Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 1f5781725dcbb026438e77091c91a94f678c3522 upstream.
syzbot is reporting NULL pointer dereference at xattr_getsecurity() [1],
for cap_inode_getsecurity() is returning sizeof(struct vfs_cap_data) when
memory allocation failed. Return -ENOMEM if memory allocation failed.
[1] https://syzkaller.appspot.com/bug?id=a55ba438506fe68649a5f50d2d82d56b365e0107
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Fixes: 8db6c34f1dbc8e06 ("Introduce v3 namespaced file capabilities")
Reported-by: syzbot <syzbot+9369930ca44f29e60e2d@syzkaller.appspotmail.com>
Cc: stable <stable@vger.kernel.org> # 4.14+
Acked-by: Serge E. Hallyn <serge@hallyn.com>
Acked-by: James Morris <james.morris@microsoft.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b5beb07ad32ab533027aa988d96a44965ec116f7 upstream.
Resource auditing is using the peer field which is not available
when the rlim data struct is used, because it is a different element
of the same union. Accessing peer during resource auditing could
cause garbage log entries or even oops the kernel.
Move the rlim data block into the same struct as the peer field
so they can be used together.
CC: <stable@vger.kernel.org>
Fixes: 86b92cb782b3 ("apparmor: move resource checks to using labels")
Signed-off-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 040d9e2bce0a5b321c402b79ee43a8e8d2fd3b06 upstream.
The .ns_name should not be virtualized by the current ns view. It
needs to report the ns base name as that is being used during startup
as part of determining apparmor policy namespace support.
BugLink: http://bugs.launchpad.net/bugs/1746463
Fixes: d9f02d9c237aa ("apparmor: fix display of ns name")
Cc: Stable <stable@vger.kernel.org>
Reported-by: Serge Hallyn <serge@hallyn.com>
Tested-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 98cf5bbff413eadf1b9cb195a7b80cc61c72a50e upstream.
The existence test is not being properly logged as the signal mapping
maps it to the last entry in the named signal table. This is done
to help catch bugs by making the 0 mapped signal value invalid so
that we can catch the signal value not being filled in.
When fixing the off-by-one comparision logic the reporting of the
existence test was broken, because the logic behind the mapped named
table was hidden. Fix this by adding a define for the name lookup
and using it.
Cc: Stable <stable@vger.kernel.org>
Fixes: f7dc4c9a855a1 ("apparmor: fix off-by-one comparison on MAXMAPPED_SIG")
Signed-off-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 22ec1a2aea73b9dfe340dff7945bd85af4cc6280 ]
As done for /proc/kcore in
commit df04abfd181a ("fs/proc/kcore.c: Add bounce buffer for ktext data")
this adds a bounce buffer when reading memory via /dev/mem. This
is needed to allow kernel text memory to be read out when built with
CONFIG_HARDENED_USERCOPY (which refuses to read out kernel text) and
without CONFIG_STRICT_DEVMEM (which would have refused to read any RAM
contents at all).
Since this build configuration isn't common (most systems with
CONFIG_HARDENED_USERCOPY also have CONFIG_STRICT_DEVMEM), this also tries
to inform Kconfig about the recommended settings.
This patch is modified from Brad Spengler/PaX Team's changes to /dev/mem
code in the last public patch of grsecurity/PaX based on my understanding
of the code. Changes or omissions from the original code are mine and
don't reflect the original grsecurity/PaX code.
Reported-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Fixes: f5509cc18daa ("mm: Hardened usercopy")
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit b7e27bc1d42e8e0cc58b602b529c25cd0071b336 ]
Custom policies can require file signatures based on LSM labels. These
files are normally created and only afterwards labeled, requiring them
to be signed.
Instead of requiring file signatures based on LSM labels, entire
filesystems could require file signatures. In this case, we need the
ability of writing new files without requiring file signatures.
The definition of a "new" file was originally defined as any file with
a length of zero. Subsequent patches redefined a "new" file to be based
on the FILE_CREATE open flag. By combining the open flag with a file
size of zero, this patch relaxes the file signature requirement.
Fixes: 1ac202e978e1 ima: accept previously set IMA_NEW_FILE
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4b14752ec4e0d87126e636384cf37c8dd9df157c upstream.
We can't do anything reasonable in security_bounded_transition() if we
don't have a policy loaded, and in fact we could run into problems
with some of the code inside expecting a policy. Fix these problems
like we do many others in security/selinux/ss/services.c by checking
to see if the policy is loaded (ss_initialized) and returning quickly
if it isn't.
Reported-by: syzbot <syzkaller-bugs@googlegroups.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ef28df55ac27e1e5cd122e19fa311d886d47a756 upstream.
The syzbot/syzkaller automated tests found a problem in
security_context_to_sid_core() during early boot (before we load the
SELinux policy) where we could potentially feed context strings without
NUL terminators into the strcmp() function.
We already guard against this during normal operation (after the SELinux
policy has been loaded) by making a copy of the context strings and
explicitly adding a NUL terminator to the end. The patch extends this
protection to the early boot case (no loaded policy) by moving the context
copy earlier in security_context_to_sid_core().
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Reviewed-By: William Roberts <william.c.roberts@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 36447456e1cca853188505f2a964dbbeacfc7a7a upstream.
