| Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 4dca6ea1d9432052afb06baf2e3ae78188a4410b upstream.
When the request_key() syscall is not passed a destination keyring, it
links the requested key (if constructed) into the "default" request-key
keyring. This should require Write permission to the keyring. However,
there is actually no permission check.
This can be abused to add keys to any keyring to which only Search
permission is granted. This is because Search permission allows joining
the keyring. keyctl_set_reqkey_keyring(KEY_REQKEY_DEFL_SESSION_KEYRING)
then will set the default request-key keyring to the session keyring.
Then, request_key() can be used to add keys to the keyring.
Both negatively and positively instantiated keys can be added using this
method. Adding negative keys is trivial. Adding a positive key is a
bit trickier. It requires that either /sbin/request-key positively
instantiates the key, or that another thread adds the key to the process
keyring at just the right time, such that request_key() misses it
initially but then finds it in construct_alloc_key().
Fix this bug by checking for Write permission to the keyring in
construct_get_dest_keyring() when the default keyring is being used.
We don't do the permission check for non-default keyrings because that
was already done by the earlier call to lookup_user_key(). Also,
request_key_and_link() is currently passed a 'struct key *' rather than
a key_ref_t, so the "possessed" bit is unavailable.
We also don't do the permission check for the "requestor keyring", to
continue to support the use case described by commit 8bbf4976b59f
("KEYS: Alter use of key instantiation link-to-keyring argument") where
/sbin/request-key recursively calls request_key() to add keys to the
original requestor's destination keyring. (I don't know of any users
who actually do that, though...)
Fixes: 3e30148c3d52 ("[PATCH] Keys: Make request-key create an authorisation key")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit a3c812f7cfd80cf51e8f5b7034f7418f6beb56c1 upstream.
When calling keyctl_read() on a key of type "trusted", if the
user-supplied buffer was too small, the kernel ignored the buffer length
and just wrote past the end of the buffer, potentially corrupting
userspace memory. Fix it by instead returning the size required, as per
the documentation for keyctl_read().
We also don't even fill the buffer at all in this case, as this is
slightly easier to implement than doing a short read, and either
behavior appears to be permitted. It also makes it match the behavior
of the "encrypted" key type.
Fixes: d00a1c72f7f4 ("keys: add new trusted key-type")
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit ee618b4619b72527aaed765f0f0b74072b281159 upstream.
As the previous patch did for encrypted-keys, zero sensitive any
potentially sensitive data related to the "trusted" key type before it
is freed. Notably, we were not zeroing the tpm_buf structures in which
the actual key is stored for TPM seal and unseal, nor were we zeroing
the trusted_key_payload in certain error paths.
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
[bwh: Backported to 3.16:
- Drop one unapplicable change
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 3239b6f29bdfb4b0a2ba59df995fc9e6f4df7f1f upstream.
Commit e645016abc80 ("KEYS: fix writing past end of user-supplied buffer
in keyring_read()") made keyring_read() stop corrupting userspace memory
when the user-supplied buffer is too small. However it also made the
return value in that case be the short buffer size rather than the size
required, yet keyctl_read() is actually documented to return the size
required. Therefore, switch it over to the documented behavior.
Note that for now we continue to have it fill the short buffer, since it
did that before (pre-v3.13) and dump_key_tree_aux() in keyutils arguably
relies on it.
Fixes: e645016abc80 ("KEYS: fix writing past end of user-supplied buffer in keyring_read()")
Reported-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 13923d0865ca96312197962522e88bc0aedccd74 upstream.
A key of type "encrypted" references a "master key" which is used to
encrypt and decrypt the encrypted key's payload. However, when we
accessed the master key's payload, we failed to handle the case where
the master key has been revoked, which sets the payload pointer to NULL.
Note that request_key() *does* skip revoked keys, but there is still a
window where the key can be revoked before we acquire its semaphore.
Fix it by checking for a NULL payload, treating it like a key which was
already revoked at the time it was requested.
This was an issue for master keys of type "user" only. Master keys can
also be of type "trusted", but those cannot be revoked.
Fixes: 7e70cb497850 ("keys: add new key-type encrypted")
Reviewed-by: James Morris <james.l.morris@oracle.com>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: David Safford <safford@us.ibm.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 910801809b2e40a4baedd080ef5d80b4a180e70e upstream.
Error paths forgot to zero out sensitive material, so this patch changes
some kfrees into a kzfrees.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Eric Biggers <ebiggers3@gmail.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Kirill Marinushkin <k.marinushkin@gmail.com>
Cc: security@kernel.org
[bwh: Backported to 3.16: there's only one kfree() to change]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 237bbd29f7a049d310d907f4b2716a7feef9abf3 upstream.
