is invoked with error status, which in turn invokes -atapi_qc_complete() via qc->complete_fn() callback. +:c:func:`ata_qc_complete` is invoked with error status, which in turn invokes +:c:func:`atapi_qc_complete` via ``qc->complete_fn()`` callback. -This makes atapi_qc_complete() set scmd->result to +This makes :c:func:`atapi_qc_complete` set ``scmd->result`` to SAM_STAT_CHECK_CONDITION, complete the scmd and return 1. As the -sense data is empty but scmd->result is CHECK CONDITION, SCSI midlayer -will invoke EH for the scmd, and returning 1 makes ata_qc_complete() +sense data is empty but ``scmd->result`` is CHECK CONDITION, SCSI midlayer +will invoke EH for the scmd, and returning 1 makes :c:func:`ata_qc_complete` to return without deallocating the qc. This leads us to -ata_scsi_error() with partially completed qc. +:c:func:`ata_scsi_error` with partially completed qc. -ata_scsi_error() ------------------- +:c:func:`ata_scsi_error` +------------------------ -ata_scsi_error() is the current transportt->eh_strategy_handler() +:c:func:`ata_scsi_error` is the current ``transportt->eh_strategy_handler()`` for libata. As discussed above, this will be entered in two cases - timeout and ATAPI error completion. This function calls low level libata -driver's eng_timeout() callback, the standard callback for which is -ata_eng_timeout(). It checks if a qc is active and calls -ata_qc_timeout() on the qc if so. Actual error handling occurs in -ata_qc_timeout(). +driver's :c:func:`eng_timeout` callback, the standard callback for which is +:c:func:`ata_eng_timeout`. It checks if a qc is active and calls +:c:func:`ata_qc_timeout` on the qc if so. Actual error handling occurs in +:c:func:`ata_qc_timeout`. -If EH is invoked for timeout, ata_qc_timeout() stops BMDMA and +If EH is invoked for timeout, :c:func:`ata_qc_timeout` stops BMDMA and completes the qc. Note that as we're currently in EH, we cannot call scsi_done. As described in SCSI EH doc, a recovered scmd should be -either retried with scsi_queue_insert() or finished with -scsi_finish_command(). Here, we override qc->scsidone with -scsi_finish_command() and calls ata_qc_complete(). +either retried with :c:func:`scsi_queue_insert` or finished with +:c:func:`scsi_finish_command`. Here, we override ``qc->scsidone`` with +:c:func:`scsi_finish_command` and calls :c:func:`ata_qc_complete`. If EH is invoked due to a failed ATAPI qc, the qc here is completed but not deallocated. The purpose of this half-completion is to use the qc as @@ -565,11 +567,11 @@ place holder to make EH code reach this place. This is a bit hackish, but it works. Once control reaches here, the qc is deallocated by invoking -__ata_qc_complete() explicitly. Then, internal qc for REQUEST SENSE +:c:func:`__ata_qc_complete` explicitly. Then, internal qc for REQUEST SENSE is issued. Once sense data is acquired, scmd is finished by directly -invoking scsi_finish_command() on the scmd. Note that as we already +invoking :c:func:`scsi_finish_command` on the scmd. Note that as we already have completed and deallocated the qc which was associated with the -scmd, we don't need to/cannot call ata_qc_complete() again. +scmd, we don't need to/cannot call :c:func:`ata_qc_complete` again. Problems with the current EH ---------------------------- @@ -583,7 +585,7 @@ Problems with the current EH - When handling timeouts, no action is taken to make device forget about the timed out command and ready for new commands. -- EH handling via ata_scsi_error() is not properly protected from +- EH handling via :c:func:`ata_scsi_error` is not properly protected from usual command processing. On EH entrance, the device is not in quiescent state. Timed out commands may succeed or fail any time. pio_task and atapi_task may still be running. @@ -622,6 +624,8 @@ libata Core Internals .. kernel-doc:: drivers/ata/libata-core.c :internal: +.. kernel-doc:: drivers/ata/libata-eh.c + libata SCSI translation/emulation ================================= -- cgit v1.2.3 From bcb1a87a8b94182f57312a8d93dc69e9a3ace9e8 Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Fri, 12 May 2017 08:57:50 -0300 Subject: docs-rst: convert s390-drivers DocBook to ReST Use pandoc to convert documentation to ReST by calling Documentation/sphinx/tmplcvt script. Acked-by: Cornelia Huck Signed-off-by: Mauro Carvalho Chehab --- Documentation/DocBook/Makefile | 2 +- Documentation/DocBook/s390-drivers.tmpl | 161 ------------------------------ Documentation/driver-api/index.rst | 1 + Documentation/driver-api/s390-drivers.rst | 111 ++++++++++++++++++++ 4 files changed, 113 insertions(+), 162 deletions(-) delete mode 100644 Documentation/DocBook/s390-drivers.tmpl create mode 100644 Documentation/driver-api/s390-drivers.rst (limited to 'Documentation/driver-api') diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index abe71345160b..a25bf10384e1 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -10,7 +10,7 @@ DOCBOOKS := z8530book.xml \ networking.xml \ lsm.xml \ mtdnand.xml librs.xml rapidio.xml \ - s390-drivers.xml scsi.xml \ + scsi.xml \ sh.xml w1.xml ifeq ($(DOCBOOKS),) diff --git a/Documentation/DocBook/s390-drivers.tmpl b/Documentation/DocBook/s390-drivers.tmpl deleted file mode 100644 index 95bfc12e5439..000000000000 --- a/Documentation/DocBook/s390-drivers.tmpl +++ /dev/null @@ -1,161 +0,0 @@ - - - - - - Writing s390 channel device drivers - - - - Cornelia - Huck - -
- cornelia.huck@de.ibm.com -
-
-
-
- - - 2007 - IBM Corp. - - - - - This documentation is free software; you can redistribute - it and/or modify it under the terms of the GNU General Public - License as published by the Free Software Foundation; either - version 2 of the License, or (at your option) any later - version. - - - - This program is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - See the GNU General Public License for more details. - - - - You should have received a copy of the GNU General Public - License along with this program; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, - MA 02111-1307 USA - - - - For more details see the file COPYING in the source - distribution of Linux. - - -
- - - - - Introduction - - This document describes the interfaces available for device drivers that - drive s390 based channel attached I/O devices. This includes interfaces for - interaction with the hardware and interfaces for interacting with the - common driver core. Those interfaces are provided by the s390 common I/O - layer. - - - The document assumes a familarity with the technical terms associated - with the s390 channel I/O architecture. For a description of this - architecture, please refer to the "z/Architecture: Principles of - Operation", IBM publication no. SA22-7832. - - - While most I/O devices on a s390 system are typically driven through the - channel I/O mechanism described here, there are various other methods - (like the diag interface). These are out of the scope of this document. - - - Some additional information can also be found in the kernel source - under Documentation/s390/driver-model.txt. - - - - The ccw bus - - The ccw bus typically contains the majority of devices available to - a s390 system. Named after the channel command word (ccw), the basic - command structure used to address its devices, the ccw bus contains - so-called channel attached devices. They are addressed via I/O - subchannels, visible on the css bus. A device driver for - channel-attached devices, however, will never interact with the - subchannel directly, but only via the I/O device on the ccw bus, - the ccw device. - - - I/O functions for channel-attached devices - - Some hardware structures have been translated into C structures for use - by the common I/O layer and device drivers. For more information on - the hardware structures represented here, please consult the Principles - of Operation. - -!Iarch/s390/include/asm/cio.h - - - ccw devices - - Devices that want to initiate channel I/O need to attach to the ccw bus. - Interaction with the driver core is done via the common I/O layer, which - provides the abstractions of ccw devices and ccw device drivers. - - - The functions that initiate or terminate channel I/O all act upon a - ccw device structure. Device drivers must not bypass those functions - or strange side effects may happen. - -!Iarch/s390/include/asm/ccwdev.h -!Edrivers/s390/cio/device.c -!Edrivers/s390/cio/device_ops.c - - - The channel-measurement facility - - The channel-measurement facility provides a means to collect - measurement data which is made available by the channel subsystem - for each channel attached device. - -!Iarch/s390/include/asm/cmb.h -!Edrivers/s390/cio/cmf.c - - - - - The ccwgroup bus - - The ccwgroup bus only contains artificial devices, created by the user. - Many networking devices (e.g. qeth) are in fact composed of several - ccw devices (like read, write and data channel for qeth). The - ccwgroup bus provides a mechanism to create a meta-device which - contains those ccw devices as slave devices and can be associated - with the netdevice. - - - ccw group devices -!Iarch/s390/include/asm/ccwgroup.h -!Edrivers/s390/cio/ccwgroup.c - - - - - Generic interfaces - - Some interfaces are available to other drivers that do not necessarily - have anything to do with the busses described above, but still are - indirectly using basic infrastructure in the common I/O layer. - One example is the support for adapter interrupts. - -!Edrivers/s390/cio/airq.c - - -
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index c3c50b1bb96c..a9687731810e 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -34,6 +34,7 @@ available subsections can be seen below. edac libata miscellaneous + s390-drivers vme 80211/index uio-howto diff --git a/Documentation/driver-api/s390-drivers.rst b/Documentation/driver-api/s390-drivers.rst new file mode 100644 index 000000000000..7060da136095 --- /dev/null +++ b/Documentation/driver-api/s390-drivers.rst @@ -0,0 +1,111 @@ +=================================== +Writing s390 channel device drivers +=================================== + +:Author: Cornelia Huck + +Introduction +============ + +This document describes the interfaces available for device drivers that +drive s390 based channel attached I/O devices. This includes interfaces +for interaction with the hardware and interfaces for interacting with +the common driver core. Those interfaces are provided by the s390 common +I/O layer. + +The document assumes a familarity with the technical terms associated +with the s390 channel I/O architecture. For a description of this +architecture, please refer to the "z/Architecture: Principles of +Operation", IBM publication no. SA22-7832. + +While most I/O devices on a s390 system are typically driven through the +channel I/O mechanism described here, there are various other methods +(like the diag interface). These are out of the scope of this document. + +Some additional information can also be found in the kernel source under +Documentation/s390/driver-model.txt. + +The ccw bus +=========== + +The ccw bus typically contains the majority of devices available to a +s390 system. Named after the channel command word (ccw), the basic +command structure used to address its devices, the ccw bus contains +so-called channel attached devices. They are addressed via I/O +subchannels, visible on the css bus. A device driver for +channel-attached devices, however, will never interact with the +subchannel directly, but only via the I/O device on the ccw bus, the ccw +device. + +I/O functions for channel-attached devices +------------------------------------------ + +Some hardware structures have been translated into C structures for use +by the common I/O layer and device drivers. For more information on the +hardware structures represented here, please consult the Principles of +Operation. + +.. kernel-doc:: arch/s390/include/asm/cio.h + :internal: + +ccw devices +----------- + +Devices that want to initiate channel I/O need to attach to the ccw bus. +Interaction with the driver core is done via the common I/O layer, which +provides the abstractions of ccw devices and ccw device drivers. + +The functions that initiate or terminate channel I/O all act upon a ccw +device structure. Device drivers must not bypass those functions or +strange side effects may happen. + +.. kernel-doc:: arch/s390/include/asm/ccwdev.h + :internal: + +.. kernel-doc:: drivers/s390/cio/device.c + :export: + +.. kernel-doc:: drivers/s390/cio/device_ops.c + :export: + +The channel-measurement facility +-------------------------------- + +The channel-measurement facility provides a means to collect measurement +data which is made available by the channel subsystem for each channel +attached device. + +.. kernel-doc:: arch/s390/include/asm/cmb.h + :internal: + +.. kernel-doc:: drivers/s390/cio/cmf.c + :export: + +The ccwgroup bus +================ + +The ccwgroup bus only contains artificial devices, created by the user. +Many networking devices (e.g. qeth) are in fact composed of several ccw +devices (like read, write and data channel for qeth). The ccwgroup bus +provides a mechanism to create a meta-device which contains those ccw +devices as slave devices and can be associated with the netdevice. + +ccw group devices +----------------- + +.. kernel-doc:: arch/s390/include/asm/ccwgroup.h + :internal: + +.. kernel-doc:: drivers/s390/cio/ccwgroup.c + :export: + +Generic interfaces +================== + +Some interfaces are available to other drivers that do not necessarily +have anything to do with the busses described above, but still are +indirectly using basic infrastructure in the common I/O layer. One +example is the support for adapter interrupts. + +.. kernel-doc:: drivers/s390/cio/airq.c + :export: -- cgit v1.2.3 From 6020236568bbe99ef3b0f571315255da5d73a531 Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Fri, 12 May 2017 09:59:02 -0300 Subject: docs-rst: convert scsi DocBook to ReST Use pandoc to convert documentation to ReST by calling Documentation/sphinx/tmplcvt script. Signed-off-by: Mauro Carvalho Chehab --- Documentation/DocBook/Makefile | 1 - Documentation/DocBook/scsi.tmpl | 409 --------------------------------- Documentation/driver-api/index.rst | 1 + Documentation/driver-api/scsi.rst | 344 +++++++++++++++++++++++++++ Documentation/networking/z8530book.rst | 15 +- 5 files changed, 352 insertions(+), 418 deletions(-) delete mode 100644 Documentation/DocBook/scsi.tmpl create mode 100644 Documentation/driver-api/scsi.rst (limited to 'Documentation/driver-api') diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index 00a61f4ffcff..3bbda02d6aee 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -9,7 +9,6 @@ DOCBOOKS := \ lsm.xml \ mtdnand.xml librs.xml rapidio.xml \ - scsi.xml \ sh.xml w1.xml ifeq ($(DOCBOOKS),) diff --git a/Documentation/DocBook/scsi.tmpl b/Documentation/DocBook/scsi.tmpl deleted file mode 100644 index 4b9b9b286cea..000000000000 --- a/Documentation/DocBook/scsi.tmpl +++ /dev/null @@ -1,409 +0,0 @@ - - - - - - SCSI Interfaces Guide - - - - James - Bottomley - -
- James.Bottomley@hansenpartnership.com -
-
-
- - - Rob - Landley - -
- rob@landley.net -
-
-
- -
- - - 2007 - Linux Foundation - - - - - This documentation is free software; you can redistribute - it and/or modify it under the terms of the GNU General Public - License version 2. - - - - This program is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - For more details see the file COPYING in the source - distribution of Linux. - - -