The switch to uuid_t invereted the logic of verfication that &entry->fsuuid
is zero during parsing of "fsuuid=" rule. Instead of making sure the
&entry->fsuuid field is not attempted to be overwritten, we bail out for
perfectly correct rule.
Fixes: 787d8c530af7 ("ima/policy: switch to use uuid_t")
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a237f762681e2a394ca67f21df2feb2b76a3609b upstream.
When the config option for PTI was added a reference to documentation was
added as well. But the documentation did not exist at that point. The final
documentation has a different file name.
Fix it up to point to the proper file.
Fixes: 385ce0ea ("x86/mm/pti: Add Kconfig")
Signed-off-by: W. Trevor King <wking@tremily.us>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: linux-mm@kvack.org
Cc: linux-security-module@vger.kernel.org
Cc: James Morris <james.l.morris@oracle.com>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/3009cc8ccbddcd897ec1e0cb6dda524929de0d14.1515799398.git.wking@tremily.us
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0dda0b3fb255048a221f736c8a2a24c674da8bf3 upstream.
Given a label with a profile stack of
A//&B or A//&C ...
A ptrace rule should be able to specify a generic trace pattern with
a rule like
ptrace trace A//&**,
however this is failing because while the correct label match routine
is called, it is being done post label decomposition so it is always
being done against a profile instead of the stacked label.
To fix this refactor the cross check to pass the full peer label in to
the label_match.
Fixes: 290f458a4f16 ("apparmor: allow ptrace checks to be finer grained than just capability")
Reported-by: Matthew Garrett <mjg59@google.com>
Tested-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5b9f57cf47b87f07210875d6a24776b4496b818d upstream.
When the mount code was refactored for Labels it was not correctly
updated to check whether policy supported mediation of the mount
class. This causes a regression when the kernel feature set is
reported as supporting mount and policy is pinned to a feature set
that does not support mount mediation.
BugLink: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=882697#41
Fixes: 2ea3ffb7782a ("apparmor: add mount mediation")
Reported-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Signed-off-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dc32b5c3e6e2ef29cef76d9ce1b92d394446150e upstream.
If userspace attempted to set a "security.capability" xattr shorter than
4 bytes (e.g. 'setfattr -n security.capability -v x file'), then
cap_convert_nscap() read past the end of the buffer containing the xattr
value because it accessed the ->magic_etc field without verifying that
the xattr value is long enough to contain that field.
Fix it by validating the xattr value size first.
This bug was found using syzkaller with KASAN. The KASAN report was as
follows (cleaned up slightly):
BUG: KASAN: slab-out-of-bounds in cap_convert_nscap+0x514/0x630 security/commoncap.c:498
Read of size 4 at addr ffff88002d8741c0 by task syz-executor1/2852
CPU: 0 PID: 2852 Comm: syz-executor1 Not tainted 4.15.0-rc6-00200-gcc0aac99d977 #253
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-20171110_100015-anatol 04/01/2014
Call Trace:
__dump_stack lib/dump_stack.c:17 [inline]
dump_stack+0xe3/0x195 lib/dump_stack.c:53
print_address_description+0x73/0x260 mm/kasan/report.c:252
kasan_report_error mm/kasan/report.c:351 [inline]
kasan_report+0x235/0x350 mm/kasan/report.c:409
cap_convert_nscap+0x514/0x630 security/commoncap.c:498
setxattr+0x2bd/0x350 fs/xattr.c:446
path_setxattr+0x168/0x1b0 fs/xattr.c:472
SYSC_setxattr fs/xattr.c:487 [inline]
SyS_setxattr+0x36/0x50 fs/xattr.c:483
entry_SYSCALL_64_fastpath+0x18/0x85
Fixes: 8db6c34f1dbc ("Introduce v3 namespaced file capabilities")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 385ce0ea4c078517fa51c261882c4e72fba53005 upstream.
Finally allow CONFIG_PAGE_TABLE_ISOLATION to be enabled.
PARAVIRT generally requires that the kernel not manage its own page tables.
It also means that the hypervisor and kernel must agree wholeheartedly
about what format the page tables are in and what they contain.
PAGE_TABLE_ISOLATION, unfortunately, changes the rules and they
can not be used together.
I've seen conflicting feedback from maintainers lately about whether they
want the Kconfig magic to go first or last in a patch series. It's going
last here because the partially-applied series leads to kernels that can
not boot in a bunch of cases. I did a run through the entire series with
CONFIG_PAGE_TABLE_ISOLATION=y to look for build errors, though.
[ tglx: Removed SMP and !PARAVIRT dependencies as they not longer exist ]
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 4633307e5ed6128975595df43f796a10c41d11c1 ]
Fixes: d07881d2edb0 ("apparmor: move new_null_profile to after profile lookup fns()")
Reported-by: Seth Arnold <seth.arnold@canonical.com>
Signed-off-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 18026d866801d0c52e5550210563222bd6c7191d upstream.
keyctl_restrict_keyring() allows through a NULL restriction when the
"type" is non-NULL, which causes a NULL pointer dereference in
asymmetric_lookup_restriction() when it calls strcmp() on the
restriction string.
But no key types actually use a "NULL restriction" to mean anything, so
update keyctl_restrict_keyring() to reject it with EINVAL.
Reported-by: syzbot <syzkaller@googlegroups.com>
Fixes: 97d3aa0f3134 ("KEYS: Add a lookup_restriction function for the asymmetric key type")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4dca6ea1d9432052afb06baf2e3ae78188a4410b upstream.