It was possible for an unprivileged user to create the user and user
session keyrings for another user. For example:
sudo -u '#3000' sh -c 'keyctl add keyring _uid.4000 "" @u
keyctl add keyring _uid_ses.4000 "" @u
sleep 15' &
sleep 1
sudo -u '#4000' keyctl describe @u
sudo -u '#4000' keyctl describe @us
This is problematic because these "fake" keyrings won't have the right
permissions. In particular, the user who created them first will own
them and will have full access to them via the possessor permissions,
which can be used to compromise the security of a user's keys:
-4: alswrv-----v------------ 3000 0 keyring: _uid.4000
-5: alswrv-----v------------ 3000 0 keyring: _uid_ses.4000
Fix it by marking user and user session keyrings with a flag
KEY_FLAG_UID_KEYRING. Then, when searching for a user or user session
keyring by name, skip all keyrings that don't have the flag set.
Fixes: 69664cf16af4 ("keys: don't generate user and user session keyrings unless they're accessed")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit e645016abc803dafc75e4b8f6e4118f088900ffb upstream.
Userspace can call keyctl_read() on a keyring to get the list of IDs of
keys in the keyring. But if the user-supplied buffer is too small, the
kernel would write the full list anyway --- which will corrupt whatever
userspace memory happened to be past the end of the buffer. Fix it by
only filling the space that is available.
Fixes: b2a4df200d57 ("KEYS: Expand the capacity of a keyring")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 7fc0786d956d9e59b68d282be9b156179846ea3d upstream.
In keyctl_read_key(), if key_permission() were to return an error code
other than EACCES, we would leak a the reference to the key. This can't
actually happen currently because key_permission() can only return an
error code other than EACCES if security_key_permission() does, only
SELinux and Smack implement that hook, and neither can return an error
code other than EACCES. But it should still be fixed, as it is a bug
waiting to happen.
Fixes: 29db91906340 ("[PATCH] Keys: Add LSM hooks for key management [try #3]")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 884bee0215fcc239b30c062c37ca29077005e064 upstream.
In keyctl_assume_authority(), if keyctl_change_reqkey_auth() were to
fail, we would leak the reference to the 'authkey'. Currently this can
only happen if prepare_creds() fails to allocate memory. But it still
should be fixed, as it is a more severe bug waiting to happen.
This patch also moves the read of 'authkey->serial' to before the
reference to the authkey is dropped. Doing the read after dropping the
reference is very fragile because it assumes we still hold another
reference to the key. (Which we do, in current->cred->request_key_auth,
but there's no reason not to write it in the "obviously correct" way.)
Fixes: d84f4f992cbd ("CRED: Inaugurate COW credentials")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit f7b48cf08fa63a68b59c2894806ee478216d7f91 upstream.
If key_instantiate_and_link() were to fail (which fortunately isn't
possible currently), the call to key_revoke(authkey) would crash with a
NULL pointer dereference in request_key_auth_revoke() because the key
has not yet been instantiated.
Fix this by removing the call to key_revoke(). key_put() is sufficient,
as it's not possible for an uninstantiated authkey to have been used for
anything yet.
Fixes: b5f545c880a2 ("[PATCH] keys: Permit running process to instantiate keys")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 44d8143340a99b167c74365e844516b73523c087 upstream.
In request_key_auth_new(), if key_alloc() or key_instantiate_and_link()
were to fail, we would leak a reference to the 'struct cred'. Currently
this can only happen if key_alloc() fails to allocate memory. But it
still should be fixed, as it is a more severe bug waiting to happen.
Fix it by cleaning things up to use a helper function which frees a
'struct request_key_auth' correctly.
Fixes: d84f4f992cbd ("CRED: Inaugurate COW credentials")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 60ff5b2f547af3828aebafd54daded44cfb0807a upstream.
Currently, when passed a key that already exists, add_key() will call the
key's ->update() method if such exists. But this is heavily broken in the
case where the key is uninstantiated because it doesn't call
__key_instantiate_and_link(). Consequently, it doesn't do most of the
things that are supposed to happen when the key is instantiated, such as
setting the instantiation state, clearing KEY_FLAG_USER_CONSTRUCT and
awakening tasks waiting on it, and incrementing key->user->nikeys.
It also never takes key_construction_mutex, which means that
->instantiate() can run concurrently with ->update() on the same key. In
the case of the "user" and "logon" key types this causes a memory leak, at
best. Maybe even worse, the ->update() methods of the "encrypted" and
"trusted" key types actually just dereference a NULL pointer when passed an
uninstantiated key.
Change key_create_or_update() to wait interruptibly for the key to finish
construction before continuing.