- - - - - Introduction - - Protocol vs bus - - Once upon a time, the Small Computer Systems Interface defined both - a parallel I/O bus and a data protocol to connect a wide variety of - peripherals (disk drives, tape drives, modems, printers, scanners, - optical drives, test equipment, and medical devices) to a host - computer. - - - Although the old parallel (fast/wide/ultra) SCSI bus has largely - fallen out of use, the SCSI command set is more widely used than ever - to communicate with devices over a number of different busses. - - - The SCSI protocol - is a big-endian peer-to-peer packet based protocol. SCSI commands - are 6, 10, 12, or 16 bytes long, often followed by an associated data - payload. - - - SCSI commands can be transported over just about any kind of bus, and - are the default protocol for storage devices attached to USB, SATA, - SAS, Fibre Channel, FireWire, and ATAPI devices. SCSI packets are - also commonly exchanged over Infiniband, - I20, TCP/IP - (iSCSI), even - Parallel - ports. - - - - Design of the Linux SCSI subsystem - - The SCSI subsystem uses a three layer design, with upper, mid, and low - layers. Every operation involving the SCSI subsystem (such as reading - a sector from a disk) uses one driver at each of the 3 levels: one - upper layer driver, one lower layer driver, and the SCSI midlayer. - - - The SCSI upper layer provides the interface between userspace and the - kernel, in the form of block and char device nodes for I/O and - ioctl(). The SCSI lower layer contains drivers for specific hardware - devices. - - - In between is the SCSI mid-layer, analogous to a network routing - layer such as the IPv4 stack. The SCSI mid-layer routes a packet - based data protocol between the upper layer's /dev nodes and the - corresponding devices in the lower layer. It manages command queues, - provides error handling and power management functions, and responds - to ioctl() requests. - - - - - - SCSI upper layer - - The upper layer supports the user-kernel interface by providing - device nodes. - - - sd (SCSI Disk) - sd (sd_mod.o) - - - - sr (SCSI CD-ROM) - sr (sr_mod.o) - - - st (SCSI Tape) - st (st.o) - - - sg (SCSI Generic) - sg (sg.o) - - - ch (SCSI Media Changer) - ch (ch.c) - - - - - SCSI mid layer - - - SCSI midlayer implementation - - include/scsi/scsi_device.h - - -!Iinclude/scsi/scsi_device.h - - - - drivers/scsi/scsi.c - Main file for the SCSI midlayer. -!Edrivers/scsi/scsi.c - - - drivers/scsi/scsicam.c - - SCSI - Common Access Method support functions, for use with - HDIO_GETGEO, etc. - -!Edrivers/scsi/scsicam.c - - - drivers/scsi/scsi_error.c - Common SCSI error/timeout handling routines. -!Edrivers/scsi/scsi_error.c - - - drivers/scsi/scsi_devinfo.c - - Manage scsi_dev_info_list, which tracks blacklisted and whitelisted - devices. - -!Idrivers/scsi/scsi_devinfo.c - - - drivers/scsi/scsi_ioctl.c - - Handle ioctl() calls for SCSI devices. - -!Edrivers/scsi/scsi_ioctl.c - - - drivers/scsi/scsi_lib.c - - SCSI queuing library. - -!Edrivers/scsi/scsi_lib.c - - - drivers/scsi/scsi_lib_dma.c - - SCSI library functions depending on DMA - (map and unmap scatter-gather lists). - -!Edrivers/scsi/scsi_lib_dma.c - - - drivers/scsi/scsi_module.c - - The file drivers/scsi/scsi_module.c contains legacy support for - old-style host templates. It should never be used by any new driver. - - - - drivers/scsi/scsi_proc.c - - The functions in this file provide an interface between - the PROC file system and the SCSI device drivers - It is mainly used for debugging, statistics and to pass - information directly to the lowlevel driver. - - I.E. plumbing to manage /proc/scsi/* - -!Idrivers/scsi/scsi_proc.c - - - drivers/scsi/scsi_netlink.c - - Infrastructure to provide async events from transports to userspace - via netlink, using a single NETLINK_SCSITRANSPORT protocol for all - transports. - - See the - original patch submission for more details. - -!Idrivers/scsi/scsi_netlink.c - - - drivers/scsi/scsi_scan.c - - Scan a host to determine which (if any) devices are attached. - - The general scanning/probing algorithm is as follows, exceptions are - made to it depending on device specific flags, compilation options, - and global variable (boot or module load time) settings. - - A specific LUN is scanned via an INQUIRY command; if the LUN has a - device attached, a scsi_device is allocated and setup for it. - - For every id of every channel on the given host, start by scanning - LUN 0. Skip hosts that don't respond at all to a scan of LUN 0. - Otherwise, if LUN 0 has a device attached, allocate and setup a - scsi_device for it. If target is SCSI-3 or up, issue a REPORT LUN, - and scan all of the LUNs returned by the REPORT LUN; else, - sequentially scan LUNs up until some maximum is reached, or a LUN is - seen that cannot have a device attached to it. - -!Idrivers/scsi/scsi_scan.c - - - drivers/scsi/scsi_sysctl.c - - Set up the sysctl entry: "/dev/scsi/logging_level" - (DEV_SCSI_LOGGING_LEVEL) which sets/returns scsi_logging_level. - - - - drivers/scsi/scsi_sysfs.c - - SCSI sysfs interface routines. - -!Edrivers/scsi/scsi_sysfs.c - - - drivers/scsi/hosts.c - - mid to lowlevel SCSI driver interface - -!Edrivers/scsi/hosts.c - - - drivers/scsi/constants.c - - mid to lowlevel SCSI driver interface - -!Edrivers/scsi/constants.c - - - - - Transport classes - - Transport classes are service libraries for drivers in the SCSI - lower layer, which expose transport attributes in sysfs. - - - Fibre Channel transport - - The file drivers/scsi/scsi_transport_fc.c defines transport attributes - for Fibre Channel. - -!Edrivers/scsi/scsi_transport_fc.c - - - iSCSI transport class - - The file drivers/scsi/scsi_transport_iscsi.c defines transport - attributes for the iSCSI class, which sends SCSI packets over TCP/IP - connections. - -!Edrivers/scsi/scsi_transport_iscsi.c - - - Serial Attached SCSI (SAS) transport class - - The file drivers/scsi/scsi_transport_sas.c defines transport - attributes for Serial Attached SCSI, a variant of SATA aimed at - large high-end systems. - - - The SAS transport class contains common code to deal with SAS HBAs, - an aproximated representation of SAS topologies in the driver model, - and various sysfs attributes to expose these topologies and management - interfaces to userspace. - - - In addition to the basic SCSI core objects this transport class - introduces two additional intermediate objects: The SAS PHY - as represented by struct sas_phy defines an "outgoing" PHY on - a SAS HBA or Expander, and the SAS remote PHY represented by - struct sas_rphy defines an "incoming" PHY on a SAS Expander or - end device. Note that this is purely a software concept, the - underlying hardware for a PHY and a remote PHY is the exactly - the same. - - - There is no concept of a SAS port in this code, users can see - what PHYs form a wide port based on the port_identifier attribute, - which is the same for all PHYs in a port. - -!Edrivers/scsi/scsi_transport_sas.c - - - SATA transport class - - The SATA transport is handled by libata, which has its own book of - documentation in this directory. - - - - Parallel SCSI (SPI) transport class - - The file drivers/scsi/scsi_transport_spi.c defines transport - attributes for traditional (fast/wide/ultra) SCSI busses. - -!Edrivers/scsi/scsi_transport_spi.c - - - SCSI RDMA (SRP) transport class - - The file drivers/scsi/scsi_transport_srp.c defines transport - attributes for SCSI over Remote Direct Memory Access. - -!Edrivers/scsi/scsi_transport_srp.c - - - - - - - SCSI lower layer - - Host Bus Adapter transport types - - Many modern device controllers use the SCSI command set as a protocol to - communicate with their devices through many different types of physical - connections. - - - In SCSI language a bus capable of carrying SCSI commands is - called a "transport", and a controller connecting to such a bus is - called a "host bus adapter" (HBA). - - - Debug transport - - The file drivers/scsi/scsi_debug.c simulates a host adapter with a - variable number of disks (or disk like devices) attached, sharing a - common amount of RAM. Does a lot of checking to make sure that we are - not getting blocks mixed up, and panics the kernel if anything out of - the ordinary is seen. - - - To be more realistic, the simulated devices have the transport - attributes of SAS disks. - - - For documentation see - http://sg.danny.cz/sg/sdebug26.html - - - - - todo - Parallel (fast/wide/ultra) SCSI, USB, SATA, - SAS, Fibre Channel, FireWire, ATAPI devices, Infiniband, - I20, iSCSI, Parallel ports, netlink... - - - - -
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index a9687731810e..9589b06e374e 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -32,6 +32,7 @@ available subsections can be seen below. i2c hsi edac + scsi libata miscellaneous s390-drivers diff --git a/Documentation/driver-api/scsi.rst b/Documentation/driver-api/scsi.rst new file mode 100644 index 000000000000..859fb672319f --- /dev/null +++ b/Documentation/driver-api/scsi.rst @@ -0,0 +1,344 @@ +===================== +SCSI Interfaces Guide +===================== + +:Author: James Bottomley +:Author: Rob Landley + +Introduction +============ + +Protocol vs bus +--------------- + +Once upon a time, the Small Computer Systems Interface defined both a +parallel I/O bus and a data protocol to connect a wide variety of +peripherals (disk drives, tape drives, modems, printers, scanners, +optical drives, test equipment, and medical devices) to a host computer. + +Although the old parallel (fast/wide/ultra) SCSI bus has largely fallen +out of use, the SCSI command set is more widely used than ever to +communicate with devices over a number of different busses. + +The `SCSI protocol `__ is a big-endian +peer-to-peer packet based protocol. SCSI commands are 6, 10, 12, or 16 +bytes long, often followed by an associated data payload. + +SCSI commands can be transported over just about any kind of bus, and +are the default protocol for storage devices attached to USB, SATA, SAS, +Fibre Channel, FireWire, and ATAPI devices. SCSI packets are also +commonly exchanged over Infiniband, +`I20 `__, TCP/IP +(`iSCSI `__), even `Parallel +ports `__. + +Design of the Linux SCSI subsystem +---------------------------------- + +The SCSI subsystem uses a three layer design, with upper, mid, and low +layers. Every operation involving the SCSI subsystem (such as reading a +sector from a disk) uses one driver at each of the 3 levels: one upper +layer driver, one lower layer driver, and the SCSI midlayer. + +The SCSI upper layer provides the interface between userspace and the +kernel, in the form of block and char device nodes for I/O and ioctl(). +The SCSI lower layer contains drivers for specific hardware devices. + +In between is the SCSI mid-layer, analogous to a network routing layer +such as the IPv4 stack. The SCSI mid-layer routes a packet based data +protocol between the upper layer's /dev nodes and the corresponding +devices in the lower layer. It manages command queues, provides error +handling and power management functions, and responds to ioctl() +requests. + +SCSI upper layer +================ + +The upper layer supports the user-kernel interface by providing device +nodes. + +sd (SCSI Disk) +-------------- + +sd (sd_mod.o) + +sr (SCSI CD-ROM) +---------------- + +sr (sr_mod.o) + +st (SCSI Tape) +-------------- + +st (st.o) + +sg (SCSI Generic) +----------------- + +sg (sg.o) + +ch (SCSI Media Changer) +----------------------- + +ch (ch.c) + +SCSI mid layer +============== + +SCSI midlayer implementation +---------------------------- + +include/scsi/scsi_device.h +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. kernel-doc:: include/scsi/scsi_device.h + :internal: + +drivers/scsi/scsi.c +~~~~~~~~~~~~~~~~~~~ + +Main file for the SCSI midlayer. + +.. kernel-doc:: drivers/scsi/scsi.c + :export: + +drivers/scsi/scsicam.c +~~~~~~~~~~~~~~~~~~~~~~ + +`SCSI Common Access +Method `__ support +functions, for use with HDIO_GETGEO, etc. + +.. kernel-doc:: drivers/scsi/scsicam.c + :export: + +drivers/scsi/scsi_error.c +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Common SCSI error/timeout handling routines. + +.. kernel-doc:: drivers/scsi/scsi_error.c + :export: + +drivers/scsi/scsi_devinfo.c +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Manage scsi_dev_info_list, which tracks blacklisted and whitelisted +devices. + +.. kernel-doc:: drivers/scsi/scsi_devinfo.c + :internal: + +drivers/scsi/scsi_ioctl.c +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Handle ioctl() calls for SCSI devices. + +.. kernel-doc:: drivers/scsi/scsi_ioctl.c + :export: + +drivers/scsi/scsi_lib.c +~~~~~~~~~~~~~~~~~~~~~~~~ + +SCSI queuing library. + +.. kernel-doc:: drivers/scsi/scsi_lib.c + :export: + +drivers/scsi/scsi_lib_dma.c +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +SCSI library functions depending on DMA (map and unmap scatter-gather +lists). + +.. kernel-doc:: drivers/scsi/scsi_lib_dma.c + :export: + +drivers/scsi/scsi_module.c +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The file drivers/scsi/scsi_module.c contains legacy support for +old-style host templates. It should never be used by any new driver. + +drivers/scsi/scsi_proc.c +~~~~~~~~~~~~~~~~~~~~~~~~~ + +The functions in this file provide an interface between the PROC file +system and the SCSI device drivers It is mainly used for debugging, +statistics and to pass information directly to the lowlevel driver. I.E. +plumbing to manage /proc/scsi/\* + +.. kernel-doc:: drivers/scsi/scsi_proc.c + :internal: + +drivers/scsi/scsi_netlink.c +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Infrastructure to provide async events from transports to userspace via +netlink, using a single NETLINK_SCSITRANSPORT protocol for all +transports. See `the original patch +submission `__ for +more details. + +.. kernel-doc:: drivers/scsi/scsi_netlink.c + :internal: + +drivers/scsi/scsi_scan.c +~~~~~~~~~~~~~~~~~~~~~~~~~ + +Scan a host to determine which (if any) devices are attached. The +general scanning/probing algorithm is as follows, exceptions are made to +it depending on device specific flags, compilation options, and global +variable (boot or module load time) settings. A specific LUN is scanned +via an INQUIRY command; if the LUN has a device attached, a scsi_device +is allocated and setup for it. For every id of every channel on the +given host, start by scanning LUN 0. Skip hosts that don't respond at +all to a scan of LUN 0. Otherwise, if LUN 0 has a device attached, +allocate and setup a scsi_device for it. If target is SCSI-3 or up, +issue a REPORT LUN, and scan all of the LUNs returned by the REPORT LUN; +else, sequentially scan LUNs up until some maximum is reached, or a LUN +is seen that cannot have a device attached to it. + +.. kernel-doc:: drivers/scsi/scsi_scan.c + :internal: + +drivers/scsi/scsi_sysctl.c +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Set up the sysctl entry: "/dev/scsi/logging_level" +(DEV_SCSI_LOGGING_LEVEL) which sets/returns scsi_logging_level. + +drivers/scsi/scsi_sysfs.c +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +SCSI sysfs interface routines. + +.. kernel-doc:: drivers/scsi/scsi_sysfs.c + :export: + +drivers/scsi/hosts.c +~~~~~~~~~~~~~~~~~~~~ + +mid to lowlevel SCSI driver interface + +.. kernel-doc:: drivers/scsi/hosts.c + :export: + +drivers/scsi/constants.c +~~~~~~~~~~~~~~~~~~~~~~~~ + +mid to lowlevel SCSI driver interface + +.. kernel-doc:: drivers/scsi/constants.c + :export: + +Transport classes +----------------- + +Transport classes are service libraries for drivers in the SCSI lower +layer, which expose transport attributes in sysfs. + +Fibre