When the request_key() syscall is not passed a destination keyring, it
links the requested key (if constructed) into the "default" request-key
keyring. This should require Write permission to the keyring. However,
there is actually no permission check.
This can be abused to add keys to any keyring to which only Search
permission is granted. This is because Search permission allows joining
the keyring. keyctl_set_reqkey_keyring(KEY_REQKEY_DEFL_SESSION_KEYRING)
then will set the default request-key keyring to the session keyring.
Then, request_key() can be used to add keys to the keyring.
Both negatively and positively instantiated keys can be added using this
method. Adding negative keys is trivial. Adding a positive key is a
bit trickier. It requires that either /sbin/request-key positively
instantiates the key, or that another thread adds the key to the process
keyring at just the right time, such that request_key() misses it
initially but then finds it in construct_alloc_key().
Fix this bug by checking for Write permission to the keyring in
construct_get_dest_keyring() when the default keyring is being used.
We don't do the permission check for non-default keyrings because that
was already done by the earlier call to lookup_user_key(). Also,
request_key_and_link() is currently passed a 'struct key *' rather than
a key_ref_t, so the "possessed" bit is unavailable.
We also don't do the permission check for the "requestor keyring", to
continue to support the use case described by commit 8bbf4976b59f
("KEYS: Alter use of key instantiation link-to-keyring argument") where
/sbin/request-key recursively calls request_key() to add keys to the
original requestor's destination keyring. (I don't know of any users
who actually do that, though...)
Fixes: 3e30148c3d52 ("[PATCH] Keys: Make request-key create an authorisation key")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit ebe7c0a7be92bbd34c6ff5b55810546a0ee05bee ]
The hash_setup function always sets the hash_setup_done flag, even
when the hash algorithm is invalid. This prevents the default hash
algorithm defined as CONFIG_IMA_DEFAULT_HASH from being used.
This patch sets hash_setup_done flag only for valid hash algorithms.
Fixes: e7a2ad7eb6f4 "ima: enable support for larger default filedata hash algorithms"
Signed-off-by: Boshi Wang <wangboshi@huawei.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b12cbb21586277f72533769832c24cc6c1d60ab3 upstream.
The apparmor_audit_data struct ordering got messed up during a merge
conflict, resulting in the signal integer and peer pointer being in
a union instead of a struct.
For most of the 4.13 and 4.14 life cycle, this was hidden by
commit 651e28c5537a ("apparmor: add base infastructure for socket
mediation") which fixed the apparmor_audit_data struct when its data
was added. When that commit was reverted in -rc7 the signal audit bug
was exposed, and unfortunately it never showed up in any of the
testing until after 4.14 was released. Shaun Khan, Zephaniah
E. Loss-Cutler-Hull filed nearly simultaneous bug reports (with
different oopes, the smaller of which is included below).
Full credit goes to Tetsuo Handa for jumping on this as well and
noticing the audit data struct problem and reporting it.
[ 76.178568] BUG: unable to handle kernel paging request at
ffffffff0eee3bc0
[ 76.178579] IP: audit_signal_cb+0x6c/0xe0
[ 76.178581] PGD 1a640a067 P4D 1a640a067 PUD 0
[ 76.178586] Oops: 0000 [#1] PREEMPT SMP
[ 76.178589] Modules linked in: fuse rfcomm bnep usblp uvcvideo btusb
btrtl btbcm btintel bluetooth ecdh_generic ip6table_filter ip6_tables
xt_tcpudp nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack
iptable_filter ip_tables x_tables intel_rapl joydev wmi_bmof serio_raw
iwldvm iwlwifi shpchp kvm_intel kvm irqbypass autofs4 algif_skcipher
nls_iso8859_1 nls_cp437 crc32_pclmul ghash_clmulni_intel
[ 76.178620] CPU: 0 PID: 10675 Comm: pidgin Not tainted
4.14.0-f1-dirty #135
[ 76.178623] Hardware name: Hewlett-Packard HP EliteBook Folio
9470m/18DF, BIOS 68IBD Ver. F.62 10/22/2015
[ 76.178625] task: ffff9c7a94c31dc0 task.stack: ffffa09b02a4c000
[ 76.178628] RIP: 0010:audit_signal_cb+0x6c/0xe0
[ 76.178631] RSP: 0018:ffffa09b02a4fc08 EFLAGS: 00010292
[ 76.178634] RAX: ffffa09b02a4fd60 RBX: ffff9c7aee0741f8 RCX:
0000000000000000
[ 76.178636] RDX: ffffffffee012290 RSI: 0000000000000006 RDI:
ffff9c7a9493d800
[ 76.178638] RBP: ffffa09b02a4fd40 R08: 000000000000004d R09:
ffffa09b02a4fc46
[ 76.178641] R10: ffffa09b02a4fcb8 R11: ffff9c7ab44f5072 R12:
ffffa09b02a4fd40
[ 76.178643] R13: ffffffff9e447be0 R14: ffff9c7a94c31dc0 R15:
0000000000000001
[ 76.178646] FS: 00007f8b11ba2a80(0000) GS:ffff9c7afea00000(0000)
knlGS:0000000000000000
[ 76.178648] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 76.178650] CR2: ffffffff0eee3bc0 CR3: 00000003d5209002 CR4:
00000000001606f0
[ 76.178652] Call Trace:
[ 76.178660] common_lsm_audit+0x1da/0x780
[ 76.178665] ? d_absolute_path+0x60/0x90
[ 76.178669] ? aa_check_perms+0xcd/0xe0