This patch only affects *uninstantiated* keys. For now we still allow a
negatively instantiated key to be updated (thereby positively
instantiating it), although that's broken too (the next patch fixes it)
and I'm not sure that anyone actually uses that functionality either.
Here is a simple reproducer for the bug using the "encrypted" key type
(requires CONFIG_ENCRYPTED_KEYS=y), though as noted above the bug
pertained to more than just the "encrypted" key type:
#include <stdlib.h>
#include <unistd.h>
#include <keyutils.h>
int main(void)
{
int ringid = keyctl_join_session_keyring(NULL);
if (fork()) {
for (;;) {
const char payload[] = "update user:foo 32";
usleep(rand() % 10000);
add_key("encrypted", "desc", payload, sizeof(payload), ringid);
keyctl_clear(ringid);
}
} else {
for (;;)
request_key("encrypted", "desc", "callout_info", ringid);
}
}
It causes:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: encrypted_update+0xb0/0x170
PGD 7a178067 P4D 7a178067 PUD 77269067 PMD 0
PREEMPT SMP
CPU: 0 PID: 340 Comm: reproduce Tainted: G D 4.14.0-rc1-00025-g428490e38b2e #796
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
task: ffff8a467a39a340 task.stack: ffffb15c40770000
RIP: 0010:encrypted_update+0xb0/0x170
RSP: 0018:ffffb15c40773de8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8a467a275b00 RCX: 0000000000000000
RDX: 0000000000000005 RSI: ffff8a467a275b14 RDI: ffffffffb742f303
RBP: ffffb15c40773e20 R08: 0000000000000000 R09: ffff8a467a275b17
R10: 0000000000000020 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff8a4677057180 R15: ffff8a467a275b0f
FS: 00007f5d7fb08700(0000) GS:ffff8a467f200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000018 CR3: 0000000077262005 CR4: 00000000001606f0
Call Trace:
key_create_or_update+0x2bc/0x460
SyS_add_key+0x10c/0x1d0
entry_SYSCALL_64_fastpath+0x1f/0xbe
RIP: 0033:0x7f5d7f211259
RSP: 002b:00007ffed03904c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000f8
RAX: ffffffffffffffda RBX: 000000003b2a7955 RCX: 00007f5d7f211259
RDX: 00000000004009e4 RSI: 00000000004009ff RDI: 0000000000400a04
RBP: 0000000068db8bad R08: 000000003b2a7955 R09: 0000000000000004
R10: 000000000000001a R11: 0000000000000246 R12: 0000000000400868
R13: 00007ffed03905d0 R14: 0000000000000000 R15: 0000000000000000
Code: 77 28 e8 64 34 1f 00 45 31 c0 31 c9 48 8d 55 c8 48 89 df 48 8d 75 d0 e8 ff f9 ff ff 85 c0 41 89 c4 0f 88 84 00 00 00 4c 8b 7d c8 <49> 8b 75 18 4c 89 ff e8 24 f8 ff ff 85 c0 41 89 c4 78 6d 49 8b
RIP: encrypted_update+0xb0/0x170 RSP: ffffb15c40773de8
CR2: 0000000000000018
Reported-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Eric Biggers <ebiggers@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 37863c43b2c6464f252862bf2e9768264e961678 upstream.
Because keyctl_read_key() looks up the key with no permissions
requested, it may find a negatively instantiated key. If the key is
also possessed, we went ahead and called ->read() on the key. But the
key payload will actually contain the ->reject_error rather than the
normal payload. Thus, the kernel oopses trying to read the
user_key_payload from memory address (int)-ENOKEY = 0x00000000ffffff82.
Fortunately the payload data is stored inline, so it shouldn't be
possible to abuse this as an arbitrary memory read primitive...