Channel transport +~~~~~~~~~~~~~~~~~~~~~~~ + +The file drivers/scsi/scsi_transport_fc.c defines transport attributes +for Fibre Channel. + +.. kernel-doc:: drivers/scsi/scsi_transport_fc.c + :export: + +iSCSI transport class +~~~~~~~~~~~~~~~~~~~~~ + +The file drivers/scsi/scsi_transport_iscsi.c defines transport +attributes for the iSCSI class, which sends SCSI packets over TCP/IP +connections. + +.. kernel-doc:: drivers/scsi/scsi_transport_iscsi.c + :export: + +Serial Attached SCSI (SAS) transport class +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The file drivers/scsi/scsi_transport_sas.c defines transport +attributes for Serial Attached SCSI, a variant of SATA aimed at large +high-end systems. + +The SAS transport class contains common code to deal with SAS HBAs, an +aproximated representation of SAS topologies in the driver model, and +various sysfs attributes to expose these topologies and management +interfaces to userspace. + +In addition to the basic SCSI core objects this transport class +introduces two additional intermediate objects: The SAS PHY as +represented by struct sas_phy defines an "outgoing" PHY on a SAS HBA or +Expander, and the SAS remote PHY represented by struct sas_rphy defines +an "incoming" PHY on a SAS Expander or end device. Note that this is +purely a software concept, the underlying hardware for a PHY and a +remote PHY is the exactly the same. + +There is no concept of a SAS port in this code, users can see what PHYs +form a wide port based on the port_identifier attribute, which is the +same for all PHYs in a port. + +.. kernel-doc:: drivers/scsi/scsi_transport_sas.c + :export: + +SATA transport class +~~~~~~~~~~~~~~~~~~~~ + +The SATA transport is handled by libata, which has its own book of +documentation in this directory. + +Parallel SCSI (SPI) transport class +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The file drivers/scsi/scsi_transport_spi.c defines transport +attributes for traditional (fast/wide/ultra) SCSI busses. + +.. kernel-doc:: drivers/scsi/scsi_transport_spi.c + :export: + +SCSI RDMA (SRP) transport class +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The file drivers/scsi/scsi_transport_srp.c defines transport +attributes for SCSI over Remote Direct Memory Access. + +.. kernel-doc:: drivers/scsi/scsi_transport_srp.c + :export: + +SCSI lower layer +================ + +Host Bus Adapter transport types +-------------------------------- + +Many modern device controllers use the SCSI command set as a protocol to +communicate with their devices through many different types of physical +connections. + +In SCSI language a bus capable of carrying SCSI commands is called a +"transport", and a controller connecting to such a bus is called a "host +bus adapter" (HBA). + +Debug transport +~~~~~~~~~~~~~~~ + +The file drivers/scsi/scsi_debug.c simulates a host adapter with a +variable number of disks (or disk like devices) attached, sharing a +common amount of RAM. Does a lot of checking to make sure that we are +not getting blocks mixed up, and panics the kernel if anything out of +the ordinary is seen. + +To be more realistic, the simulated devices have the transport +attributes of SAS disks. + +For documentation see http://sg.danny.cz/sg/sdebug26.html + +todo +~~~~ + +Parallel (fast/wide/ultra) SCSI, USB, SATA, SAS, Fibre Channel, +FireWire, ATAPI devices, Infiniband, I20, iSCSI, Parallel ports, +netlink... diff --git a/Documentation/networking/z8530book.rst b/Documentation/networking/z8530book.rst index 31032ee36081..fea2c40e7973 100644 --- a/Documentation/networking/z8530book.rst +++ b/Documentation/networking/z8530book.rst @@ -170,10 +170,10 @@ This function is very timing critical. When you wish to simply discard data the support code provides the function :c:func:`z8530_null_rx()` to discard the data. -To active PIO mode sending and receiving the `` - z8530_sync_open`` is called. This expects to be passed the network -device and the channel. Typically this is called from your network -device open callback. On a failure a non zero error status is returned. +To active PIO mode sending and receiving the ``z8530_sync_open`` is called. +This expects to be passed the network device and the channel. Typically +this is called from your network device open callback. On a failure a +non zero error status is returned. The :c:func:`z8530_sync_close()` function shuts down a PIO channel. This must be done before the channel is opened again and before the driver shuts down and unloads. @@ -190,8 +190,7 @@ the close function matching the open mode you used. The final supported mode uses a single DMA channel to drive the transmit side. As the Z85C30 has a larger FIFO on the receive channel this tends to increase the maximum speed a little. This is activated by calling the -``z8530_sync_txdma_open - ``. This returns a non zero error code on failure. The +``z8530_sync_txdma_open``. This returns a non zero error code on failure. The :c:func:`z8530_sync_txdma_close()` function closes down the Z8530 interface from this mode. @@ -228,8 +227,8 @@ Should you need to retarget the Z8530 driver to another architecture the only code that should need changing are the port I/O functions. At the moment these assume PC I/O port accesses. This may not be appropriate for all platforms. Replacing :c:func:`z8530_read_port()` and -``z8530_write_port - `` is intended to be all that is required to port this driver layer. +``z8530_write_port`` is intended to be all that is required to port +this driver layer. Known Bugs And Assumptions ========================== -- cgit v1.2.3 From b4c1064a76e7101fa1f2bcce2f56b820d475a585 Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Fri, 12 May 2017 10:28:13 -0300 Subject: docs-rst: convert w1 book to ReST Use pandoc to convert documentation to ReST by calling Documentation/sphinx/tmplcvt script. Signed-off-by: Mauro Carvalho Chehab --- Documentation/DocBook/w1.tmpl | 101 ------------------------------------- Documentation/driver-api/index.rst | 1 + Documentation/driver-api/w1.rst | 70 +++++++++++++++++++++++++ 3 files changed, 71 insertions(+), 101 deletions(-) delete mode 100644 Documentation/DocBook/w1.tmpl create mode 100644 Documentation/driver-api/w1.rst (limited to 'Documentation/driver-api') diff --git a/Documentation/DocBook/w1.tmpl b/Documentation/DocBook/w1.tmpl deleted file mode 100644 index b0228d4c81bb..000000000000 --- a/Documentation/DocBook/w1.tmpl +++ /dev/null @@ -1,101 +0,0 @@ - - - - - - W1: Dallas' 1-wire bus - - - - David - Fries - -
- David@Fries.net -
-
-
- -
- - - 2013 - - - - - - This documentation is free software; you can redistribute - it and/or modify it under the terms of the GNU General Public - License version 2. - - - - This program is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - For more details see the file COPYING in the source - distribution of Linux. - - -
- - - - - W1 API internal to the kernel - - - W1 API internal to the kernel - - drivers/w1/w1.h - W1 core functions. -!Idrivers/w1/w1.h - - - - drivers/w1/w1.c - W1 core functions. -!Idrivers/w1/w1.c - - - - drivers/w1/w1_family.h - Allows registering device family operations. -!Idrivers/w1/w1_family.h - - - - drivers/w1/w1_family.c - Allows registering device family operations. -!Edrivers/w1/w1_family.c - - - - drivers/w1/w1_int.c - W1 internal initialization for master devices. -!Edrivers/w1/w1_int.c - - - - drivers/w1/w1_netlink.h - W1 external netlink API structures and commands. -!Idrivers/w1/w1_netlink.h - - - - drivers/w1/w1_io.c - W1 input/output. -!Edrivers/w1/w1_io.c -!Idrivers/w1/w1_io.c - - - - - - - -
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index 9589b06e374e..8610aab8f342 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -35,6 +35,7 @@ available subsections can be seen below. scsi libata miscellaneous + w1 s390-drivers vme 80211/index diff --git a/Documentation/driver-api/w1.rst b/Documentation/driver-api/w1.rst new file mode 100644 index 000000000000..c1da8f0cb476 --- /dev/null +++ b/Documentation/driver-api/w1.rst @@ -0,0 +1,70 @@ +====================== +W1: Dallas' 1-wire bus +====================== + +:Author: David Fries + +W1 API internal to the kernel +============================= + +W1 API internal to the kernel +----------------------------- + +drivers/w1/w1.h +~~~~~~~~~~~~~~~ + +W1 core functions. + +.. kernel-doc:: drivers/w1/w1.h + :internal: + +drivers/w1/w1.c +~~~~~~~~~~~~~~~ + +W1 core functions. + +.. kernel-doc:: drivers/w1/w1.c + :internal: + +drivers/w1/w1_family.h +~~~~~~~~~~~~~~~~~~~~~~~ + +Allows registering device family operations. + +.. kernel-doc:: drivers/w1/w1_family.h + :internal: + +drivers/w1/w1_family.c +~~~~~~~~~~~~~~~~~~~~~~~ + +Allows registering device family operations. + +.. kernel-doc:: drivers/w1/w1_family.c + :export: + +drivers/w1/w1_int.c +~~~~~~~~~~~~~~~~~~~~ + +W1 internal initialization for master devices. + +.. kernel-doc:: drivers/w1/w1_int.c + :export: + +drivers/w1/w1_netlink.h +~~~~~~~~~~~~~~~~~~~~~~~~ + +W1 external netlink API structures and commands. + +.. kernel-doc:: drivers/w1/w1_netlink.h + :internal: + +drivers/w1/w1_io.c +~~~~~~~~~~~~~~~~~~~ + +W1 input/output. + +.. kernel-doc:: drivers/w1/w1_io.c + :export: + +.. kernel-doc:: drivers/w1/w1_io.c + :internal: -- cgit v1.2.3 From e85ca0a31f1a2e71a9fe09a3abe55476fc3a25ca Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Fri, 12 May 2017 10:31:41 -0300 Subject: docs-rst: convert rapidio book to ReST Use pandoc to convert documentation to ReST by calling Documentation/sphinx/tmplcvt script. Signed-off-by: Mauro Carvalho Chehab --- Documentation/DocBook/Makefile | 4 +- Documentation/DocBook/rapidio.tmpl | 155 ----------------------------------- Documentation/driver-api/index.rst | 1 + Documentation/driver-api/rapidio.rst | 107 ++++++++++++++++++++++++ 4 files changed, 110 insertions(+), 157 deletions(-) delete mode 100644 Documentation/DocBook/rapidio.tmpl create mode 100644 Documentation/driver-api/rapidio.rst (limited to 'Documentation/driver-api') diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index 3bbda02d6aee..baedb14f3b40 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -8,8 +8,8 @@ DOCBOOKS := \ lsm.xml \ - mtdnand.xml librs.xml rapidio.xml \ - sh.xml w1.xml + mtdnand.xml librs.xml \ + sh.xml ifeq ($(DOCBOOKS),) diff --git a/Documentation/DocBook/rapidio.tmpl b/Documentation/DocBook/rapidio.tmpl deleted file mode 100644 index ac3cca3399a1..000000000000 --- a/Documentation/DocBook/rapidio.tmpl +++ /dev/null @@ -1,155 +0,0 @@ - - - ]> - - - - RapidIO Subsystem Guide - - - - Matt - Porter - -
- mporter@kernel.crashing.org - mporter@mvista.com -
-
-
-
- - - 2005 - MontaVista Software, Inc. - - - - - This documentation is free software; you can redistribute - it and/or modify it under the terms of the GNU General Public - License version 2 as published by the Free Software Foundation. - - - - This program is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - See the GNU General Public License for more details. - - - - You should have received a copy of the GNU General Public - License along with this program; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, - MA 02111-1307 USA - - - - For more details see the file COPYING in the source - distribution of Linux. - - -
- - - - - Introduction - - RapidIO is a high speed switched fabric interconnect with - features aimed at the embedded market. RapidIO provides - support for memory-mapped I/O as well as message-based - transactions over the switched fabric network. RapidIO has - a standardized discovery mechanism not unlike the PCI bus - standard that allows simple detection of devices in a - network. - - - This documentation is provided for developers intending - to support RapidIO on new architectures, write new drivers, - or to understand the subsystem internals. - - - - - Known Bugs and Limitations - - - Bugs - None. ;) - - - Limitations - - - Access/management of RapidIO memory regions is not supported - Multiple host enumeration is not supported - - - - - - - RapidIO driver interface - - Drivers are provided a set of calls in order - to interface with the subsystem to gather info - on devices, request/map memory region resources, - and manage mailboxes/doorbells. - - - Functions -!Iinclude/linux/rio_drv.h -!Edrivers/rapidio/rio-driver.c -!Edrivers/rapidio/rio.c - - - - - Internals - - - This chapter contains the autogenerated documentation of the RapidIO - subsystem. - - - Structures -!Iinclude/linux/rio.h - - Enumeration and Discovery -!Idrivers/rapidio/rio-scan.c - - Driver functionality -!Idrivers/rapidio/rio.c -!Idrivers/rapidio/rio-access.c - - Device model support -!Idrivers/rapidio/rio-driver.c - - PPC32 support -!Iarch/powerpc/sysdev/fsl_rio.c - - - - - Credits - - The following people have contributed to the RapidIO - subsystem directly or indirectly: - - Matt Portermporter@kernel.crashing.org - Randy Vinsonrvinson@mvista.com - Dan Malekdan@embeddedalley.com - - - - The following people have contributed to this document: - - Matt Portermporter@kernel.crashing.org - - - -
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index 8610aab8f342..1f8517db39c7 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -36,6 +36,7 @@ available subsections can be seen below. libata miscellaneous w1 + rapidio s390-drivers vme 80211/index diff --git a/Documentation/driver-api/rapidio.rst b/Documentation/driver-api/rapidio.rst new file mode 100644 index 000000000000..71ff658ab78e --- /dev/null +++ b/Documentation/driver-api/rapidio.rst @@ -0,0 +1,107 @@ +======================= +RapidIO Subsystem Guide +======================= + +:Author: Matt Porter + +Introduction +============ + +RapidIO is a high speed switched fabric interconnect with features aimed +at the embedded market. RapidIO provides support for memory-mapped I/O +as well as message-based transactions over the switched fabric network. +RapidIO has a standardized discovery mechanism not unlike the PCI bus +standard that allows simple detection of devices in a network. + +This documentation is provided for developers intending to support +RapidIO on new architectures, write new drivers, or to understand the +subsystem internals. + +Known Bugs and Limitations +========================== + +Bugs +---- + +None. ;) + +Limitations +----------- + +1. Access/management of RapidIO memory regions is not supported + +2. Multiple host enumeration is not supported + +RapidIO driver interface +======================== + +Drivers are provided a set of calls in order to interface with the +subsystem to gather info on devices, request/map memory region +resources, and manage mailboxes/doorbells. + +Functions +--------- + +.. kernel-doc:: include/linux/rio_drv.h + :internal: + +.. kernel-doc:: drivers/rapidio/rio-driver.c + :export: + +.. kernel-doc:: drivers/rapidio/rio.c + :export: + +Internals +========= + +This chapter contains the autogenerated documentation of the RapidIO +subsystem. + +Structures +---------- + +.. kernel-doc:: include/linux/rio.h + :internal: + +Enumeration and Discovery +------------------------- + +.. kernel-doc:: drivers/rapidio/rio-scan.c + :internal: + +Driver functionality +-------------------- + +.. kernel-doc:: drivers/rapidio/rio.c + :internal: + +.. kernel-doc:: drivers/rapidio/rio-access.c + :internal: + +Device model support +-------------------- + +.. kernel-doc:: drivers/rapidio/rio-driver.c + :internal: + +PPC32 support +------------- + +.. kernel-doc:: arch/powerpc/sysdev/fsl_rio.c + :internal: + +Credits +======= + +The following people have contributed to the RapidIO subsystem directly +or indirectly: + +1. Matt Porter\ mporter@kernel.crashing.org + +2. Randy Vinson\ rvinson@mvista.com + +3. Dan Malek\ dan@embeddedalley.com + +The following people have contributed to this document: + +1. Matt Porter\ mporter@kernel.crashing.org -- cgit v1.2.3 From 609f212f6a12e005d2395edd7b4192d2b051ae67 Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Sat, 13 May 2017 07:10:44 -0300 Subject: docs-rst: convert mtdnand book to ReST Use pandoc to convert documentation to ReST by calling Documentation/sphinx/tmplcvt script. The tables were manually adjusted to fit into 80 columns. Signed-off-by: Mauro Carvalho Chehab --- Documentation/DocBook/Makefile | 1 - Documentation/DocBook/mtdnand.tmpl | 1291 ---------------------------------- Documentation/driver-api/index.rst | 1 + Documentation/driver-api/mtdnand.rst | 1020 +++++++++++++++++++++++++++ 4 files changed, 1021 insertions(+), 1292 deletions(-) delete mode 100644 Documentation/DocBook/mtdnand.tmpl create mode 100644 Documentation/driver-api/mtdnand.rst (limited to 'Documentation/driver-api') diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index 0a82f6253682..226e5e9fc801 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -8,7 +8,6 @@ DOCBOOKS := \ lsm.xml \ - mtdnand.xml \ sh.xml ifeq ($(DOCBOOKS),) diff --git a/Documentation/DocBook/mtdnand.tmpl b/Documentation/DocBook/mtdnand.tmpl deleted file mode 100644 index b442921bca54..000000000000 --- a/Documentation/DocBook/mtdnand.tmpl +++ /dev/null @@ -1,1291 +0,0 @@ - - - - - - MTD NAND Driver Programming Interface - - - - Thomas - Gleixner - -