[ 76.178672] aa_check_perms+0xcd/0xe0
[ 76.178675] profile_signal_perm.part.0+0x90/0xa0
[ 76.178679] aa_may_signal+0x16e/0x1b0
[ 76.178686] apparmor_task_kill+0x51/0x120
[ 76.178690] security_task_kill+0x44/0x60
[ 76.178695] group_send_sig_info+0x25/0x60
[ 76.178699] kill_pid_info+0x36/0x60
[ 76.178703] SYSC_kill+0xdb/0x180
[ 76.178707] ? preempt_count_sub+0x92/0xd0
[ 76.178712] ? _raw_write_unlock_irq+0x13/0x30
[ 76.178716] ? task_work_run+0x6a/0x90
[ 76.178720] ? exit_to_usermode_loop+0x80/0xa0
[ 76.178723] entry_SYSCALL_64_fastpath+0x13/0x94
[ 76.178727] RIP: 0033:0x7f8b0e58b767
[ 76.178729] RSP: 002b:00007fff19efd4d8 EFLAGS: 00000206 ORIG_RAX:
000000000000003e
[ 76.178732] RAX: ffffffffffffffda RBX: 0000557f3e3c2050 RCX:
00007f8b0e58b767
[ 76.178735] RDX: 0000000000000000 RSI: 0000000000000000 RDI:
000000000000263b
[ 76.178737] RBP: 0000000000000000 R08: 0000557f3e3c2270 R09:
0000000000000001
[ 76.178739] R10: 000000000000022d R11: 0000000000000206 R12:
0000000000000000
[ 76.178741] R13: 0000000000000001 R14: 0000557f3e3c13c0 R15:
0000000000000000
[ 76.178745] Code: 48 8b 55 18 48 89 df 41 b8 20 00 08 01 5b 5d 48 8b
42 10 48 8b 52 30 48 63 48 4c 48 8b 44 c8 48 31 c9 48 8b 70 38 e9 f4 fd
00 00 <48> 8b 14 d5 40 27 e5 9e 48 c7 c6 7d 07 19 9f 48 89 df e8 fd 35
[ 76.178794] RIP: audit_signal_cb+0x6c/0xe0 RSP: ffffa09b02a4fc08
[ 76.178796] CR2: ffffffff0eee3bc0
[ 76.178799] ---[ end trace 514af9529297f1a3 ]---
Fixes: cd1dbf76b23d ("apparmor: add the ability to mediate signals")
Reported-by: Zephaniah E. Loss-Cutler-Hull <warp-spam_kernel@aehallh.com>
Reported-by: Shuah Khan <shuahkh@osg.samsung.com>
Suggested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Tested-by: Ivan Kozik <ivan@ludios.org>
Tested-by: Zephaniah E. Loss-Cutler-Hull <warp-spam_kernel@aehallh.com>
Tested-by: Christian Boltz <apparmor@cboltz.de>
Tested-by: Shuah Khan <shuahkh@osg.samsung.com>
Signed-off-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 020aae3ee58c1af0e7ffc4e2cc9fe4dc630338cb upstream.
Commit b65a9cfc2c38 ("Untangling ima mess, part 2: deal with counters")
moved the call of ima_file_check() from may_open() to do_filp_open() at a
point where the file descriptor is already opened.
This breaks the assumption made by IMA that file descriptors being closed
belong to files whose access was granted by ima_file_check(). The
consequence is that security.ima and security.evm are updated with good
values, regardless of the current appraisal status.
For example, if a file does not have security.ima, IMA will create it after
opening the file for writing, even if access is denied. Access to the file
will be allowed afterwards.
Avoid this issue by checking the appraisal status before updating
security.ima.
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This came in yesterday, and I have verified our regression tests
were missing this and it can cause an oops. Please apply.
There is a an off-by-one comparision on sig against MAXMAPPED_SIG
that can lead to a read outside the sig_map array if sig
is MAXMAPPED_SIG. Fix this.
Verified that the check is an out of bounds case that can cause an oops.
Revised: add comparison fix to second case
Fixes: cd1dbf76b23d ("apparmor: add the ability to mediate signals")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: John Johansen <john.johansen@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull initial SPDX identifiers from Greg KH:
"License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the
'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally
binding shorthand, which can be used instead of the full boiler plate
text.
This patch is based on work done by Thomas Gleixner and Kate Stewart
and Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset
of the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to
license had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied
to a file was done in a spreadsheet of side by side results from of
the output of two independent scanners (ScanCode & Windriver)
producing SPDX tag:value files created by Philippe Ombredanne.
Philippe prepared the base worksheet, and did an initial spot review
of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537
files assessed. Kate Stewart did a file by file comparison of the
scanner results in the spreadsheet to determine which SPDX license
identifier(s) to be applied to the file. She confirmed any
determination that was not immediately clear with lawyers working with
the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained
>5 lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that
was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that
became the concluded license(s).
- when there was disagreement between the two scanners (one detected
a license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply
(and which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases,
confirmation by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.
