From e790a4ce529041bb21ec0b69a38c1b92f29df2cf Mon Sep 17 00:00:00 2001 From: Jonathan Corbet Date: Wed, 3 May 2023 16:47:22 -0600 Subject: arm: docs: Move Arm documentation to Documentation/arch/ Architecture-specific documentation is being moved into Documentation/arch/ as a way of cleaning up the top-level documentation directory and making the docs hierarchy more closely match the source hierarchy. Move Documentation/arm into arch/ (along with the Chinese equvalent translations). Cc: Maxime Coquelin Cc: Chen-Yu Tsai Cc: Jernej Skrabec Cc: Samuel Holland Cc: Krzysztof Kozlowski Cc: Alim Akhtar Cc: Alex Shi Cc: linux-doc@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-arch@vger.kernel.org Acked-by: Alexandre TORGUE Reviewed-by: Yanteng Si Signed-off-by: Jonathan Corbet --- Documentation/arm/pxa/mfp.rst | 288 ------------------------------------------ 1 file changed, 288 deletions(-) delete mode 100644 Documentation/arm/pxa/mfp.rst (limited to 'Documentation/arm/pxa') diff --git a/Documentation/arm/pxa/mfp.rst b/Documentation/arm/pxa/mfp.rst deleted file mode 100644 index ac34e5d7ee44..000000000000 --- a/Documentation/arm/pxa/mfp.rst +++ /dev/null @@ -1,288 +0,0 @@ -============================================== -MFP Configuration for PXA2xx/PXA3xx Processors -============================================== - - Eric Miao - -MFP stands for Multi-Function Pin, which is the pin-mux logic on PXA3xx and -later PXA series processors. This document describes the existing MFP API, -and how board/platform driver authors could make use of it. - -Basic Concept -============= - -Unlike the GPIO alternate function settings on PXA25x and PXA27x, a new MFP -mechanism is introduced from PXA3xx to completely move the pin-mux functions -out of the GPIO controller. In addition to pin-mux configurations, the MFP -also controls the low power state, driving strength, pull-up/down and event -detection of each pin. Below is a diagram of internal connections between -the MFP logic and the remaining SoC peripherals:: - - +--------+ - | |--(GPIO19)--+ - | GPIO | | - | |--(GPIO...) | - +--------+ | - | +---------+ - +--------+ +------>| | - | PWM2 |--(PWM_OUT)-------->| MFP | - +--------+ +------>| |-------> to external PAD - | +---->| | - +--------+ | | +-->| | - | SSP2 |---(TXD)----+ | | +---------+ - +--------+ | | - | | - +--------+ | | - | Keypad |--(MKOUT4)----+ | - +--------+ | - | - +--------+ | - | UART2 |---(TXD)--------+ - +--------+ - -NOTE: the external pad is named as MFP_PIN_GPIO19, it doesn't necessarily -mean it's dedicated for GPIO19, only as a hint that internally this pin -can be routed from GPIO19 of the GPIO controller. - -To better understand the change from PXA25x/PXA27x GPIO alternate function -to this new MFP mechanism, here are several key points: - - 1. GPIO controller on PXA3xx is now a dedicated controller, same as other - internal controllers like PWM, SSP and UART, with 128 internal signals - which can be routed to external through one or more MFPs (e.g. GPIO<0> - can be routed through either MFP_PIN_GPIO0 as well as MFP_PIN_GPIO0_2, - see arch/arm/mach-pxa/mfp-pxa300.h) - - 2. Alternate function configuration is removed from this GPIO controller, - the remaining functions are pure GPIO-specific, i.e. - - - GPIO signal level control - - GPIO direction control - - GPIO level change detection - - 3. Low power state for each pin is now controlled by MFP, this means the - PGSRx registers on PXA2xx are now useless on PXA3xx - - 4. Wakeup detection is now controlled by MFP, PWER does not control the - wakeup from GPIO(s) any more, depending on the sleeping state, ADxER - (as defined in pxa3xx-regs.h) controls the wakeup from MFP - -NOTE: with such a clear separation of MFP and GPIO, by GPIO we normally -mean it is a GPIO signal, and by MFP or pin xxx, we mean a physical -pad (or ball). - -MFP