- tglx@linutronix.de -
-
-
-
- - - 2004 - Thomas Gleixner - - - - - This documentation is free software; you can redistribute - it and/or modify it under the terms of the GNU General Public - License version 2 as published by the Free Software Foundation. - - - - This program is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - See the GNU General Public License for more details. - - - - You should have received a copy of the GNU General Public - License along with this program; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, - MA 02111-1307 USA - - - - For more details see the file COPYING in the source - distribution of Linux. - - -
- - - - - Introduction - - The generic NAND driver supports almost all NAND and AG-AND based - chips and connects them to the Memory Technology Devices (MTD) - subsystem of the Linux Kernel. - - - This documentation is provided for developers who want to implement - board drivers or filesystem drivers suitable for NAND devices. - - - - - Known Bugs And Assumptions - - None. - - - - - Documentation hints - - The function and structure docs are autogenerated. Each function and - struct member has a short description which is marked with an [XXX] identifier. - The following chapters explain the meaning of those identifiers. - - - Function identifiers [XXX] - - The functions are marked with [XXX] identifiers in the short - comment. The identifiers explain the usage and scope of the - functions. Following identifiers are used: - - - - [MTD Interface] - These functions provide the interface to the MTD kernel API. - They are not replaceable and provide functionality - which is complete hardware independent. - - - [NAND Interface] - These functions are exported and provide the interface to the NAND kernel API. - - - [GENERIC] - Generic functions are not replaceable and provide functionality - which is complete hardware independent. - - - [DEFAULT] - Default functions provide hardware related functionality which is suitable - for most of the implementations. These functions can be replaced by the - board driver if necessary. Those functions are called via pointers in the - NAND chip description structure. The board driver can set the functions which - should be replaced by board dependent functions before calling nand_scan(). - If the function pointer is NULL on entry to nand_scan() then the pointer - is set to the default function which is suitable for the detected chip type. - - - - - Struct member identifiers [XXX] - - The struct members are marked with [XXX] identifiers in the - comment. The identifiers explain the usage and scope of the - members. Following identifiers are used: - - - - [INTERN] - These members are for NAND driver internal use only and must not be - modified. Most of these values are calculated from the chip geometry - information which is evaluated during nand_scan(). - - - [REPLACEABLE] - Replaceable members hold hardware related functions which can be - provided by the board driver. The board driver can set the functions which - should be replaced by board dependent functions before calling nand_scan(). - If the function pointer is NULL on entry to nand_scan() then the pointer - is set to the default function which is suitable for the detected chip type. - - - [BOARDSPECIFIC] - Board specific members hold hardware related information which must - be provided by the board driver. The board driver must set the function - pointers and datafields before calling nand_scan(). - - - [OPTIONAL] - Optional members can hold information relevant for the board driver. The - generic NAND driver code does not use this information. - - - - - - - Basic board driver - - For most boards it will be sufficient to provide just the - basic functions and fill out some really board dependent - members in the nand chip description structure. - - - Basic defines - - At least you have to provide a nand_chip structure - and a storage for the ioremap'ed chip address. - You can allocate the nand_chip structure using - kmalloc or you can allocate it statically. - The NAND chip structure embeds an mtd structure - which will be registered to the MTD subsystem. - You can extract a pointer to the mtd structure - from a nand_chip pointer using the nand_to_mtd() - helper. - - - Kmalloc based example - - -static struct mtd_info *board_mtd; -static void __iomem *baseaddr; - - - Static example - - -static struct nand_chip board_chip; -static void __iomem *baseaddr; - - - - Partition defines - - If you want to divide your device into partitions, then - define a partitioning scheme suitable to your board. - - -#define NUM_PARTITIONS 2 -static struct mtd_partition partition_info[] = { - { .name = "Flash partition 1", - .offset = 0, - .size = 8 * 1024 * 1024 }, - { .name = "Flash partition 2", - .offset = MTDPART_OFS_NEXT, - .size = MTDPART_SIZ_FULL }, -}; - - - - Hardware control function - - The hardware control function provides access to the - control pins of the NAND chip(s). - The access can be done by GPIO pins or by address lines. - If you use address lines, make sure that the timing - requirements are met. - - - GPIO based example - - -static void board_hwcontrol(struct mtd_info *mtd, int cmd) -{ - switch(cmd){ - case NAND_CTL_SETCLE: /* Set CLE pin high */ break; - case NAND_CTL_CLRCLE: /* Set CLE pin low */ break; - case NAND_CTL_SETALE: /* Set ALE pin high */ break; - case NAND_CTL_CLRALE: /* Set ALE pin low */ break; - case NAND_CTL_SETNCE: /* Set nCE pin low */ break; - case NAND_CTL_CLRNCE: /* Set nCE pin high */ break; - } -} - - - Address lines based example. It's assumed that the - nCE pin is driven by a chip select decoder. - - -static void board_hwcontrol(struct mtd_info *mtd, int cmd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - switch(cmd){ - case NAND_CTL_SETCLE: this->IO_ADDR_W |= CLE_ADRR_BIT; break; - case NAND_CTL_CLRCLE: this->IO_ADDR_W &= ~CLE_ADRR_BIT; break; - case NAND_CTL_SETALE: this->IO_ADDR_W |= ALE_ADRR_BIT; break; - case NAND_CTL_CLRALE: this->IO_ADDR_W &= ~ALE_ADRR_BIT; break; - } -} - - - - Device ready function - - If the hardware interface has the ready busy pin of the NAND chip connected to a - GPIO or other accessible I/O pin, this function is used to read back the state of the - pin. The function has no arguments and should return 0, if the device is busy (R/B pin - is low) and 1, if the device is ready (R/B pin is high). - If the hardware interface does not give access to the ready busy pin, then - the function must not be defined and the function pointer this->dev_ready is set to NULL. - - - - Init function - - The init function allocates memory and sets up all the board - specific parameters and function pointers. When everything - is set up nand_scan() is called. This function tries to - detect and identify then chip. If a chip is found all the - internal data fields are initialized accordingly. - The structure(s) have to be zeroed out first and then filled with the necessary - information about the device. - - -static int __init board_init (void) -{ - struct nand_chip *this; - int err = 0; - - /* Allocate memory for MTD device structure and private data */ - this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); - if (!this) { - printk ("Unable to allocate NAND MTD device structure.\n"); - err = -ENOMEM; - goto out; - } - - board_mtd = nand_to_mtd(this); - - /* map physical address */ - baseaddr = ioremap(CHIP_PHYSICAL_ADDRESS, 1024); - if (!baseaddr) { - printk("Ioremap to access NAND chip failed\n"); - err = -EIO; - goto out_mtd; - } - - /* Set address of NAND IO lines */ - this->IO_ADDR_R = baseaddr; - this->IO_ADDR_W = baseaddr; - /* Reference hardware control function */ - this->hwcontrol = board_hwcontrol; - /* Set command delay time, see datasheet for correct value */ - this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY; - /* Assign the device ready function, if available */ - this->dev_ready = board_dev_ready; - this->eccmode = NAND_ECC_SOFT; - - /* Scan to find existence of the device */ - if (nand_scan (board_mtd, 1)) { - err = -ENXIO; - goto out_ior; - } - - add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS); - goto out; - -out_ior: - iounmap(baseaddr); -out_mtd: - kfree (this); -out: - return err; -} -module_init(board_init); - - - - Exit function - - The exit function is only necessary if the driver is - compiled as a module. It releases all resources which - are held by the chip driver and unregisters the partitions - in the MTD layer. - - -#ifdef MODULE -static void __exit board_cleanup (void) -{ - /* Release resources, unregister device */ - nand_release (board_mtd); - - /* unmap physical address */ - iounmap(baseaddr); - - /* Free the MTD device structure */ - kfree (mtd_to_nand(board_mtd)); -} -module_exit(board_cleanup); -#endif - - - - - - Advanced board driver functions - - This chapter describes the advanced functionality of the NAND - driver. For a list of functions which can be overridden by the board - driver see the documentation of the nand_chip structure. - - - Multiple chip control - - The nand driver can control chip arrays. Therefore the - board driver must provide an own select_chip function. This - function must (de)select the requested chip. - The function pointer in the nand_chip structure must - be set before calling nand_scan(). The maxchip parameter - of nand_scan() defines the maximum number of chips to - scan for. Make sure that the select_chip function can - handle the requested number of chips. - - - The nand driver concatenates the chips to one virtual - chip and provides this virtual chip to the MTD layer. - - - Note: The driver can only handle linear chip arrays - of equally sized chips. There is no support for - parallel arrays which extend the buswidth. - - - GPIO based example - - -static void board_select_chip (struct mtd_info *mtd, int chip) -{ - /* Deselect all chips, set all nCE pins high */ - GPIO(BOARD_NAND_NCE) |= 0xff; - if (chip >= 0) - GPIO(BOARD_NAND_NCE) &= ~ (1 << chip); -} - - - Address lines based example. - Its assumed that the nCE pins are connected to an - address decoder. - - -static void board_select_chip (struct mtd_info *mtd, int chip) -{ - struct nand_chip *this = mtd_to_nand(mtd); - - /* Deselect all chips */ - this->IO_ADDR_R &= ~BOARD_NAND_ADDR_MASK; - this->IO_ADDR_W &= ~BOARD_NAND_ADDR_MASK; - switch (chip) { - case 0: - this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0; - this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0; - break; - .... - case n: - this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn; - this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn; - break; - } -} - - - - Hardware ECC support - - Functions and constants - - The nand driver supports three different types of - hardware ECC. - - NAND_ECC_HW3_256 - Hardware ECC generator providing 3 bytes ECC per - 256 byte. - - NAND_ECC_HW3_512 - Hardware ECC generator providing 3 bytes ECC per - 512 byte. - - NAND_ECC_HW6_512 - Hardware ECC generator providing 6 bytes ECC per - 512 byte. - - NAND_ECC_HW8_512 - Hardware ECC generator providing 6 bytes ECC per - 512 byte. - - - If your hardware generator has a different functionality - add it at the appropriate place in nand_base.c - - - The board driver must provide following functions: - - enable_hwecc - This function is called before reading / writing to - the chip. Reset or initialize the hardware generator - in this function. The function is called with an - argument which let you distinguish between read - and write operations. - - calculate_ecc - This function is called after read / write from / to - the chip. Transfer the ECC from the hardware to - the buffer. If the option NAND_HWECC_SYNDROME is set - then the function is only called on write. See below. - - correct_data - In case of an ECC error this function is called for - error detection and correction. Return 1 respectively 2 - in case the error can be corrected. If the error is - not correctable return -1. If your hardware generator - matches the default algorithm of the nand_ecc software - generator then use the correction function provided - by nand_ecc instead of implementing duplicated code. - - - - - - Hardware ECC with syndrome calculation - - Many hardware ECC implementations provide Reed-Solomon - codes and calculate an error syndrome on read. The syndrome - must be converted to a standard Reed-Solomon syndrome - before calling the error correction code in the generic - Reed-Solomon library. - - - The ECC bytes must be placed immediately after the data - bytes in order to make the syndrome generator work. This - is contrary to the usual layout used by software ECC. The - separation of data and out of band area is not longer - possible. The nand driver code handles this layout and - the remaining free bytes in the oob area are managed by - the autoplacement code. Provide a matching oob-layout - in this case. See rts_from4.c and diskonchip.c for - implementation reference. In those cases we must also - use bad block tables on FLASH, because the ECC layout is - interfering with the bad block marker positions. - See bad block table support for details. - - - - - Bad block table support - - Most NAND chips mark the bad blocks at a defined - position in the spare area. Those blocks must - not be erased under any circumstances as the bad - block information would be lost. - It is possible to check the bad block mark each - time when the blocks are accessed by reading the - spare area of the first page in the block. This - is time consuming so a bad block table is used. - - - The nand driver supports various types of bad block - tables. - - Per device - The bad block table contains all bad block information - of the device which can consist of multiple chips. - - Per chip - A bad block table is used per chip and contains the - bad block information for this particular chip. - - Fixed offset - The bad block table is located at a fixed offset - in the chip (device). This applies to various - DiskOnChip devices. - - Automatic placed - The bad block table is automatically