The Windriver scanner is based on an older version of FOSSology in
part, so they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot
checks in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect
the correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial
patch version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch
license was not GPL-2.0 WITH Linux-syscall-note to ensure that the
applied SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
* tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
License cleanup: add SPDX license identifier to uapi header files with a license
License cleanup: add SPDX license identifier to uapi header files with no license
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When calling keyctl_read() on a key of type "trusted", if the
user-supplied buffer was too small, the kernel ignored the buffer length
and just wrote past the end of the buffer, potentially corrupting
userspace memory. Fix it by instead returning the size required, as per
the documentation for keyctl_read().
We also don't even fill the buffer at all in this case, as this is
slightly easier to implement than doing a short read, and either
behavior appears to be permitted. It also makes it match the behavior
of the "encrypted" key type.
Fixes: d00a1c72f7f4 ("keys: add new trusted key-type")
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Cc: <stable@vger.kernel.org> # v2.6.38+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
Commit e645016abc80 ("KEYS: fix writing past end of user-supplied buffer
in keyring_read()") made keyring_read() stop corrupting userspace memory
when the user-supplied buffer is too small. However it also made the
return value in that case be the short buffer size rather than the size
required, yet keyctl_read() is actually documented to return the size
required. Therefore, switch it over to the documented behavior.
Note that for now we continue to have it fill the short buffer, since it
did that before (pre-v3.13) and dump_key_tree_aux() in keyutils arguably
relies on it.
Fixes: e645016abc80 ("KEYS: fix writing past end of user-supplied buffer in keyring_read()")
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Cc: <stable@vger.kernel.org> # v3.13+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
This reverts commit 651e28c5537abb39076d3949fb7618536f1d242e.
This caused a regression:
"The specific problem is that dnsmasq refuses to start on openSUSE Leap
42.2. The specific cause is that and attempt to open a PF_LOCAL socket
gets EACCES. This means that networking doesn't function on a system
with a 4.14-rc2 system."
Sadly, the developers involved seemed to be in denial for several weeks
about this, delaying the revert. This has not been a good release for
the security subsystem, and this area needs to change development
practices.
Reported-and-bisected-by: James Bottomley <James.Bottomley@hansenpartnership.com>
Tracked-by: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Seth Arnold <seth.arnold@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The pointer fs_ns is assigned from inode->i_ib->s_user_ns before
a null pointer check on inode, hence if inode is actually null we
will get a null pointer dereference on this assignment. Fix this
by only dereferencing inode after the null pointer check on
inode.
Detected by CoverityScan CID#1455328 ("Dereference before null check")
Fixes: 8db6c34f1dbc ("Introduce v3 namespaced file capabilities")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Cc: stable@vger.kernel.org
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
|
|
In proc_keys_show(), the key semaphore is not held, so the key ->flags
and ->expiry can be changed concurrently. We therefore should read them
atomically just once.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Similar to the case for key_validate(), we should load the key ->expiry
once atomically in keyring_search_iterator(), since it can be changed
concurrently with the flags whenever the key semaphore isn't held.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
In key_validate(), load the flags and expiry time once atomically, since
these can change concurrently if key_validate() is called without the
key semaphore held. And we don't want to get inconsistent results if a
variable is referenced multiple times. For example, key->expiry was
referenced in both 'if (key->expiry)' and in 'if (now.tv_sec >=
key->expiry)', making it theoretically possible to see a spurious
EKEYEXPIRED while the expiration time was being removed, i.e. set to 0.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Currently, when passed a key that already exists, add_key() will call the
key's ->update() method if such exists. But this is heavily broken in the
case where the key is uninstantiated because it doesn't call
__key_instantiate_and_link(). Consequently, it doesn't do most of the
things that are supposed to happen when the key is instantiated, such as
setting the instantiation state, clearing KEY_FLAG_USER_CONSTRUCT and
awakening tasks waiting on it, and incrementing key->user->nikeys.
It also never takes key_construction_mutex, which means that
->instantiate() can run concurrently with ->update() on the same key. In
the case of the "user" and "logon" key types this causes a memory leak, at
best. Maybe even worse, the ->update() methods of the "encrypted" and
"trusted" key types actually just dereference a NULL pointer when passed an
uninstantiated key.
Change key_create_or_update() to wait interruptibly for the key to finish
construction before continuing.
This patch only affects *uninstantiated* keys. For now we still allow a
negatively instantiated key to be updated (thereby positively
instantiating it), although that's broken too (the next patch fixes it)
and I'm not sure that anyone actually uses that functionality either.