Reproducer:
keyctl new_session
keyctl request2 user desc '' @s
keyctl read $(keyctl show | awk '/user: desc/ {print $1}')
It causes a crash like the following:
BUG: unable to handle kernel paging request at 00000000ffffff92
IP: user_read+0x33/0xa0
PGD 36a54067 P4D 36a54067 PUD 0
Oops: 0000 [#1] SMP
CPU: 0 PID: 211 Comm: keyctl Not tainted 4.14.0-rc1 #337
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
task: ffff90aa3b74c3c0 task.stack: ffff9878c0478000
RIP: 0010:user_read+0x33/0xa0
RSP: 0018:ffff9878c047bee8 EFLAGS: 00010246
RAX: 0000000000000001 RBX: ffff90aa3d7da340 RCX: 0000000000000017
RDX: 0000000000000000 RSI: 00000000ffffff82 RDI: ffff90aa3d7da340
RBP: ffff9878c047bf00 R08: 00000024f95da94f R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f58ece69740(0000) GS:ffff90aa3e200000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000ffffff92 CR3: 0000000036adc001 CR4: 00000000003606f0
Call Trace:
keyctl_read_key+0xac/0xe0
SyS_keyctl+0x99/0x120
entry_SYSCALL_64_fastpath+0x1f/0xbe
RIP: 0033:0x7f58ec787bb9
RSP: 002b:00007ffc8d401678 EFLAGS: 00000206 ORIG_RAX: 00000000000000fa
RAX: ffffffffffffffda RBX: 00007ffc8d402800 RCX: 00007f58ec787bb9
RDX: 0000000000000000 RSI: 00000000174a63ac RDI: 000000000000000b
RBP: 0000000000000004 R08: 00007ffc8d402809 R09: 0000000000000020
R10: 0000000000000000 R11: 0000000000000206 R12: 00007ffc8d402800
R13: 00007ffc8d4016e0 R14: 0000000000000000 R15: 0000000000000000
Code: e5 41 55 49 89 f5 41 54 49 89 d4 53 48 89 fb e8 a4 b4 ad ff 85 c0 74 09 80 3d b9 4c 96 00 00 74 43 48 8b b3 20 01 00 00 4d 85 ed <0f> b7 5e 10 74 29 4d 85 e4 74 24 4c 39 e3 4c 89 e2 4c 89 ef 48
RIP: user_read+0x33/0xa0 RSP: ffff9878c047bee8
CR2: 00000000ffffff92
Fixes: 61ea0c0ba904 ("KEYS: Skip key state checks when checking for possession")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 5649645d725c73df4302428ee4e02c869248b4c5 upstream.
sys_add_key() and the KEYCTL_UPDATE operation of sys_keyctl() allowed a
NULL payload with nonzero length to be passed to the key type's
->preparse(), ->instantiate(), and/or ->update() methods. Various key
types including asymmetric, cifs.idmap, cifs.spnego, and pkcs7_test did
not handle this case, allowing an unprivileged user to trivially cause a
NULL pointer dereference (kernel oops) if one of these key types was
present. Fix it by doing the copy_from_user() when 'plen' is nonzero
rather than when '_payload' is non-NULL, causing the syscall to fail
with EFAULT as expected when an invalid buffer is specified.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit c1644fe041ebaf6519f6809146a77c3ead9193af upstream.
This fixes CVE-2017-6951.
Userspace should not be able to do things with the "dead" key type as it
doesn't have some of the helper functions set upon it that the kernel
needs. Attempting to use it may cause the kernel to crash.
Fix this by changing the name of the type to ".dead" so that it's rejected
up front on userspace syscalls by key_get_type_from_user().
Though this doesn't seem to affect recent kernels, it does affect older
ones, certainly those prior to:
commit c06cfb08b88dfbe13be44a69ae2fdc3a7c902d81
Author: David Howells <dhowells@redhat.com>
Date: Tue Sep 16 17:36:06 2014 +0100
KEYS: Remove key_type::match in favour of overriding default by match_preparse
which went in before 3.18-rc1.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit c9f838d104fed6f2f61d68164712e3204bf5271b upstream.
This fixes CVE-2017-7472.
Running the following program as an unprivileged user exhausts kernel
memory by leaking thread keyrings:
#include <keyutils.h>
int main()
{
for (;;)
keyctl_set_reqkey_keyring(KEY_REQKEY_DEFL_THREAD_KEYRING);
}
Fix it by only creating a new thread keyring if there wasn't one before.
To make things more consistent, make install_thread_keyring_to_cred()
and install_process_keyring_to_cred() both return 0 if the corresponding
keyring is already present.
Fixes: d84f4f992cbd ("CRED: Inaugurate COW credentials")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit ee8f844e3c5a73b999edf733df1c529d6503ec2f upstream.
This fixes CVE-2016-9604.
Keyrings whose name begin with a '.' are special internal keyrings and so
userspace isn't allowed to create keyrings by this name to prevent
shadowing. However, the patch that added the guard didn't fix
KEYCTL_JOIN_SESSION_KEYRING. Not only can that create dot-named keyrings,
it can also subscribe to them as a session keyring if they grant SEARCH
permission to the user.
This, for example, allows a root process to set .builtin_trusted_keys as
its session keyring, at which point it has full access because now the
possessor permissions are added. This permits root to add extra public
keys, thereby bypassing module verification.
This also affects kexec and IMA.