placed and - detected either at the end or at the beginning - of a chip (device) - - Mirrored tables - The bad block table is mirrored on the chip (device) to - allow updates of the bad block table without data loss. - - - - - nand_scan() calls the function nand_default_bbt(). - nand_default_bbt() selects appropriate default - bad block table descriptors depending on the chip information - which was retrieved by nand_scan(). - - - The standard policy is scanning the device for bad - blocks and build a ram based bad block table which - allows faster access than always checking the - bad block information on the flash chip itself. - - - Flash based tables - - It may be desired or necessary to keep a bad block table in FLASH. - For AG-AND chips this is mandatory, as they have no factory marked - bad blocks. They have factory marked good blocks. The marker pattern - is erased when the block is erased to be reused. So in case of - powerloss before writing the pattern back to the chip this block - would be lost and added to the bad blocks. Therefore we scan the - chip(s) when we detect them the first time for good blocks and - store this information in a bad block table before erasing any - of the blocks. - - - The blocks in which the tables are stored are protected against - accidental access by marking them bad in the memory bad block - table. The bad block table management functions are allowed - to circumvent this protection. - - - The simplest way to activate the FLASH based bad block table support - is to set the option NAND_BBT_USE_FLASH in the bbt_option field of - the nand chip structure before calling nand_scan(). For AG-AND - chips is this done by default. - This activates the default FLASH based bad block table functionality - of the NAND driver. The default bad block table options are - - Store bad block table per chip - Use 2 bits per block - Automatic placement at the end of the chip - Use mirrored tables with version numbers - Reserve 4 blocks at the end of the chip - - - - - User defined tables - - User defined tables are created by filling out a - nand_bbt_descr structure and storing the pointer in the - nand_chip structure member bbt_td before calling nand_scan(). - If a mirror table is necessary a second structure must be - created and a pointer to this structure must be stored - in bbt_md inside the nand_chip structure. If the bbt_md - member is set to NULL then only the main table is used - and no scan for the mirrored table is performed. - - - The most important field in the nand_bbt_descr structure - is the options field. The options define most of the - table properties. Use the predefined constants from - nand.h to define the options. - - Number of bits per block - The supported number of bits is 1, 2, 4, 8. - Table per chip - Setting the constant NAND_BBT_PERCHIP selects that - a bad block table is managed for each chip in a chip array. - If this option is not set then a per device bad block table - is used. - Table location is absolute - Use the option constant NAND_BBT_ABSPAGE and - define the absolute page number where the bad block - table starts in the field pages. If you have selected bad block - tables per chip and you have a multi chip array then the start page - must be given for each chip in the chip array. Note: there is no scan - for a table ident pattern performed, so the fields - pattern, veroffs, offs, len can be left uninitialized - Table location is automatically detected - The table can either be located in the first or the last good - blocks of the chip (device). Set NAND_BBT_LASTBLOCK to place - the bad block table at the end of the chip (device). The - bad block tables are marked and identified by a pattern which - is stored in the spare area of the first page in the block which - holds the bad block table. Store a pointer to the pattern - in the pattern field. Further the length of the pattern has to be - stored in len and the offset in the spare area must be given - in the offs member of the nand_bbt_descr structure. For mirrored - bad block tables different patterns are mandatory. - Table creation - Set the option NAND_BBT_CREATE to enable the table creation - if no table can be found during the scan. Usually this is done only - once if a new chip is found. - Table write support - Set the option NAND_BBT_WRITE to enable the table write support. - This allows the update of the bad block table(s) in case a block has - to be marked bad due to wear. The MTD interface function block_markbad - is calling the update function of the bad block table. If the write - support is enabled then the table is updated on FLASH. - - Note: Write support should only be enabled for mirrored tables with - version control. - - Table version control - Set the option NAND_BBT_VERSION to enable the table version control. - It's highly recommended to enable this for mirrored tables with write - support. It makes sure that the risk of losing the bad block - table information is reduced to the loss of the information about the - one worn out block which should be marked bad. The version is stored in - 4 consecutive bytes in the spare area of the device. The position of - the version number is defined by the member veroffs in the bad block table - descriptor. - Save block contents on write - - In case that the block which holds the bad block table does contain - other useful information, set the option NAND_BBT_SAVECONTENT. When - the bad block table is written then the whole block is read the bad - block table is updated and the block is erased and everything is - written back. If this option is not set only the bad block table - is written and everything else in the block is ignored and erased. - - Number of reserved blocks - - For automatic placement some blocks must be reserved for - bad block table storage. The number of reserved blocks is defined - in the maxblocks member of the bad block table description structure. - Reserving 4 blocks for mirrored tables should be a reasonable number. - This also limits the number of blocks which are scanned for the bad - block table ident pattern. - - - - - - - Spare area (auto)placement - - The nand driver implements different possibilities for - placement of filesystem data in the spare area, - - Placement defined by fs driver - Automatic placement - - The default placement function is automatic placement. The - nand driver has built in default placement schemes for the - various chiptypes. If due to hardware ECC functionality the - default placement does not fit then the board driver can - provide a own placement scheme. - - - File system drivers can provide a own placement scheme which - is used instead of the default placement scheme. - - - Placement schemes are defined by a nand_oobinfo structure - -struct nand_oobinfo { - int useecc; - int eccbytes; - int eccpos[24]; - int oobfree[8][2]; -}; - - - useecc - The useecc member controls the ecc and placement function. The header - file include/mtd/mtd-abi.h contains constants to select ecc and - placement. MTD_NANDECC_OFF switches off the ecc complete. This is - not recommended and available for testing and diagnosis only. - MTD_NANDECC_PLACE selects caller defined placement, MTD_NANDECC_AUTOPLACE - selects automatic placement. - - eccbytes - The eccbytes member defines the number of ecc bytes per page. - - eccpos - The eccpos array holds the byte offsets in the spare area where - the ecc codes are placed. - - oobfree - The oobfree array defines the areas in the spare area which can be - used for automatic placement. The information is given in the format - {offset, size}. offset defines the start of the usable area, size the - length in bytes. More than one area can be defined. The list is terminated - by an {0, 0} entry. - - - - - Placement defined by fs driver - - The calling function provides a pointer to a nand_oobinfo - structure which defines the ecc placement. For writes the - caller must provide a spare area buffer along with the - data buffer. The spare area buffer size is (number of pages) * - (size of spare area). For reads the buffer size is - (number of pages) * ((size of spare area) + (number of ecc - steps per page) * sizeof (int)). The driver stores the - result of the ecc check for each tuple in the spare buffer. - The storage sequence is - - - <spare data page 0><ecc result 0>...<ecc result n> - - - ... - - - <spare data page n><ecc result 0>...<ecc result n> - - - This is a legacy mode used by YAFFS1. - - - If the spare area buffer is NULL then only the ECC placement is - done according to the given scheme in the nand_oobinfo structure. - - - - Automatic placement - - Automatic placement uses the built in defaults to place the - ecc bytes in the spare area. If filesystem data have to be stored / - read into the spare area then the calling function must provide a - buffer. The buffer size per page is determined by the oobfree array in - the nand_oobinfo structure. - - - If the spare area buffer is NULL then only the ECC placement is - done according to the default builtin scheme. - - - - - Spare area autoplacement default schemes - - 256 byte pagesize - - -Offset -Content -Comment - - -0x00 -ECC byte 0 -Error correction code byte 0 - - -0x01 -ECC byte 1 -Error correction code byte 1 - - -0x02 -ECC byte 2 -Error correction code byte 2 - - -0x03 -Autoplace 0 - - - -0x04 -Autoplace 1 - - - -0x05 -Bad block marker -If any bit in this byte is zero, then this block is bad. -This applies only to the first page in a block. In the remaining -pages this byte is reserved - - -0x06 -Autoplace 2 - - - -0x07 -Autoplace 3 - - - - - - 512 byte pagesize - - -Offset -Content -Comment - - -0x00 -ECC byte 0 -Error correction code byte 0 of the lower 256 Byte data in -this page - - -0x01 -ECC byte 1 -Error correction code byte 1 of the lower 256 Bytes of data -in this page - - -0x02 -ECC byte 2 -Error correction code byte 2 of the lower 256 Bytes of data -in this page - - -0x03 -ECC byte 3 -Error correction code byte 0 of the upper 256 Bytes of data -in this page - - -0x04 -reserved -reserved - - -0x05 -Bad block marker -If any bit in this byte is zero, then this block is bad. -This applies only to the first page in a block. In the remaining -pages this byte is reserved - - -0x06 -ECC byte 4 -Error correction code byte 1 of the upper 256 Bytes of data -in this page - - -0x07 -ECC byte 5 -Error correction code byte 2 of the upper 256 Bytes of data -in this page - - -0x08 - 0x0F -Autoplace 0 - 7 - - - - - - 2048 byte pagesize - - -Offset -Content -Comment - - -0x00 -Bad block marker -If any bit in this byte is zero, then this block is bad. -This applies only to the first page in a block. In the remaining -pages this byte is reserved - - -0x01 -Reserved -Reserved - - -0x02-0x27 -Autoplace 0 - 37 - - - -0x28 -ECC byte 0 -Error correction code byte 0 of the first 256 Byte data in -this page - - -0x29 -ECC byte 1 -Error correction code byte 1 of the first 256 Bytes of data -in this page - - -0x2A -ECC byte 2 -Error correction code byte 2 of the first 256 Bytes data in -this page - - -0x2B -ECC byte 3 -Error correction code byte 0 of the second 256 Bytes of data -in this page - - -0x2C -ECC byte 4 -Error correction code byte 1 of the second 256 Bytes of data -in this page - - -0x2D -ECC byte 5 -Error correction code byte 2 of the second 256 Bytes of data -in this page - - -0x2E -ECC byte 6 -Error correction code byte 0 of the third 256 Bytes of data -in this page - - -0x2F -ECC byte 7 -Error correction code byte 1 of the third 256 Bytes of data -in this page - - -0x30 -ECC byte 8 -Error correction code byte 2 of the third 256 Bytes of data -in this page - - -0x31 -ECC byte 9 -Error correction code byte 0 of the fourth 256 Bytes of data -in this page - - -0x32 -ECC byte 10 -Error correction code byte 1 of the fourth 256 Bytes of data -in this page - - -0x33 -ECC byte 11 -Error correction code byte 2 of the fourth 256 Bytes of data -in this page - - -0x34 -ECC byte 12 -Error correction code byte 0 of the fifth 256 Bytes of data -in this page - - -0x35 -ECC byte 13 -Error correction code byte 1 of the fifth 256 Bytes of data -in this page - - -0x36 -ECC byte 14 -Error correction code byte 2 of the fifth 256 Bytes of data -in this page - - -0x37 -ECC byte 15 -Error correction code byte 0 of the sixt 256 Bytes of data -in this page - - -0x38 -ECC byte 16 -Error correction code byte 1 of the sixt 256 Bytes of data -in this page - - -0x39 -ECC byte 17 -Error correction code byte 2 of the sixt 256 Bytes of data -in this page - - -0x3A -ECC byte 18 -Error correction code byte 0 of the seventh 256 Bytes of -data in this page - - -0x3B -ECC byte 19 -Error correction code byte 1 of the seventh 256 Bytes of -data in this page - - -0x3C -ECC byte 20 -Error correction code byte 2 of the seventh 256 Bytes of -data in this page - - -0x3D -ECC byte 21 -Error correction code byte 0 of the eighth 256 Bytes of data -in this page - - -0x3E -ECC byte 22 -Error correction code byte 1 of the eighth 256 Bytes of data -in this page - - -0x3F -ECC byte 23 -Error correction code byte 2 of the eighth 256 Bytes of data -in this page - - - - - - - - Filesystem support - - The NAND driver provides all necessary functions for a - filesystem via the MTD interface. - - - Filesystems must be aware of the NAND peculiarities and - restrictions. One major restrictions of NAND Flash is, that you cannot - write as often as you want to a page. The consecutive writes to a page, - before erasing it again, are restricted to 1-3 writes, depending on the - manufacturers specifications. This applies similar to the spare area. - - - Therefore NAND aware filesystems must either write in page size chunks - or hold a writebuffer to collect smaller writes until they sum up to - pagesize. Available NAND aware filesystems: JFFS2, YAFFS. - - - The spare area usage to store filesystem data is controlled by - the spare area placement functionality which is described in one - of the earlier chapters. - - - - Tools - - The MTD project provides a couple of helpful tools to handle NAND Flash. - - flasherase, flasheraseall: Erase and format FLASH partitions - nandwrite: write filesystem images to NAND FLASH - nanddump: dump the contents of a NAND FLASH partitions - - - - These tools are aware of the NAND restrictions. Please use those tools - instead of complaining about errors which are caused by non NAND aware - access methods. - - - - - Constants - - This chapter describes the constants which might be relevant for a driver developer. - - - Chip option constants - - Constants for chip id table - - These constants are defined in nand.h. They are ored together to describe - the chip functionality. - -/* Buswitdh is 16 bit */ -#define NAND_BUSWIDTH_16 0x00000002 -/* Device supports partial programming without padding */ -#define NAND_NO_PADDING 0x00000004 -/* Chip has cache program function */ -#define NAND_CACHEPRG 0x00000008 -/* Chip has copy back function */ -#define NAND_COPYBACK 0x00000010 -/* AND Chip which has 4 banks and a confusing page / block - * assignment. See Renesas datasheet for further information */ -#define NAND_IS_AND 0x00000020 -/* Chip has a array of 4 pages which can be read without - * additional ready /busy waits */ -#define NAND_4PAGE_ARRAY 0x00000040 - - - - - Constants for runtime options - - These constants are defined in nand.h. They are ored together to describe - the functionality. - -/* The hw ecc generator provides a syndrome instead a ecc value on read - * This can only work if we have the ecc bytes directly behind the - * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */ -#define