Here is a simple reproducer for the bug using the "encrypted" key type
(requires CONFIG_ENCRYPTED_KEYS=y), though as noted above the bug
pertained to more than just the "encrypted" key type:
#include <stdlib.h>
#include <unistd.h>
#include <keyutils.h>
int main(void)
{
int ringid = keyctl_join_session_keyring(NULL);
if (fork()) {
for (;;) {
const char payload[] = "update user:foo 32";
usleep(rand() % 10000);
add_key("encrypted", "desc", payload, sizeof(payload), ringid);
keyctl_clear(ringid);
}
} else {
for (;;)
request_key("encrypted", "desc", "callout_info", ringid);
}
}
It causes:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: encrypted_update+0xb0/0x170
PGD 7a178067 P4D 7a178067 PUD 77269067 PMD 0
PREEMPT SMP
CPU: 0 PID: 340 Comm: reproduce Tainted: G D 4.14.0-rc1-00025-g428490e38b2e #796
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
task: ffff8a467a39a340 task.stack: ffffb15c40770000
RIP: 0010:encrypted_update+0xb0/0x170
RSP: 0018:ffffb15c40773de8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8a467a275b00 RCX: 0000000000000000
RDX: 0000000000000005 RSI: ffff8a467a275b14 RDI: ffffffffb742f303
RBP: ffffb15c40773e20 R08: 0000000000000000 R09: ffff8a467a275b17
R10: 0000000000000020 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff8a4677057180 R15: ffff8a467a275b0f
FS: 00007f5d7fb08700(0000) GS:ffff8a467f200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000018 CR3: 0000000077262005 CR4: 00000000001606f0
Call Trace:
key_create_or_update+0x2bc/0x460
SyS_add_key+0x10c/0x1d0
entry_SYSCALL_64_fastpath+0x1f/0xbe
RIP: 0033:0x7f5d7f211259
RSP: 002b:00007ffed03904c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000f8
RAX: ffffffffffffffda RBX: 000000003b2a7955 RCX: 00007f5d7f211259
RDX: 00000000004009e4 RSI: 00000000004009ff RDI: 0000000000400a04
RBP: 0000000068db8bad R08: 000000003b2a7955 R09: 0000000000000004
R10: 000000000000001a R11: 0000000000000246 R12: 0000000000400868
R13: 00007ffed03905d0 R14: 0000000000000000 R15: 0000000000000000
Code: 77 28 e8 64 34 1f 00 45 31 c0 31 c9 48 8d 55 c8 48 89 df 48 8d 75 d0 e8 ff f9 ff ff 85 c0 41 89 c4 0f 88 84 00 00 00 4c 8b 7d c8 <49> 8b 75 18 4c 89 ff e8 24 f8 ff ff 85 c0 41 89 c4 78 6d 49 8b
RIP: encrypted_update+0xb0/0x170 RSP: ffffb15c40773de8
CR2: 0000000000000018
Cc: <stable@vger.kernel.org> # v2.6.12+
Reported-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Eric Biggers <ebiggers@google.com>
|
|
Consolidate KEY_FLAG_INSTANTIATED, KEY_FLAG_NEGATIVE and the rejection
error into one field such that:
(1) The instantiation state can be modified/read atomically.
(2) The error can be accessed atomically with the state.
(3) The error isn't stored unioned with the payload pointers.
This deals with the problem that the state is spread over three different
objects (two bits and a separate variable) and reading or updating them
atomically isn't practical, given that not only can uninstantiated keys
change into instantiated or rejected keys, but rejected keys can also turn
into instantiated keys - and someone accessing the key might not be using
any locking.
The main side effect of this problem is that what was held in the payload
may change, depending on the state. For instance, you might observe the
key to be in the rejected state. You then read the cached error, but if
the key semaphore wasn't locked, the key might've become instantiated
between the two reads - and you might now have something in hand that isn't
actually an error code.
The state is now KEY_IS_UNINSTANTIATED, KEY_IS_POSITIVE or a negative error
code if the key is negatively instantiated. The key_is_instantiated()
function is replaced with key_is_positive() to avoid confusion as negative
keys are also 'instantiated'.
Additionally, barriering is included:
(1) Order payload-set before state-set during instantiation.
(2) Order state-read before payload-read when using the key.
Further separate barriering is necessary if RCU is being used to access the
payload content after reading the payload pointers.
Fixes: 146aa8b1453b ("KEYS: Merge the type-specific data with the payload data")
Cc: stable@vger.kernel.org # v4.4+
Reported-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
|
|
The recent rework introduced a possible randconfig build failure
when CONFIG_CRYPTO configured to only allow modules:
security/keys/big_key.o: In function `big_key_crypt':
big_key.c:(.text+0x29f): undefined reference to `crypto_aead_setkey'
security/keys/big_key.o: In function `big_key_init':
big_key.c:(.init.text+0x1a): undefined reference to `crypto_alloc_aead'
big_key.c:(.init.text+0x45): undefined reference to `crypto_aead_setauthsize'
big_key.c:(.init.text+0x77): undefined reference to `crypto_destroy_tfm'
crypto/gcm.o: In function `gcm_hash_crypt_remain_continue':
gcm.c:(.text+0x167): undefined reference to `crypto_ahash_finup'
crypto/gcm.o: In function `crypto_gcm_exit_tfm':
gcm.c:(.text+0x847): undefined reference to `crypto_destroy_tfm'
When we 'select CRYPTO' like the other users, we always get a
configuration that builds.
Fixes: 428490e38b2e ("security/keys: rewrite all of big_key crypto")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
A key of type "encrypted" references a "master key" which is used to
encrypt and decrypt the encrypted key's payload. However, when we
accessed the master key's payload, we failed to handle the case where
the master key has been revoked, which sets the payload pointer to NULL.
Note that request_key() *does* skip revoked keys, but there is still a
window where the key can be revoked before we acquire its semaphore.
Fix it by checking for a NULL payload, treating it like a key which was
already revoked at the time it was requested.
This was an issue for master keys of type "user" only. Master keys can
also be of type "trusted", but those cannot be revoked.
Fixes: 7e70cb497850 ("keys: add new key-type encrypted")
Reviewed-by: James Morris <james.l.morris@oracle.com>
Cc: <stable@vger.kernel.org> [v2.6.38+]
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
security_inode_getsecurity() provides the text string value
of a security attribute. It does not provide a "secctx".