This can be tested by (as root):
keyctl session .builtin_trusted_keys
keyctl add user a a @s
keyctl list @s
which on my test box gives me:
2 keys in keyring:
180010936: ---lswrv 0 0 asymmetric: Build time autogenerated kernel key: ae3d4a31b82daa8e1a75b49dc2bba949fd992a05
801382539: --alswrv 0 0 user: a
Fix this by rejecting names beginning with a '.' in the keyctl.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
cc: linux-ima-devel@lists.sourceforge.net
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 54e2c2c1a9d6cbb270b0999a38545fa9a69bee43 upstream.
Reinstate the generation of EPERM for a key type name beginning with a '.' in
a userspace call. Types whose name begins with a '.' are internal only.
The test was removed by:
commit a4e3b8d79a5c6d40f4a9703abf7fe3abcc6c3b8d
Author: Mimi Zohar <zohar@linux.vnet.ibm.com>
Date: Thu May 22 14:02:23 2014 -0400
Subject: KEYS: special dot prefixed keyring name bug fix
I think we want to keep the restriction on type name so that userspace can't
add keys of a special internal type.
Note that removal of the test causes several of the tests in the keyutils
testsuite to fail.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit a4e3b8d79a5c6d40f4a9703abf7fe3abcc6c3b8d upstream.
Dot prefixed keyring names are supposed to be reserved for the
kernel, but add_key() calls key_get_type_from_user(), which
incorrectly verifies the 'type' field, not the 'description' field.
This patch verifies the 'description' field isn't dot prefixed,
when creating a new keyring, and removes the dot prefix test in
key_get_type_from_user().
Changelog v6:
- whitespace and other cleanup
Changelog v5:
- Only prevent userspace from creating a dot prefixed keyring, not
regular keys - Dmitry
Reported-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 57cb17e764ba0aaa169d07796acce54ccfbc6cae upstream.
This function has two callers and neither are able to handle a NULL
return. Really, -EINVAL is the correct thing return here anyway. This
fixes some static checker warnings like:
security/keys/encrypted-keys/encrypted.c:709 encrypted_key_decrypt()
error: uninitialized symbol 'master_key'.
Fixes: 7e70cb497850 ("keys: add new key-type encrypted")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
The "dead" key type has no match operation, and a search for keys of
this type can cause a null dereference in keyring_search_iterator().
keyring_search() has a check for this, but request_keyring_and_link()
does not. Move the check into keyring_search_aux(), covering both of
them.
This was fixed upstream by commit c06cfb08b88d ("KEYS: Remove
key_type::match in favour of overriding default by match_preparse"),
part of a series of large changes that are not suitable for
backporting.
CVE-2017-2647 / CVE-2017-6951
Reported-by: Igor Redko <redkoi@virtuozzo.com>
Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
References: https://bugzilla.redhat.com/show_bug.cgi?id=CVE-2017-2647
Reported-by: idl3r <idler1984@gmail.com>
References: https://www.spinics.net/lists/keyrings/msg01845.html
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: David Howells <dhowells@redhat.com>
|
|
commit 03dab869b7b239c4e013ec82aea22e181e441cfc upstream.
This fixes CVE-2016-7042.
Fix a short sprintf buffer in proc_keys_show(). If the gcc stack protector
is turned on, this can cause a panic due to stack corruption.
The problem is that xbuf[] is not big enough to hold a 64-bit timeout
rendered as weeks:
(gdb) p 0xffffffffffffffffULL/(60*60*24*7)
$2 = 30500568904943
That's 14 chars plus NUL, not 11 chars plus NUL.
Expand the buffer to 16 chars.
I think the unpatched code apparently works if the stack-protector is not
enabled because on a 32-bit machine the buffer won't be overflowed and on a
64-bit machine there's a 64-bit aligned pointer at one side and an int that
isn't checked again on the other side.
The panic incurred looks something like:
Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: ffffffff81352ebe
CPU: 0 PID: 1692 Comm: reproducer Not tainted 4.7.2-201.fc24.x86_64 #1
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
0000000000000086 00000000fbbd2679 ffff8800a044bc00 ffffffff813d941f
ffffffff81a28d58 ffff8800a044bc98 ffff8800a044bc88 ffffffff811b2cb6
ffff880000000010 ffff8800a044bc98 ffff8800a044bc30 00000000fbbd2679
Call Trace:
[<ffffffff813d941f>] dump_stack+0x63/0x84
[<ffffffff811b2cb6>] panic+0xde/0x22a
[<ffffffff81352ebe>] ? proc_keys_show+0x3ce/0x3d0
[<ffffffff8109f7f9>] __stack_chk_fail+0x19/0x30
[<ffffffff81352ebe>] proc_keys_show+0x3ce/0x3d0
[<ffffffff81350410>] ? key_validate+0x50/0x50
[<ffffffff8134db30>] ? key_default_cmp+0x20/0x20
[<ffffffff8126b31c>] seq_read+0x2cc/0x390
[<ffffffff812b6b12>] proc_reg_read+0x42/0x70
[<ffffffff81244fc7>] __vfs_read+0x37/0x150
[<ffffffff81357020>] ? security_file_permission+0xa0/0xc0
[<ffffffff81246156>] vfs_read+0x96/0x130
[<ffffffff81247635>] SyS_read+0x55/0xc0
[<ffffffff817eb872>] entry_SYSCALL_64_fastpath+0x1a/0xa4
Reported-by: Ondrej Kozina <okozina@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Ondrej Kozina <okozina@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 38327424b40bcebe2de92d07312c89360ac9229a upstream.