NAND_HWECC_SYNDROME 0x00020000 - - - - - - - ECC selection constants - - Use these constants to select the ECC algorithm. - -/* No ECC. Usage is not recommended ! */ -#define NAND_ECC_NONE 0 -/* Software ECC 3 byte ECC per 256 Byte data */ -#define NAND_ECC_SOFT 1 -/* Hardware ECC 3 byte ECC per 256 Byte data */ -#define NAND_ECC_HW3_256 2 -/* Hardware ECC 3 byte ECC per 512 Byte data */ -#define NAND_ECC_HW3_512 3 -/* Hardware ECC 6 byte ECC per 512 Byte data */ -#define NAND_ECC_HW6_512 4 -/* Hardware ECC 6 byte ECC per 512 Byte data */ -#define NAND_ECC_HW8_512 6 - - - - - - Hardware control related constants - - These constants describe the requested hardware access function when - the boardspecific hardware control function is called - -/* Select the chip by setting nCE to low */ -#define NAND_CTL_SETNCE 1 -/* Deselect the chip by setting nCE to high */ -#define NAND_CTL_CLRNCE 2 -/* Select the command latch by setting CLE to high */ -#define NAND_CTL_SETCLE 3 -/* Deselect the command latch by setting CLE to low */ -#define NAND_CTL_CLRCLE 4 -/* Select the address latch by setting ALE to high */ -#define NAND_CTL_SETALE 5 -/* Deselect the address latch by setting ALE to low */ -#define NAND_CTL_CLRALE 6 -/* Set write protection by setting WP to high. Not used! */ -#define NAND_CTL_SETWP 7 -/* Clear write protection by setting WP to low. Not used! */ -#define NAND_CTL_CLRWP 8 - - - - - - Bad block table related constants - - These constants describe the options used for bad block - table descriptors. - -/* Options for the bad block table descriptors */ - -/* The number of bits used per block in the bbt on the device */ -#define NAND_BBT_NRBITS_MSK 0x0000000F -#define NAND_BBT_1BIT 0x00000001 -#define NAND_BBT_2BIT 0x00000002 -#define NAND_BBT_4BIT 0x00000004 -#define NAND_BBT_8BIT 0x00000008 -/* The bad block table is in the last good block of the device */ -#define NAND_BBT_LASTBLOCK 0x00000010 -/* The bbt is at the given page, else we must scan for the bbt */ -#define NAND_BBT_ABSPAGE 0x00000020 -/* bbt is stored per chip on multichip devices */ -#define NAND_BBT_PERCHIP 0x00000080 -/* bbt has a version counter at offset veroffs */ -#define NAND_BBT_VERSION 0x00000100 -/* Create a bbt if none axists */ -#define NAND_BBT_CREATE 0x00000200 -/* Write bbt if necessary */ -#define NAND_BBT_WRITE 0x00001000 -/* Read and write back block contents when writing bbt */ -#define NAND_BBT_SAVECONTENT 0x00002000 - - - - - - - - Structures - - This chapter contains the autogenerated documentation of the structures which are - used in the NAND driver and might be relevant for a driver developer. Each - struct member has a short description which is marked with an [XXX] identifier. - See the chapter "Documentation hints" for an explanation. - -!Iinclude/linux/mtd/nand.h - - - - Public Functions Provided - - This chapter contains the autogenerated documentation of the NAND kernel API functions - which are exported. Each function has a short description which is marked with an [XXX] identifier. - See the chapter "Documentation hints" for an explanation. - -!Edrivers/mtd/nand/nand_base.c -!Edrivers/mtd/nand/nand_bbt.c -!Edrivers/mtd/nand/nand_ecc.c - - - - Internal Functions Provided - - This chapter contains the autogenerated documentation of the NAND driver internal functions. - Each function has a short description which is marked with an [XXX] identifier. - See the chapter "Documentation hints" for an explanation. - The functions marked with [DEFAULT] might be relevant for a board driver developer. - -!Idrivers/mtd/nand/nand_base.c -!Idrivers/mtd/nand/nand_bbt.c - - - - - Credits - - The following people have contributed to the NAND driver: - - Steven J. Hillsjhill@realitydiluted.com - David Woodhousedwmw2@infradead.org - Thomas Gleixnertglx@linutronix.de - - A lot of users have provided bugfixes, improvements and helping hands for testing. - Thanks a lot. - - - The following people have contributed to this document: - - Thomas Gleixnertglx@linutronix.de - - - -
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index 1f8517db39c7..3cf1acebc4ee 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -34,6 +34,7 @@ available subsections can be seen below. edac scsi libata + mtdnand miscellaneous w1 rapidio diff --git a/Documentation/driver-api/mtdnand.rst b/Documentation/driver-api/mtdnand.rst new file mode 100644 index 000000000000..8723175f955e --- /dev/null +++ b/Documentation/driver-api/mtdnand.rst @@ -0,0 +1,1020 @@ +===================================== +MTD NAND Driver Programming Interface +===================================== + +:Author: Thomas Gleixner + +Introduction +============ + +The generic NAND driver supports almost all NAND and AG-AND based chips +and connects them to the Memory Technology Devices (MTD) subsystem of +the Linux Kernel. + +This documentation is provided for developers who want to implement +board drivers or filesystem drivers suitable for NAND devices. + +Known Bugs And Assumptions +========================== + +None. + +Documentation hints +=================== + +The function and structure docs are autogenerated. Each function and +struct member has a short description which is marked with an [XXX] +identifier. The following chapters explain the meaning of those +identifiers. + +Function identifiers [XXX] +-------------------------- + +The functions are marked with [XXX] identifiers in the short comment. +The identifiers explain the usage and scope of the functions. Following +identifiers are used: + +- [MTD Interface] + + These functions provide the interface to the MTD kernel API. They are + not replaceable and provide functionality which is complete hardware + independent. + +- [NAND Interface] + + These functions are exported and provide the interface to the NAND + kernel API. + +- [GENERIC] + + Generic functions are not replaceable and provide functionality which + is complete hardware independent. + +- [DEFAULT] + + Default functions provide hardware related functionality which is + suitable for most of the implementations. These functions can be + replaced by the board driver if necessary. Those functions are called + via pointers in the NAND chip description structure. The board driver + can set the functions which should be replaced by board dependent + functions before calling nand_scan(). If the function pointer is + NULL on entry to nand_scan() then the pointer is set to the default + function which is suitable for the detected chip type. + +Struct member identifiers [XXX] +------------------------------- + +The struct members are marked with [XXX] identifiers in the comment. The +identifiers explain the usage and scope of the members. Following +identifiers are used: + +- [INTERN] + + These members are for NAND driver internal use only and must not be + modified. Most of these values are calculated from the chip geometry + information which is evaluated during nand_scan(). + +- [REPLACEABLE] + + Replaceable members hold hardware related functions which can be + provided by the board driver. The board driver can set the functions + which should be replaced by board dependent functions before calling + nand_scan(). If the function pointer is NULL on entry to + nand_scan() then the pointer is set to the default function which is + suitable for the detected chip type. + +- [BOARDSPECIFIC] + + Board specific members hold hardware related information which must + be provided by the board driver. The board driver must set the + function pointers and datafields before calling nand_scan(). + +- [OPTIONAL] + + Optional members can hold information relevant for the board driver. + The generic NAND driver code does not use this information. + +Basic board driver +================== + +For most boards it will be sufficient to provide just the basic +functions and fill out some really board dependent members in the nand +chip description structure. + +Basic defines +------------- + +At least you have to provide a nand_chip structure and a storage for +the ioremap'ed chip address. You can allocate the nand_chip structure +using kmalloc or you can allocate it statically. The NAND chip structure +embeds an mtd structure which will be registered to the MTD subsystem. +You can extract a pointer to the mtd structure from a nand_chip pointer +using the nand_to_mtd() helper. + +Kmalloc based example + +:: + + static struct mtd_info *board_mtd; + static void __iomem *baseaddr; + + +Static example + +:: + + static struct nand_chip board_chip; + static void __iomem *baseaddr; + + +Partition defines +----------------- + +If you want to divide your device into partitions, then define a +partitioning scheme suitable to your board. + +:: + + #define NUM_PARTITIONS 2 + static struct mtd_partition partition_info[] = { + { .name = "Flash partition 1", + .offset = 0, + .size = 8 * 1024 * 1024 }, + { .name = "Flash partition 2", + .offset = MTDPART_OFS_NEXT, + .size = MTDPART_SIZ_FULL }, + }; + + +Hardware control function +------------------------- + +The hardware control function provides access to the control pins of the +NAND chip(s). The access can be done by GPIO pins or by address lines. +If you use address lines, make sure that the timing requirements are +met. + +*GPIO based example* + +:: + + static void board_hwcontrol(struct mtd_info *mtd, int cmd) + { + switch(cmd){ + case NAND_CTL_SETCLE: /* Set CLE pin high */ break; + case NAND_CTL_CLRCLE: /* Set CLE pin low */ break; + case NAND_CTL_SETALE: /* Set ALE pin high */ break; + case NAND_CTL_CLRALE: /* Set ALE pin low */ break; + case NAND_CTL_SETNCE: /* Set nCE pin low */ break; + case NAND_CTL_CLRNCE: /* Set nCE pin high */ break; + } + } + + +*Address lines based example.* It's assumed that the nCE pin is driven +by a chip select decoder. + +:: + + static void board_hwcontrol(struct mtd_info *mtd, int cmd) + { + struct nand_chip *this = mtd_to_nand(mtd); + switch(cmd){ + case NAND_CTL_SETCLE: this->IO_ADDR_W |= CLE_ADRR_BIT; break; + case NAND_CTL_CLRCLE: this->IO_ADDR_W &= ~CLE_ADRR_BIT; break; + case NAND_CTL_SETALE: this->IO_ADDR_W |= ALE_ADRR_BIT; break; + case NAND_CTL_CLRALE: this->IO_ADDR_W &= ~ALE_ADRR_BIT; break; + } + } + + +Device ready function +--------------------- + +If the hardware interface has the ready busy pin of the NAND chip +connected to a GPIO or other accessible I/O pin, this function is used +to read back the state of the pin. The function has no arguments and +should return 0, if the device is busy (R/B pin is low) and 1, if the +device is ready (R/B pin is high). If the hardware interface does not +give access to the ready busy pin, then the function must not be defined +and the function pointer this->dev_ready is set to NULL. + +Init function +------------- + +The init function allocates memory and sets up all the board specific +parameters and function pointers. When everything is set up nand_scan() +is called. This function tries to detect and identify then chip. If a +chip is found all the internal data fields are initialized accordingly. +The structure(s) have to be zeroed out first and then filled with the +necessary information about the device. + +:: + + static int __init board_init (void) + { + struct nand_chip *this; + int err = 0; + + /* Allocate memory for MTD device structure and private data */ + this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); + if (!this) { + printk ("Unable to allocate NAND MTD device structure.\n"); + err = -ENOMEM; + goto out; + } + + board_mtd = nand_to_mtd(this); + + /* map physical address */ + baseaddr = ioremap(CHIP_PHYSICAL_ADDRESS, 1024); + if (!baseaddr) { + printk("Ioremap to access NAND chip failed\n"); + err = -EIO; + goto out_mtd; + } + + /* Set address of NAND IO lines */ + this->IO_ADDR_R = baseaddr; + this->IO_ADDR_W = baseaddr; + /* Reference hardware control function */ + this->hwcontrol = board_hwcontrol; + /* Set command delay time, see datasheet for correct value */ + this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY; + /* Assign the device ready function, if available */ + this->dev_ready = board_dev_ready; + this->eccmode = NAND_ECC_SOFT; + + /* Scan to find existence of the device */ + if (nand_scan (board_mtd, 1)) { + err = -ENXIO; + goto out_ior; + } + + add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS); + goto out; + + out_ior: + iounmap(baseaddr); + out_mtd: + kfree (this); + out: + return err; + } + module_init(board_init); + + +Exit function +------------- + +The exit function is only necessary if the driver is compiled as a +module. It releases all resources which are held by the chip driver and +unregisters the partitions in the MTD layer. + +:: + + #ifdef MODULE + static void __exit board_cleanup (void) + { + /* Release resources, unregister device */ + nand_release (board_mtd); + + /* unmap physical address */ + iounmap(baseaddr); + + /* Free the MTD device structure */ + kfree (mtd_to_nand(board_mtd)); + } + module_exit(board_cleanup); + #endif + + +Advanced board driver functions +=============================== + +This chapter describes the advanced functionality of the NAND driver. +For a list of functions which can be overridden by the board driver see +the documentation of the nand_chip structure. + +Multiple chip control +--------------------- + +The nand driver can control chip arrays. Therefore the board driver must +provide an own select_chip function. This function must (de)select the +requested chip. The function pointer in the nand_chip structure must be +set before calling nand_scan(). The maxchip parameter of nand_scan() +defines the maximum number of chips to scan for. Make sure that the +select_chip function can handle the requested number of chips. + +The nand driver concatenates the chips to one virtual chip and provides +this virtual chip to the MTD layer. + +*Note: The driver can only handle linear chip arrays of equally sized +chips. There is no support for parallel arrays which extend the +buswidth.* + +*GPIO based example* + +:: + + static void board_select_chip (struct mtd_info *mtd, int chip) + { + /* Deselect all chips, set all nCE pins high */ + GPIO(BOARD_NAND_NCE) |= 0xff; + if (chip >= 0) + GPIO(BOARD_NAND_NCE) &= ~ (1 << chip); + } + + +*Address lines based example.