The code in xattr_getsecurity() that calls security_inode_getsecurity()
and then calls security_release_secctx() happened to work because
SElinux and Smack treat the attribute and the secctx the same way.
It fails for cap_inode_getsecurity(), because that module has no
secctx that ever needs releasing. It turns out that Smack is the
one that's doing things wrong by not allocating memory when instructed
to do so by the "alloc" parameter.
The fix is simple enough. Change the security_release_secctx() to
kfree() because it isn't a secctx being returned by
security_inode_getsecurity(). Change Smack to allocate the string when
told to do so.
Note: this also fixes memory leaks for LSMs which implement
inode_getsecurity but not release_secctx, such as capabilities.
Signed-off-by: Casey Schaufler <casey@schaufler-ca.com>
Reported-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: stable@vger.kernel.org
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
From David Howells:
"There are two sets of patches here:
(1) A bunch of core keyrings bug fixes from Eric Biggers.
(2) Fixing big_key to use safe crypto from Jason A. Donenfeld."
|
|
This started out as just replacing the use of crypto/rng with
get_random_bytes_wait, so that we wouldn't use bad randomness at boot
time. But, upon looking further, it appears that there were even deeper
underlying cryptographic problems, and that this seems to have been
committed with very little crypto review. So, I rewrote the whole thing,
trying to keep to the conventions introduced by the previous author, to
fix these cryptographic flaws.
It makes no sense to seed crypto/rng at boot time and then keep
using it like this, when in fact there's already get_random_bytes_wait,
which can ensure there's enough entropy and be a much more standard way
of generating keys. Since this sensitive material is being stored
untrusted, using ECB and no authentication is simply not okay at all. I
find it surprising and a bit horrifying that this code even made it past
basic crypto review, which perhaps points to some larger issues. This
patch moves from using AES-ECB to using AES-GCM. Since keys are uniquely
generated each time, we can set the nonce to zero. There was also a race
condition in which the same key would be reused at the same time in
different threads. A mutex fixes this issue now.
So, to summarize, this commit fixes the following vulnerabilities:
* Low entropy key generation, allowing an attacker to potentially
guess or predict keys.
* Unauthenticated encryption, allowing an attacker to modify the
cipher text in particular ways in order to manipulate the plaintext,
which is is even more frightening considering the next point.
* Use of ECB mode, allowing an attacker to trivially swap blocks or
compare identical plaintext blocks.
* Key re-use.
* Faulty memory zeroing.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Eric Biggers <ebiggers3@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Kirill Marinushkin <k.marinushkin@gmail.com>
Cc: security@kernel.org
Cc: stable@vger.kernel.org
|
|
Error paths forgot to zero out sensitive material, so this patch changes
some kfrees into a kzfrees.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Eric Biggers <ebiggers3@gmail.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Kirill Marinushkin <k.marinushkin@gmail.com>
Cc: security@kernel.org
Cc: stable@vger.kernel.org
|
|
kmemdup() is preferred to kmalloc() followed by memcpy().
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
When checking for permission to view keys whilst reading from
/proc/keys, we should use the credentials with which the /proc/keys file
was opened. This is because, in a classic type of exploit, it can be
possible to bypass checks for the *current* credentials by passing the
file descriptor to a suid program.
Following commit 34dbbcdbf633 ("Make file credentials available to the
seqfile interfaces") we can finally fix it. So let's do it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
In key_user_lookup(), if there is no key_user for the given uid, we drop
key_user_lock, allocate a new key_user, and search the tree again. But
we failed to set 'parent' to NULL at the beginning of the second search.
If the tree were to be empty for the second search, the insertion would
be done with an invalid 'parent', scribbling over freed memory.
Fortunately this can't actually happen currently because the tree always
contains at least the root_key_user. But it still should be fixed to
make the code more robust.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Because keyctl_read_key() looks up the key with no permissions
requested, it may find a negatively instantiated key. If the key is
also possessed, we went ahead and called ->read() on the key. But the
key payload will actually contain the ->reject_error rather than the
normal payload. Thus, the kernel oopses trying to read the
user_key_payload from memory address (int)-ENOKEY = 0x00000000ffffff82.
Fortunately the payload data is stored inline, so it shouldn't be
possible to abuse this as an arbitrary memory read primitive...