If __key_link_begin() failed then "edit" would be uninitialized. I've
added a check to fix that.
This allows a random user to crash the kernel, though it's quite
difficult to achieve. There are three ways it can be done as the user
would have to cause an error to occur in __key_link():
(1) Cause the kernel to run out of memory. In practice, this is difficult
to achieve without ENOMEM cropping up elsewhere and aborting the
attempt.
(2) Revoke the destination keyring between the keyring ID being looked up
and it being tested for revocation. In practice, this is difficult to
time correctly because the KEYCTL_REJECT function can only be used
from the request-key upcall process. Further, users can only make use
of what's in /sbin/request-key.conf, though this does including a
rejection debugging test - which means that the destination keyring
has to be the caller's session keyring in practice.
(3) Have just enough key quota available to create a key, a new session
keyring for the upcall and a link in the session keyring, but not then
sufficient quota to create a link in the nominated destination keyring
so that it fails with EDQUOT.
The bug can be triggered using option (3) above using something like the
following:
echo 80 >/proc/sys/kernel/keys/root_maxbytes
keyctl request2 user debug:fred negate @t
The above sets the quota to something much lower (80) to make the bug
easier to trigger, but this is dependent on the system. Note also that
the name of the keyring created contains a random number that may be
between 1 and 10 characters in size, so may throw the test off by
changing the amount of quota used.
Assuming the failure occurs, something like the following will be seen:
kfree_debugcheck: out of range ptr 6b6b6b6b6b6b6b68h
------------[ cut here ]------------
kernel BUG at ../mm/slab.c:2821!
...
RIP: 0010:[<ffffffff811600f9>] kfree_debugcheck+0x20/0x25
RSP: 0018:ffff8804014a7de8 EFLAGS: 00010092
RAX: 0000000000000034 RBX: 6b6b6b6b6b6b6b68 RCX: 0000000000000000
RDX: 0000000000040001 RSI: 00000000000000f6 RDI: 0000000000000300
RBP: ffff8804014a7df0 R08: 0000000000000001 R09: 0000000000000000
R10: ffff8804014a7e68 R11: 0000000000000054 R12: 0000000000000202
R13: ffffffff81318a66 R14: 0000000000000000 R15: 0000000000000001
...
Call Trace:
kfree+0xde/0x1bc
assoc_array_cancel_edit+0x1f/0x36
__key_link_end+0x55/0x63
key_reject_and_link+0x124/0x155
keyctl_reject_key+0xb6/0xe0
keyctl_negate_key+0x10/0x12
SyS_keyctl+0x9f/0xe7
do_syscall_64+0x63/0x13a
entry_SYSCALL64_slow_path+0x25/0x25
Fixes: f70e2e06196a ('KEYS: Do preallocation for __key_link()')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 23567fd052a9abb6d67fe8e7a9ccdd9800a540f2 upstream.
This fixes CVE-2016-0728.
If a thread is asked to join as a session keyring the keyring that's already
set as its session, we leak a keyring reference.
This can be tested with the following program:
#include <stddef.h>
#include <stdio.h>
#include <sys/types.h>
#include <keyutils.h>
int main(int argc, const char *argv[])
{
int i = 0;
key_serial_t serial;
serial = keyctl(KEYCTL_JOIN_SESSION_KEYRING,
"leaked-keyring");
if (serial < 0) {
perror("keyctl");
return -1;
}
if (keyctl(KEYCTL_SETPERM, serial,
KEY_POS_ALL | KEY_USR_ALL) < 0) {
perror("keyctl");
return -1;
}
for (i = 0; i < 100; i++) {
serial = keyctl(KEYCTL_JOIN_SESSION_KEYRING,
"leaked-keyring");
if (serial < 0) {
perror("keyctl");
return -1;
}
}
return 0;
}
If, after the program has run, there something like the following line in
/proc/keys:
3f3d898f I--Q--- 100 perm 3f3f0000 0 0 keyring leaked-keyring: empty
with a usage count of 100 * the number of times the program has been run,
then the kernel is malfunctioning. If leaked-keyring has zero usages or
has been garbage collected, then the problem is fixed.