* Its assumed that the nCE pins are +connected to an address decoder. + +:: + + static void board_select_chip (struct mtd_info *mtd, int chip) + { + struct nand_chip *this = mtd_to_nand(mtd); + + /* Deselect all chips */ + this->IO_ADDR_R &= ~BOARD_NAND_ADDR_MASK; + this->IO_ADDR_W &= ~BOARD_NAND_ADDR_MASK; + switch (chip) { + case 0: + this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0; + this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0; + break; + .... + case n: + this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn; + this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn; + break; + } + } + + +Hardware ECC support +-------------------- + +Functions and constants +~~~~~~~~~~~~~~~~~~~~~~~ + +The nand driver supports three different types of hardware ECC. + +- NAND_ECC_HW3_256 + + Hardware ECC generator providing 3 bytes ECC per 256 byte. + +- NAND_ECC_HW3_512 + + Hardware ECC generator providing 3 bytes ECC per 512 byte. + +- NAND_ECC_HW6_512 + + Hardware ECC generator providing 6 bytes ECC per 512 byte. + +- NAND_ECC_HW8_512 + + Hardware ECC generator providing 6 bytes ECC per 512 byte. + +If your hardware generator has a different functionality add it at the +appropriate place in nand_base.c + +The board driver must provide following functions: + +- enable_hwecc + + This function is called before reading / writing to the chip. Reset + or initialize the hardware generator in this function. The function + is called with an argument which let you distinguish between read and + write operations. + +- calculate_ecc + + This function is called after read / write from / to the chip. + Transfer the ECC from the hardware to the buffer. If the option + NAND_HWECC_SYNDROME is set then the function is only called on + write. See below. + +- correct_data + + In case of an ECC error this function is called for error detection + and correction. Return 1 respectively 2 in case the error can be + corrected. If the error is not correctable return -1. If your + hardware generator matches the default algorithm of the nand_ecc + software generator then use the correction function provided by + nand_ecc instead of implementing duplicated code. + +Hardware ECC with syndrome calculation +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Many hardware ECC implementations provide Reed-Solomon codes and +calculate an error syndrome on read. The syndrome must be converted to a +standard Reed-Solomon syndrome before calling the error correction code +in the generic Reed-Solomon library. + +The ECC bytes must be placed immediately after the data bytes in order +to make the syndrome generator work. This is contrary to the usual +layout used by software ECC. The separation of data and out of band area +is not longer possible. The nand driver code handles this layout and the +remaining free bytes in the oob area are managed by the autoplacement +code. Provide a matching oob-layout in this case. See rts_from4.c and +diskonchip.c for implementation reference. In those cases we must also +use bad block tables on FLASH, because the ECC layout is interfering +with the bad block marker positions. See bad block table support for +details. + +Bad block table support +----------------------- + +Most NAND chips mark the bad blocks at a defined position in the spare +area. Those blocks must not be erased under any circumstances as the bad +block information would be lost. It is possible to check the bad block +mark each time when the blocks are accessed by reading the spare area of +the first page in the block. This is time consuming so a bad block table +is used. + +The nand driver supports various types of bad block tables. + +- Per device + + The bad block table contains all bad block information of the device + which can consist of multiple chips. + +- Per chip + + A bad block table is used per chip and contains the bad block + information for this particular chip. + +- Fixed offset + + The bad block table is located at a fixed offset in the chip + (device). This applies to various DiskOnChip devices. + +- Automatic placed + + The bad block table is automatically placed and detected either at + the end or at the beginning of a chip (device) + +- Mirrored tables + + The bad block table is mirrored on the chip (device) to allow updates + of the bad block table without data loss. + +nand_scan() calls the function nand_default_bbt(). +nand_default_bbt() selects appropriate default bad block table +descriptors depending on the chip information which was retrieved by +nand_scan(). + +The standard policy is scanning the device for bad blocks and build a +ram based bad block table which allows faster access than always +checking the bad block information on the flash chip itself. + +Flash based tables +~~~~~~~~~~~~~~~~~~ + +It may be desired or necessary to keep a bad block table in FLASH. For +AG-AND chips this is mandatory, as they have no factory marked bad +blocks. They have factory marked good blocks. The marker pattern is +erased when the block is erased to be reused. So in case of powerloss +before writing the pattern back to the chip this block would be lost and +added to the bad blocks. Therefore we scan the chip(s) when we detect +them the first time for good blocks and store this information in a bad +block table before erasing any of the blocks. + +The blocks in which the tables are stored are protected against +accidental access by marking them bad in the memory bad block table. The +bad block table management functions are allowed to circumvent this +protection. + +The simplest way to activate the FLASH based bad block table support is +to set the option NAND_BBT_USE_FLASH in the bbt_option field of the +nand chip structure before calling nand_scan(). For AG-AND chips is +this done by default. This activates the default FLASH based bad block +table functionality of the NAND driver. The default bad block table +options are + +- Store bad block table per chip + +- Use 2 bits per block + +- Automatic placement at the end of the chip + +- Use mirrored tables with version numbers + +- Reserve 4 blocks at the end of the chip + +User defined tables +~~~~~~~~~~~~~~~~~~~ + +User defined tables are created by filling out a nand_bbt_descr +structure and storing the pointer in the nand_chip structure member +bbt_td before calling nand_scan(). If a mirror table is necessary a +second structure must be created and a pointer to this structure must be +stored in bbt_md inside the nand_chip structure. If the bbt_md member +is set to NULL then only the main table is used and no scan for the +mirrored table is performed. + +The most important field in the nand_bbt_descr structure is the +options field. The options define most of the table properties. Use the +predefined constants from nand.h to define the options. + +- Number of bits per block + + The supported number of bits is 1, 2, 4, 8. + +- Table per chip + + Setting the constant NAND_BBT_PERCHIP selects that a bad block + table is managed for each chip in a chip array. If this option is not + set then a per device bad block table is used. + +- Table location is absolute + + Use the option constant NAND_BBT_ABSPAGE and define the absolute + page number where the bad block table starts in the field pages. If + you have selected bad block tables per chip and you have a multi chip + array then the start page must be given for each chip in the chip + array. Note: there is no scan for a table ident pattern performed, so + the fields pattern, veroffs, offs, len can be left uninitialized + +- Table location is automatically detected + + The table can either be located in the first or the last good blocks + of the chip (device). Set NAND_BBT_LASTBLOCK to place the bad block + table at the end of the chip (device). The bad block tables are + marked and identified by a pattern which is stored in the spare area + of the first page in the block which holds the bad block table. Store + a pointer to the pattern in the pattern field. Further the length of + the pattern has to be stored in len and the offset in the spare area + must be given in the offs member of the nand_bbt_descr structure. + For mirrored bad block tables different patterns are mandatory. + +- Table creation + + Set the option NAND_BBT_CREATE to enable the table creation if no + table can be found during the scan. Usually this is done only once if + a new chip is found. + +- Table write support + + Set the option NAND_BBT_WRITE to enable the table write support. + This allows the update of the bad block table(s) in case a block has + to be marked bad due to wear. The MTD interface function + block_markbad is calling the update function of the bad block table. + If the write support is enabled then the table is updated on FLASH. + + Note: Write support should only be enabled for mirrored tables with + version control. + +- Table version control + + Set the option NAND_BBT_VERSION to enable the table version + control. It's highly recommended to enable this for mirrored tables + with write support. It makes sure that the risk of losing the bad + block table information is reduced to the loss of the information + about the one worn out block which should be marked bad. The version + is stored in 4 consecutive bytes in the spare area of the device. The + position of the version number is defined by the member veroffs in + the bad block table descriptor. + +- Save block contents on write + + In case that the block which holds the bad block table does contain + other useful information, set the option NAND_BBT_SAVECONTENT. When + the bad block table is written then the whole block is read the bad + block table is updated and the block is erased and everything is + written back. If this option is not set only the bad block table is + written and everything else in the block is ignored and erased. + +- Number of reserved blocks + + For automatic placement some blocks must be reserved for bad block + table storage. The number of reserved blocks is defined in the + maxblocks member of the bad block table description structure. + Reserving 4 blocks for mirrored tables should be a reasonable number. + This also limits the number of blocks which are scanned for the bad + block table ident pattern. + +Spare area (auto)placement +-------------------------- + +The nand driver implements different possibilities for placement of +filesystem data in the spare area, + +- Placement defined by fs driver + +- Automatic placement + +The default placement function is automatic placement. The nand driver +has built in default placement schemes for the various chiptypes. If due +to hardware ECC functionality the default placement does not fit then +the board driver can provide a own placement scheme. + +File system drivers can provide a own placement scheme which is used +instead of the default placement scheme. + +Placement schemes are defined by a nand_oobinfo structure + +:: + + struct nand_oobinfo { + int useecc; + int eccbytes; + int eccpos[24]; + int oobfree[8][2]; + }; + + +- useecc + + The useecc member controls the ecc and placement function. The header + file include/mtd/mtd-abi.h contains constants to select ecc and + placement. MTD_NANDECC_OFF switches off the ecc complete. This is + not recommended and available for testing and diagnosis only. + MTD_NANDECC_PLACE selects caller defined placement, + MTD_NANDECC_AUTOPLACE selects automatic placement. + +- eccbytes + + The eccbytes member defines the number of ecc bytes per page. + +- eccpos + + The eccpos array holds the byte offsets in the spare area where the + ecc codes are placed. + +- oobfree + + The oobfree array defines the areas in the spare area which can be + used for automatic placement. The information is given in the format + {offset, size}. offset defines the start of the usable area, size the + length in bytes. More than one area can be defined. The list is + terminated by an {0, 0} entry. + +Placement defined by fs driver +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The calling function provides a pointer to a nand_oobinfo structure +which defines the ecc placement. For writes the caller must provide a +spare area buffer along with the data buffer. The spare area buffer size +is (number of pages) \* (size of spare area). For reads the buffer size +is (number of pages) \* ((size of spare area) + (number of ecc steps per +page) \* sizeof (int)). The driver stores the result of the ecc check +for each tuple in the spare buffer. The storage sequence is:: + + ... + + ... + + ... + +This is a legacy mode used by YAFFS1. + +If the spare area buffer is NULL then only the ECC placement is done +according to the given scheme in the nand_oobinfo structure. + +Automatic placement +~~~~~~~~~~~~~~~~~~~ + +Automatic placement uses the built in defaults to place the ecc bytes in +the spare area. If filesystem data have to be stored / read into the +spare area then the calling function must provide a buffer. The buffer +size per page is determined by the oobfree array in the nand_oobinfo +structure. + +If the spare area buffer is NULL then only the ECC placement is done +according to the default builtin scheme. + +Spare area autoplacement default schemes +---------------------------------------- + +256 byte pagesize +~~~~~~~~~~~~~~~~~ + +======== ================== =================================================== +Offset Content Comment +======== ================== =================================================== +0x00 ECC byte 0 Error correction code byte 0 +0x01 ECC byte 1 Error correction code byte 1 +0x02 ECC byte 2 Error correction code byte 2 +0x03 Autoplace 0 +0x04 Autoplace 1 +0x05 Bad block marker If any bit in this byte is zero, then this + block is bad. This applies only to the first + page in a block. In the remaining pages this + byte is reserved +0x06 Autoplace 2 +0x07 Autoplace 3 +======== ================== =================================================== + +512 byte pagesize +~~~~~~~~~~~~~~~~~ + + +============= ================== ============================================== +Offset Content Comment +============= ================== ============================================== +0x00 ECC byte 0 Error correction code byte 0 of the lower + 256 Byte data in this page +0x01 ECC byte 1 Error correction code byte 1 of the lower + 256 Bytes of data in this page +0x02 ECC byte 2 Error correction code byte 2 of the lower + 256 Bytes of data in this page +0x03 ECC byte 3 Error correction code byte 0 of the upper + 256 Bytes of data in this page +0x04 reserved reserved +0x05 Bad block marker If any bit in this byte is zero, then this + block is bad. This applies only to the first + page in a block. In the remaining pages this + byte is reserved +0x06 ECC byte 4 Error correction code byte 1 of the upper + 256 Bytes of data in this page +0x07 ECC byte 5 Error correction code byte 2 of the upper + 256 Bytes of data in this page +0x08 - 0x0F Autoplace 0 - 7 +============= ================== ============================================== + +2048 byte pagesize +~~~~~~~~~~~~~~~~~~ + +=========== ================== ================================================ +Offset Content Comment +=========== ================== ================================================ +0x00 Bad block marker If any bit in this byte is zero, then this block + is bad. This applies only to the first page in a + block. In the remaining pages this byte is + reserved +0x01 Reserved Reserved +0x02-0x27 Autoplace 0 - 37 +0x28 ECC byte 0 Error correction code byte 0 of the first + 256 Byte data in this page +0x29 ECC byte 1 Error correction code byte 1 of the first + 256 Bytes of data in this page +0x2A ECC byte 2 Error correction code byte 2 of the first + 256 Bytes data in this page +0x2B ECC byte 3 Error correction code byte 0 of the second + 256 Bytes of data in this page +0x2C ECC byte 4 Error correction code byte 1 of the second + 256 Bytes of data in this page +0x2D ECC byte 5 Error correction code byte 2 of the second + 256 Bytes of data in this page +0x2E ECC byte 6 Error correction code byte 0 of the third + 256 Bytes of data in this page +0x2F ECC byte 7 Error correction code byte 1 of the third + 256 Bytes of data in this page +0x30 ECC byte 8 Error correction code byte 2 of the third + 256 Bytes of data in this page +0x31 ECC byte 9 Error correction code byte 0 of the fourth + 256 Bytes of data in this page +0x32 ECC byte 10 Error correction code byte 1 of the fourth + 256 Bytes of data in this page +0x33 ECC byte 11 Error correction code byte 2 of the fourth + 256 Bytes of data in this page +0x34 ECC byte 12 Error correction code byte 0 of the fifth + 256 Bytes of data in this page +0x35 ECC byte 13 Error correction code byte 1 of the fifth + 256 Bytes of data in this page +0x36 ECC byte 14 Error correction code byte 2 of the fifth + 256 Bytes of data in this page +0x37 ECC byte 15 Error correction code byte 0 of the sixth + 256 Bytes of data in this page +0x38 ECC byte 16 Error correction code byte 1 of the sixth + 