Reproducer:
keyctl new_session
keyctl request2 user desc '' @s
keyctl read $(keyctl show | awk '/user: desc/ {print $1}')
It causes a crash like the following:
BUG: unable to handle kernel paging request at 00000000ffffff92
IP: user_read+0x33/0xa0
PGD 36a54067 P4D 36a54067 PUD 0
Oops: 0000 [#1] SMP
CPU: 0 PID: 211 Comm: keyctl Not tainted 4.14.0-rc1 #337
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
task: ffff90aa3b74c3c0 task.stack: ffff9878c0478000
RIP: 0010:user_read+0x33/0xa0
RSP: 0018:ffff9878c047bee8 EFLAGS: 00010246
RAX: 0000000000000001 RBX: ffff90aa3d7da340 RCX: 0000000000000017
RDX: 0000000000000000 RSI: 00000000ffffff82 RDI: ffff90aa3d7da340
RBP: ffff9878c047bf00 R08: 00000024f95da94f R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f58ece69740(0000) GS:ffff90aa3e200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000ffffff92 CR3: 0000000036adc001 CR4: 00000000003606f0
Call Trace:
keyctl_read_key+0xac/0xe0
SyS_keyctl+0x99/0x120
entry_SYSCALL_64_fastpath+0x1f/0xbe
RIP: 0033:0x7f58ec787bb9
RSP: 002b:00007ffc8d401678 EFLAGS: 00000206 ORIG_RAX: 00000000000000fa
RAX: ffffffffffffffda RBX: 00007ffc8d402800 RCX: 00007f58ec787bb9
RDX: 0000000000000000 RSI: 00000000174a63ac RDI: 000000000000000b
RBP: 0000000000000004 R08: 00007ffc8d402809 R09: 0000000000000020
R10: 0000000000000000 R11: 0000000000000206 R12: 00007ffc8d402800
R13: 00007ffc8d4016e0 R14: 0000000000000000 R15: 0000000000000000
Code: e5 41 55 49 89 f5 41 54 49 89 d4 53 48 89 fb e8 a4 b4 ad ff 85 c0 74 09 80 3d b9 4c 96 00 00 74 43 48 8b b3 20 01 00 00 4d 85 ed <0f> b7 5e 10 74 29 4d 85 e4 74 24 4c 39 e3 4c 89 e2 4c 89 ef 48
RIP: user_read+0x33/0xa0 RSP: ffff9878c047bee8
CR2: 00000000ffffff92
Fixes: 61ea0c0ba904 ("KEYS: Skip key state checks when checking for possession")
Cc: <stable@vger.kernel.org> [v3.13+]
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
It was possible for an unprivileged user to create the user and user
session keyrings for another user. For example:
sudo -u '#3000' sh -c 'keyctl add keyring _uid.4000 "" @u
keyctl add keyring _uid_ses.4000 "" @u
sleep 15' &
sleep 1
sudo -u '#4000' keyctl describe @u
sudo -u '#4000' keyctl describe @us
This is problematic because these "fake" keyrings won't have the right
permissions. In particular, the user who created them first will own
them and will have full access to them via the possessor permissions,
which can be used to compromise the security of a user's keys:
-4: alswrv-----v------------ 3000 0 keyring: _uid.4000
-5: alswrv-----v------------ 3000 0 keyring: _uid_ses.4000
Fix it by marking user and user session keyrings with a flag
KEY_FLAG_UID_KEYRING. Then, when searching for a user or user session
keyring by name, skip all keyrings that don't have the flag set.
Fixes: 69664cf16af4 ("keys: don't generate user and user session keyrings unless they're accessed")
Cc: <stable@vger.kernel.org> [v2.6.26+]
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Userspace can call keyctl_read() on a keyring to get the list of IDs of
keys in the keyring. But if the user-supplied buffer is too small, the
kernel would write the full list anyway --- which will corrupt whatever
userspace memory happened to be past the end of the buffer. Fix it by
only filling the space that is available.
Fixes: b2a4df200d57 ("KEYS: Expand the capacity of a keyring")
Cc: <stable@vger.kernel.org> [v3.13+]
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
In keyctl_read_key(), if key_permission() were to return an error code
other than EACCES, we would leak a the reference to the key. This can't
actually happen currently because key_permission() can only return an
error code other than EACCES if security_key_permission() does, only
SELinux and Smack implement that hook, and neither can return an error
code other than EACCES. But it should still be fixed, as it is a bug
waiting to happen.
Fixes: 29db91906340 ("[PATCH] Keys: Add LSM hooks for key management [try #3]")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
In keyctl_assume_authority(), if keyctl_change_reqkey_auth() were to
fail, we would leak the reference to the 'authkey'. Currently this can
only happen if prepare_creds() fails to allocate memory. But it still
should be fixed, as it is a more severe bug waiting to happen.
This patch also moves the read of 'authkey->serial' to before the
reference to the authkey is dropped. Doing the read after dropping the
reference is very fragile because it assumes we still hold another
reference to the key. (Which we do, in current->cred->request_key_auth,
but there's no reason not to write it in the "obviously correct" way.)
Fixes: d84f4f992cbd ("CRED: Inaugurate COW credentials")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
If key_instantiate_and_link() were to fail (which fortunately isn't
possible currently), the call to key_revoke(authkey) would crash with a
NULL pointer dereference in request_key_auth_revoke() because the key
has not yet been instantiated.
Fix this by removing the call to key_revoke(). key_put() is sufficient,
as it's not possible for an uninstantiated authkey to have been used for
anything yet.
Fixes: b5f545c880a2 ("[PATCH] keys: Permit running process to instantiate keys")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
In request_key_auth_new(), if key_alloc() or key_instantiate_and_link()
were to fail, we would leak a reference to the 'struct cred'. Currently
this can only happen if key_alloc() fails to allocate memory. But it
still should be fixed, as it is a more severe bug waiting to happen.
Fix it by cleaning things up to use a helper function which frees a
'struct request_key_auth' correctly.
Fixes: d84f4f992cbd ("CRED: Inaugurate COW credentials")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull misc security layer update from James Morris:
"This is the remaining 'general' change in the security tree for v4.14,
following the direct merging of SELinux (+ TOMOYO), AppArmor, and
seccomp.
That's everything now for the security tree except IMA, which will
follow shortly (I've been traveling for the past week with patchy
internet)"
* 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security:
security: fix description of values returned by cap_inode_need_killpriv
|