API Usage -============= - -For board code writers, here are some guidelines: - -1. include ONE of the following header files in your .c: - - - #include "mfp-pxa25x.h" - - #include "mfp-pxa27x.h" - - #include "mfp-pxa300.h" - - #include "mfp-pxa320.h" - - #include "mfp-pxa930.h" - - NOTE: only one file in your .c, depending on the processors used, - because pin configuration definitions may conflict in these file (i.e. - same name, different meaning and settings on different processors). E.g. - for zylonite platform, which support both PXA300/PXA310 and PXA320, two - separate files are introduced: zylonite_pxa300.c and zylonite_pxa320.c - (in addition to handle MFP configuration differences, they also handle - the other differences between the two combinations). - - NOTE: PXA300 and PXA310 are almost identical in pin configurations (with - PXA310 supporting some additional ones), thus the difference is actually - covered in a single mfp-pxa300.h. - -2. prepare an array for the initial pin configurations, e.g.:: - - static unsigned long mainstone_pin_config[] __initdata = { - /* Chip Select */ - GPIO15_nCS_1, - - /* LCD - 16bpp Active TFT */ - GPIOxx_TFT_LCD_16BPP, - GPIO16_PWM0_OUT, /* Backlight */ - - /* MMC */ - GPIO32_MMC_CLK, - GPIO112_MMC_CMD, - GPIO92_MMC_DAT_0, - GPIO109_MMC_DAT_1, - GPIO110_MMC_DAT_2, - GPIO111_MMC_DAT_3, - - ... - - /* GPIO */ - GPIO1_GPIO | WAKEUP_ON_EDGE_BOTH, - }; - - a) once the pin configurations are passed to pxa{2xx,3xx}_mfp_config(), - and written to the actual registers, they are useless and may discard, - adding '__initdata' will help save some additional bytes here. - - b) when there is only one possible pin configurations for a component, - some simplified definitions can be used, e.g. GPIOxx_TFT_LCD_16BPP on - PXA25x and PXA27x processors - - c) if by board design, a pin can be configured to wake up the system - from low power state, it can be 'OR'ed with any of: - - WAKEUP_ON_EDGE_BOTH - WAKEUP_ON_EDGE_RISE - WAKEUP_ON_EDGE_FALL - WAKEUP_ON_LEVEL_HIGH - specifically for enabling of keypad GPIOs, - - to indicate that this pin has the capability of wake-up the system, - and on which edge(s). This, however, doesn't necessarily mean the - pin _will_ wakeup the system, it will only when set_irq_wake() is - invoked with the corresponding GPIO IRQ (GPIO_IRQ(xx) or gpio_to_irq()) - and eventually calls gpio_set_wake() for the actual register setting. - - d) although PXA3xx MFP supports edge detection on each pin, the - internal logic will only wakeup the system when those specific bits - in ADxER registers are set, which can be well mapped to the - corresponding peripheral, thus set_irq_wake() can be called with - the peripheral IRQ to enable the wakeup. - - -MFP on PXA3xx -============= - -Every external I/O pad on PXA3xx (excluding those for special purpose) has -one MFP logic associated, and is controlled by one MFP register (MFPR). - -The MFPR has the following bit definitions (for PXA300/PXA310/PXA320):: - - 31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - +-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ - | RESERVED |PS|PU|PD| DRIVE |SS|SD|SO|EC|EF|ER|--| AF_SEL | - +-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+ - - Bit 3: RESERVED - Bit 4: EDGE_RISE_EN - enable detection of rising edge on this pin - Bit 5: EDGE_FALL_EN - enable detection of falling edge on this pin - Bit 6: EDGE_CLEAR - disable edge detection on this pin - Bit 7: SLEEP_OE_N - enable outputs during low power modes - Bit 8: SLEEP_DATA - output data on the pin during low power modes - Bit 9: SLEEP_SEL - selection control for low power modes signals - Bit 13: PULLDOWN_EN - enable the internal pull-down resistor on this pin - Bit 14: PULLUP_EN - enable the internal pull-up resistor on this pin - Bit 15: PULL_SEL - pull state controlled by selected alternate function - (0) or by PULL{UP,DOWN}_EN bits (1) - - Bit 0 - 2: AF_SEL - alternate function selection, 8 possibilities, from 0-7 - Bit 10-12: DRIVE - drive strength and slew rate - 0b000 - fast 1mA - 0b001 - fast 2mA - 0b002 - fast 3mA - 0b003 - fast 4mA - 0b004 - slow 6mA - 0b005 - fast 6mA - 0b006 - slow 10mA - 0b007 - fast 10mA - -MFP Design for PXA2xx/PXA3xx -============================ - -Due to the difference of pin-mux handling between PXA2xx and PXA3xx, a unified -MFP API is introduced to cover both series of processors. - -The basic idea of this design is to introduce definitions for all possible pin -configurations, these definitions are processor and platform independent, and -the actual API invoked to convert these definitions into register settings and -make them effective there-after. - -Files Involved --------------- - - - arch/arm/mach-pxa/include/mach/mfp.h - - for - 1. Unified pin definitions - enum constants for all configurable pins - 2. processor-neutral bit definitions for a possible MFP configuration - - - arch/arm/mach-pxa/mfp-pxa3xx.h - - for PXA3xx specific MFPR register bit definitions and PXA3xx common pin - configurations - - - arch/arm/mach-pxa/mfp-pxa2xx.h - - for PXA2xx specific definitions and PXA25x/PXA27x common pin configurations - - - arch/arm/mach-pxa/mfp-pxa25x.h - arch/arm/mach-pxa/mfp-pxa27x.h - arch/arm/mach-pxa/mfp-pxa300.h - arch/arm/mach-pxa/mfp-pxa320.h - arch/arm/mach-pxa/mfp-pxa930.h - - for processor specific definitions - - - arch/arm/mach-pxa/mfp-pxa3xx.c - - arch/arm/mach-pxa/mfp-pxa2xx.c - - for implementation of the pin configuration to take effect for the actual - processor. - -Pin Configuration ------------------ - - The following comments are copied from mfp.h (see the actual source code - for most updated info):: - - /* - * a possible MFP configuration is represented by a 32-bit integer - * - * bit 0.. 9 - MFP Pin Number (1024 Pins Maximum) - * bit 10..12 - Alternate Function Selection - * bit 13..15 - Drive Strength - * bit 16..18 - Low Power Mode State - * bit 19..20 - Low Power Mode Edge Detection - * bit 21..22 - Run Mode Pull State - * - * to facilitate the definition, the following macros are provided - * - * MFP_CFG_DEFAULT - default MFP configuration value, with - * alternate function = 0, - * drive strength = fast 3mA (MFP_DS03X) - * low power mode = default - * edge detection = none - * - * MFP_CFG - default MFPR value with alternate function - * MFP_CFG_DRV - default MFPR value with alternate function and - * pin drive strength - * MFP_CFG_LPM - default MFPR value with alternate function and - * low power mode - * MFP_CFG_X - default MFPR value with alternate function, - * pin drive strength and low power mode - */ - - Examples of pin configurations are:: - - #define GPIO94_SSP3_RXD MFP_CFG_X(GPIO94, AF1, DS08X, FLOAT) - - which reads GPIO94 can be configured as SSP3_RXD, with alternate function - selection of 1, driving strength of 0b101, and a float state in low power - modes. - - NOTE: this is the default setting of this pin being configured as SSP3_RXD - which can be modified a bit in board code, though it is not recommended to - do so, simply because this default setting is usually carefully encoded, - and is supposed to work in most cases. - -Register Settings ------------------ - - Register settings on PXA3xx for a pin configuration is actually very - straight-forward, most bits can be converted directly into MFPR value - in a easier way. Two sets of MFPR values are calculated: the run-time - ones and the low power mode ones, to allow different settings. - - The conversion from a generic pin configuration to the actual register - settings on PXA2xx is a bit complicated: many registers are involved, - including GAFRx, GPDRx, PGSRx, PWER, PKWR, PFER and PRER. Please see - mfp-pxa2xx.c for how the conversion is made. -- cgit v1.2.3