Reported-by: Yevgeny Pats <yevgeny@perception-point.io>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Don Zickus <dzickus@redhat.com>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Acked-by: Jarod Wilson <jarod@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
|
|
commit b4a1b4f5047e4f54e194681125c74c0aa64d637d upstream.
This fixes CVE-2015-7550.
There's a race between keyctl_read() and keyctl_revoke(). If the revoke
happens between keyctl_read() checking the validity of a key and the key's
semaphore being taken, then the key type read method will see a revoked key.
This causes a problem for the user-defined key type because it assumes in
its read method that there will always be a payload in a non-revoked key
and doesn't check for a NULL pointer.
Fix this by making keyctl_read() check the validity of a key after taking
semaphore instead of before.
I think the bug was introduced with the original keyrings code.
This was discovered by a multithreaded test program generated by syzkaller
(http://github.com/google/syzkaller). Here's a cleaned up version:
#include <sys/types.h>
#include <keyutils.h>
#include <pthread.h>
void *thr0(void *arg)
{
key_serial_t key = (unsigned long)arg;
keyctl_revoke(key);
return 0;
}
void *thr1(void *arg)
{
key_serial_t key = (unsigned long)arg;
char buffer[16];
keyctl_read(key, buffer, 16);
return 0;
}
int main()
{
key_serial_t key = add_key("user", "%", "foo", 3, KEY_SPEC_USER_KEYRING);
pthread_t th[5];
pthread_create(&th[0], 0, thr0, (void *)(unsigned long)key);
pthread_create(&th[1], 0, thr1, (void *)(unsigned long)key);
pthread_create(&th[2], 0, thr0, (void *)(unsigned long)key);
pthread_create(&th[3], 0, thr1, (void *)(unsigned long)key);
pthread_join(th[0], 0);
pthread_join(th[1], 0);
pthread_join(th[2], 0);
pthread_join(th[3], 0);
return 0;
}
Build as:
cc -o keyctl-race keyctl-race.c -lkeyutils -lpthread
Run as:
while keyctl-race; do :; done
as it may need several iterations to crash the kernel. The crash can be
summarised as:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000010
IP: [<ffffffff81279b08>] user_read+0x56/0xa3
...
Call Trace:
[<ffffffff81276aa9>] keyctl_read_key+0xb6/0xd7
[<ffffffff81277815>] SyS_keyctl+0x83/0xe0
[<ffffffff815dbb97>] entry_SYSCALL_64_fastpath+0x12/0x6f
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Cc: Moritz Muehlenhoff <jmm@inutil.org>
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
|
|
commit 911b79cde95c7da0ec02f48105358a36636b7a71 upstream.
If request_key() is used to find a keyring, only do the search part - don't
do the construction part if the keyring was not found by the search. We
don't really want keyrings in the negative instantiated state since the
rejected/negative instantiation error value in the payload is unioned with
keyring metadata.
Now the kernel gives an error:
request_key("keyring", "#selinux,bdekeyring", "keyring", KEY_SPEC_USER_SESSION_KEYRING) = -1 EPERM (Operation not permitted)
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Kamal Mostafa <kamal@canonical.com>
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
|
|
commit f05819df10d7b09f6d1eb6f8534a8f68e5a4fe61 upstream.
The following sequence of commands:
i=`keyctl add user a a @s`
keyctl request2 keyring foo bar @t
keyctl unlink $i @s
tries to invoke an upcall to instantiate a keyring if one doesn't already
exist by that name within the user's keyring set. However, if the upcall
fails, the code sets keyring->type_data.reject_error to -ENOKEY or some
other error code. When the key is garbage collected, the key destroy
function is called unconditionally and keyring_destroy() uses list_empty()
on keyring->type_data.link - which is in a union with reject_error.
Subsequently, the kernel tries to unlink the keyring from the keyring names
list - which oopses like this:
BUG: unable to handle kernel paging request at 00000000ffffff8a
IP: [<ffffffff8126e051>] keyring_destroy+0x3d/0x88
...
Workqueue: events key_garbage_collector
...
RIP: 0010:[<ffffffff8126e051>] keyring_destroy+0x3d/0x88
RSP: 0018:ffff88003e2f3d30 EFLAGS: 00010203
RAX: 00000000ffffff82 RBX: ffff88003bf1a900 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 000000003bfc6901 RDI: ffffffff81a73a40
RBP: ffff88003e2f3d38 R08: 0000000000000152 R09: 0000000000000000
R10: ffff88003e2f3c18 R11: 000000000000865b R12: ffff88003bf1a900
R13: 0000000000000000 R14: ffff88003bf1a908 R15: ffff88003e2f4000
...