256 Bytes of data in this page +0x39 ECC byte 17 Error correction code byte 2 of the sixth + 256 Bytes of data in this page +0x3A ECC byte 18 Error correction code byte 0 of the seventh + 256 Bytes of data in this page +0x3B ECC byte 19 Error correction code byte 1 of the seventh + 256 Bytes of data in this page +0x3C ECC byte 20 Error correction code byte 2 of the seventh + 256 Bytes of data in this page +0x3D ECC byte 21 Error correction code byte 0 of the eighth + 256 Bytes of data in this page +0x3E ECC byte 22 Error correction code byte 1 of the eighth + 256 Bytes of data in this page +0x3F ECC byte 23 Error correction code byte 2 of the eighth + 256 Bytes of data in this page +=========== ================== ================================================ + +Filesystem support +================== + +The NAND driver provides all necessary functions for a filesystem via +the MTD interface. + +Filesystems must be aware of the NAND peculiarities and restrictions. +One major restrictions of NAND Flash is, that you cannot write as often +as you want to a page. The consecutive writes to a page, before erasing +it again, are restricted to 1-3 writes, depending on the manufacturers +specifications. This applies similar to the spare area. + +Therefore NAND aware filesystems must either write in page size chunks +or hold a writebuffer to collect smaller writes until they sum up to +pagesize. Available NAND aware filesystems: JFFS2, YAFFS. + +The spare area usage to store filesystem data is controlled by the spare +area placement functionality which is described in one of the earlier +chapters. + +Tools +===== + +The MTD project provides a couple of helpful tools to handle NAND Flash. + +- flasherase, flasheraseall: Erase and format FLASH partitions + +- nandwrite: write filesystem images to NAND FLASH + +- nanddump: dump the contents of a NAND FLASH partitions + +These tools are aware of the NAND restrictions. Please use those tools +instead of complaining about errors which are caused by non NAND aware +access methods. + +Constants +========= + +This chapter describes the constants which might be relevant for a +driver developer. + +Chip option constants +--------------------- + +Constants for chip id table +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +These constants are defined in nand.h. They are ored together to +describe the chip functionality. + +:: + + /* Buswitdh is 16 bit */ + #define NAND_BUSWIDTH_16 0x00000002 + /* Device supports partial programming without padding */ + #define NAND_NO_PADDING 0x00000004 + /* Chip has cache program function */ + #define NAND_CACHEPRG 0x00000008 + /* Chip has copy back function */ + #define NAND_COPYBACK 0x00000010 + /* AND Chip which has 4 banks and a confusing page / block + * assignment. See Renesas datasheet for further information */ + #define NAND_IS_AND 0x00000020 + /* Chip has a array of 4 pages which can be read without + * additional ready /busy waits */ + #define NAND_4PAGE_ARRAY 0x00000040 + + +Constants for runtime options +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +These constants are defined in nand.h. They are ored together to +describe the functionality. + +:: + + /* The hw ecc generator provides a syndrome instead a ecc value on read + * This can only work if we have the ecc bytes directly behind the + * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */ + #define NAND_HWECC_SYNDROME 0x00020000 + + +ECC selection constants +----------------------- + +Use these constants to select the ECC algorithm. + +:: + + /* No ECC. Usage is not recommended ! */ + #define NAND_ECC_NONE 0 + /* Software ECC 3 byte ECC per 256 Byte data */ + #define NAND_ECC_SOFT 1 + /* Hardware ECC 3 byte ECC per 256 Byte data */ + #define NAND_ECC_HW3_256 2 + /* Hardware ECC 3 byte ECC per 512 Byte data */ + #define NAND_ECC_HW3_512 3 + /* Hardware ECC 6 byte ECC per 512 Byte data */ + #define NAND_ECC_HW6_512 4 + /* Hardware ECC 6 byte ECC per 512 Byte data */ + #define NAND_ECC_HW8_512 6 + + +Hardware control related constants +---------------------------------- + +These constants describe the requested hardware access function when the +boardspecific hardware control function is called + +:: + + /* Select the chip by setting nCE to low */ + #define NAND_CTL_SETNCE 1 + /* Deselect the chip by setting nCE to high */ + #define NAND_CTL_CLRNCE 2 + /* Select the command latch by setting CLE to high */ + #define NAND_CTL_SETCLE 3 + /* Deselect the command latch by setting CLE to low */ + #define NAND_CTL_CLRCLE 4 + /* Select the address latch by setting ALE to high */ + #define NAND_CTL_SETALE 5 + /* Deselect the address latch by setting ALE to low */ + #define NAND_CTL_CLRALE 6 + /* Set write protection by setting WP to high. Not used! */ + #define NAND_CTL_SETWP 7 + /* Clear write protection by setting WP to low. Not used! */ + #define NAND_CTL_CLRWP 8 + + +Bad block table related constants +--------------------------------- + +These constants describe the options used for bad block table +descriptors. + +:: + + /* Options for the bad block table descriptors */ + + /* The number of bits used per block in the bbt on the device */ + #define NAND_BBT_NRBITS_MSK 0x0000000F + #define NAND_BBT_1BIT 0x00000001 + #define NAND_BBT_2BIT 0x00000002 + #define NAND_BBT_4BIT 0x00000004 + #define NAND_BBT_8BIT 0x00000008 + /* The bad block table is in the last good block of the device */ + #define NAND_BBT_LASTBLOCK 0x00000010 + /* The bbt is at the given page, else we must scan for the bbt */ + #define NAND_BBT_ABSPAGE 0x00000020 + /* bbt is stored per chip on multichip devices */ + #define NAND_BBT_PERCHIP 0x00000080 + /* bbt has a version counter at offset veroffs */ + #define NAND_BBT_VERSION 0x00000100 + /* Create a bbt if none axists */ + #define NAND_BBT_CREATE 0x00000200 + /* Write bbt if necessary */ + #define NAND_BBT_WRITE 0x00001000 + /* Read and write back block contents when writing bbt */ + #define NAND_BBT_SAVECONTENT 0x00002000 + + +Structures +========== + +This chapter contains the autogenerated documentation of the structures +which are used in the NAND driver and might be relevant for a driver +developer. Each struct member has a short description which is marked +with an [XXX] identifier. See the chapter "Documentation hints" for an +explanation. + +.. kernel-doc:: include/linux/mtd/nand.h + :internal: + +Public Functions Provided +========================= + +This chapter contains the autogenerated documentation of the NAND kernel +API functions which are exported. Each function has a short description +which is marked with an [XXX] identifier. See the chapter "Documentation +hints" for an explanation. + +.. kernel-doc:: drivers/mtd/nand/nand_base.c + :export: + +.. kernel-doc:: drivers/mtd/nand/nand_bbt.c + :export: + +.. kernel-doc:: drivers/mtd/nand/nand_ecc.c + :export: + +Internal Functions Provided +=========================== + +This chapter contains the autogenerated documentation of the NAND driver +internal functions. Each function has a short description which is +marked with an [XXX] identifier. See the chapter "Documentation hints" +for an explanation. The functions marked with [DEFAULT] might be +relevant for a board driver developer. + +.. kernel-doc:: drivers/mtd/nand/nand_base.c + :internal: + +.. kernel-doc:: drivers/mtd/nand/nand_bbt.c + :internal: + +Credits +======= + +The following people have contributed to the NAND driver: + +1. Steven J. Hill\ sjhill@realitydiluted.com + +2. David Woodhouse\ dwmw2@infradead.org + +3. Thomas Gleixner\ tglx@linutronix.de + +A lot of users have provided bugfixes, improvements and helping hands +for testing. Thanks a lot. + +The following people have contributed to this document: + +1. Thomas Gleixner\ tglx@linutronix.de -- cgit v1.2.3 From f341afe2fca77fbb258007dc9addb36784b4f252 Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Sat, 13 May 2017 07:31:32 -0300 Subject: mtdnand.rst: group the "::" with previous line Group the :: with the previous paragraph, in order to make it visually better when reading as a text file. While here, replace: ored (with means "Covered or adorned with ore or metal") by: OR-ed To reflect its true meaning. Signed-off-by: Mauro Carvalho Chehab --- Documentation/driver-api/mtdnand.rst | 24 +++++++----------------- 1 file changed, 7 insertions(+), 17 deletions(-) (limited to 'Documentation/driver-api') diff --git a/Documentation/driver-api/mtdnand.rst b/Documentation/driver-api/mtdnand.rst index 8723175f955e..7c19795ebb4a 100644 --- a/Documentation/driver-api/mtdnand.rst +++ b/Documentation/driver-api/mtdnand.rst @@ -843,10 +843,8 @@ Chip option constants Constants for chip id table ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -These constants are defined in nand.h. They are ored together to -describe the chip functionality. - -:: +These constants are defined in nand.h. They are OR-ed together to +describe the chip functionality:: /* Buswitdh is 16 bit */ #define NAND_BUSWIDTH_16 0x00000002 @@ -867,10 +865,8 @@ describe the chip functionality. Constants for runtime options ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -These constants are defined in nand.h. They are ored together to -describe the functionality. - -:: +These constants are defined in nand.h. They are OR-ed together to +describe the functionality:: /* The hw ecc generator provides a syndrome instead a ecc value on read * This can only work if we have the ecc bytes directly behind the @@ -881,9 +877,7 @@ describe the functionality. ECC selection constants ----------------------- -Use these constants to select the ECC algorithm. - -:: +Use these constants to select the ECC algorithm:: /* No ECC. Usage is not recommended ! */ #define NAND_ECC_NONE 0 @@ -903,9 +897,7 @@ Hardware control related constants ---------------------------------- These constants describe the requested hardware access function when the -boardspecific hardware control function is called - -:: +boardspecific hardware control function is called:: /* Select the chip by setting nCE to low */ #define NAND_CTL_SETNCE 1 @@ -929,9 +921,7 @@ Bad block table related constants --------------------------------- These constants describe the options used for bad block table -descriptors. - -:: +descriptors:: /* Options for the bad block table descriptors */ -- cgit v1.2.3 From b6f6c29454d236e85f2912cb0f9366825ca1b0be Mon Sep 17 00:00:00 2001 From: Mauro Carvalho Chehab Date: Sat, 13 May 2017 07:40:36 -0300 Subject: mtd: adjust kernel-docs to avoid Sphinx/kerneldoc warnings ./drivers/mtd/nand/nand_bbt.c:1: warning: no structured comments found ./include/linux/mtd/nand.h:785: ERROR: Unexpected indentation. ./drivers/mtd/nand/nand_base.c:449: WARNING: Definition list ends without a blank line; unexpected unindent. ./drivers/mtd/nand/nand_base.c:1161: ERROR: Unexpected indentation. ./drivers/mtd/nand/nand_base.c:1162: WARNING: Block quote ends without a blank line; unexpected unindent. Signed-off-by: Mauro Carvalho Chehab --- Documentation/driver-api/mtdnand.rst | 3 --- drivers/mtd/nand/nand_base.c | 7 +++++-- include/linux/mtd/nand.h | 2 +- 3 files changed, 6 insertions(+), 6 deletions(-) (limited to 'Documentation/driver-api') diff --git a/Documentation/driver-api/mtdnand.rst b/Documentation/driver-api/mtdnand.rst index 7c19795ebb4a..e9afa586d15e 100644 --- a/Documentation/driver-api/mtdnand.rst +++ b/Documentation/driver-api/mtdnand.rst @@ -970,9 +970,6 @@ hints" for an explanation. .. kernel-doc:: drivers/mtd/nand/nand_base.c :export: -.. kernel-doc:: drivers/mtd/nand/nand_bbt.c - :export: - .. kernel-doc:: drivers/mtd/nand/nand_ecc.c :export: diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c index b0524f8accb6..c8988c01e0d7 100644 --- a/drivers/mtd/nand/nand_base.c +++ b/drivers/mtd/nand/nand_base.c @@ -442,10 +442,12 @@ static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) * specify how to write bad block markers to OOB (chip->block_markbad). * * We try operations in the following order: + * * (1) erase the affected block, to allow OOB marker to be written cleanly * (2) write bad block marker to OOB area of affected block (unless flag * NAND_BBT_NO_OOB_BBM is present) * (3) update the BBT + * * Note that we retain the first error encountered in (2) or (3), finish the * procedures, and dump the error in the end. */ @@ -1155,9 +1157,10 @@ int nand_reset(struct nand_chip *chip, int chipnr) * @mtd: mtd info * @ofs: offset to start unlock from * @len: length to unlock - * @invert: when = 0, unlock the range of blocks within the lower and + * @invert: + * - when = 0, unlock the range of blocks within the lower and * upper boundary address - * when = 1, unlock the range of blocks outside the boundaries + * - when = 1, unlock the range of blocks outside the boundaries * of the lower and upper boundary address * * Returs unlock status. diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h index 9591e0fbe5bd..3d5b20379ba3 100644 --- a/include/linux/mtd/nand.h +++ b/include/linux/mtd/nand.h @@ -779,7 +779,7 @@ nand_get_sdr_timings(const struct nand_data_interface *conf) * Minimum amount of bit errors per @ecc_step_ds guaranteed * to be correctable. If unknown, set to zero. * @ecc_step_ds: [INTERN] ECC step required by the @ecc_strength_ds, - * also from the datasheet. It is the recommended ECC step + * also from the datasheet. It is the recommended ECC step * size, if known; if unknown, set to zero. * @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is * set to the actually used ONFI mode if the chip is -- cgit v1.2.3 From c251e2a843364354c5de4d204b0b7777f1199a9f Mon Sep 17 00:00:00 2001 From: Wolfram Sang Date: Tue, 23 May 2017 15:46:54 +0200 Subject: docs: driver-api: i2c: remove some outdated information a) Linux can be an I2C slave meanwhile b) all drivers except one use the driver model currently Update the documentation. Signed-off-by: Wolfram Sang Signed-off-by: Jonathan Corbet --- Documentation/driver-api/i2c.rst | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) (limited to 'Documentation/driver-api') diff --git a/Documentation/driver-api/i2c.rst b/Documentation/driver-api/i2c.rst index f3939f7852bd..0bf86a445d01 100644 --- a/Documentation/driver-api/i2c.rst +++ b/Documentation/driver-api/i2c.rst @@ -13,8 +13,8 @@ I2C is a multi-master bus; open drain signaling is used to arbitrate between masters, as well as to handshake and to synchronize clocks from slower clients. -The Linux I2C programming interfaces support only the master side of bus -interactions, not the slave side. The programming interface is +The Linux I2C programming interfaces support the master side of bus +interactions and the slave side. The programming interface is structured around two kinds of driver, and two kinds of device. An I2C "Adapter Driver" abstracts the controller hardware; it binds to a physical device (perhaps a PCI device or platform_device) and exposes a @@ -22,9 +22,8 @@ physical device (perhaps a PCI device or platform_device) and exposes a I2C bus segment it manages. On each I2C bus segment will be I2C devices represented by a :c:type:`struct i2c_client `. Those devices will be bound to a :c:type:`struct i2c_driver -`, which should follow the standard Linux driver -model. (At this writing, a legacy model is more widely used.) There are -functions to perform various I2C protocol operations; at this writing +`, which should follow the standard Linux driver model. There +are functions to perform various I2C protocol operations; at this writing all such functions are usable only from task context. The System Management Bus (SMBus) is a sibling protocol. Most SMBus -- cgit v1.2.3