CR2: 00000000ffffff8a CR3: 000000003e3ec000 CR4: 00000000000006f0
...
Call Trace:
[<ffffffff8126c756>] key_gc_unused_keys.constprop.1+0x5d/0x10f
[<ffffffff8126ca71>] key_garbage_collector+0x1fa/0x351
[<ffffffff8105ec9b>] process_one_work+0x28e/0x547
[<ffffffff8105fd17>] worker_thread+0x26e/0x361
[<ffffffff8105faa9>] ? rescuer_thread+0x2a8/0x2a8
[<ffffffff810648ad>] kthread+0xf3/0xfb
[<ffffffff810647ba>] ? kthread_create_on_node+0x1c2/0x1c2
[<ffffffff815f2ccf>] ret_from_fork+0x3f/0x70
[<ffffffff810647ba>] ? kthread_create_on_node+0x1c2/0x1c2
Note the value in RAX. This is a 32-bit representation of -ENOKEY.
The solution is to only call ->destroy() if the key was successfully
instantiated.
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Kamal Mostafa <kamal@canonical.com>
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
|
|
commit 94c4554ba07adbdde396748ee7ae01e86cf2d8d7 upstream.
There appears to be a race between:
(1) key_gc_unused_keys() which frees key->security and then calls
keyring_destroy() to unlink the name from the name list
(2) find_keyring_by_name() which calls key_permission(), thus accessing
key->security, on a key before checking to see whether the key usage is 0
(ie. the key is dead and might be cleaned up).
Fix this by calling ->destroy() before cleaning up the core key data -
including key->security.
Reported-by: Petr Matousek <pmatouse@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Kamal Mostafa <kamal@canonical.com>
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
|
|
commit ca4da5dd1f99fe9c59f1709fb43e818b18ad20e0 upstream.
__key_link_end is not freeing the associated array edit structure
and this leads to a 512 byte memory leak each time an identical
existing key is added with add_key().
The reason the add_key() system call returns okay is that
key_create_or_update() calls __key_link_begin() before checking to see
whether it can update a key directly rather than adding/replacing - which
it turns out it can. Thus __key_link() is not called through
__key_instantiate_and_link() and __key_link_end() must cancel the edit.
CVE-2015-1333
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
Cc: Moritz Mühlenhoff <jmm@inutil.org>
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
|
|
commit a3a8784454692dd72e5d5d34dcdab17b4420e74c upstream.
When a key is being garbage collected, it's key->user would get put before
the ->destroy() callback is called, where the key is removed from it's
respective tracking structures.
This leaves a key hanging in a semi-invalid state which leaves a window open
for a different task to try an access key->user. An example is
find_keyring_by_name() which would dereference key->user for a key that is
in the process of being garbage collected (where key->user was freed but
->destroy() wasn't called yet - so it's still present in the linked list).
This would cause either a panic, or corrupt memory.
Fixes CVE-2014-9529.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Moritz Muehlenhoff <jmm@inutil.org>
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
|
|
commit b26bdde5bb27f3f900e25a95e33a0c476c8c2c48 upstream.
When loading encrypted-keys module, if the last check of
aes_get_sizes() in init_encrypted() fails, the driver just returns an
error without unregistering its key type. This results in the stale
entry in the list. In addition to memory leaks, this leads to a kernel
crash when registering a new key type later.
This patch fixes the problem by swapping the calls of aes_get_sizes()
and register_key_type(), and releasing resources properly at the error
paths.
Bugzilla: https://bugzilla.opensuse.org/show_bug.cgi?id=908163
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/sergeh/linux-security
Pull security layer updates from Serge Hallyn:
"This is a merge of James Morris' security-next tree from 3.14 to
yesterday's master, plus four patches from Paul Moore which are in
linux-next, plus one patch from Mimi"
* 'serge-next-1' of git://git.kernel.org/pub/scm/linux/kernel/git/sergeh/linux-security:
ima: audit log files opened with O_DIRECT flag
selinux: conditionally reschedule in hashtab_insert while loading selinux policy
selinux: conditionally reschedule in mls_convert_context while loading selinux policy
selinux: reject setexeccon() on MNT_NOSUID applications with -EACCES
selinux: Report permissive mode in avc: denied messages.
Warning in scanf string typing
Smack: Label cgroup files for systemd
Smack: Verify read access on file open - v3
security: Convert use of typedef ctl_table to struct ctl_table
Smack: bidirectional UDS connect check
Smack: Correctly remove SMACK64TRANSMUTE attribute
SMACK: Fix handling value==NULL in post setxattr
bugfix patch for SMACK
Smack: adds smackfs/ptrace interface
Smack: unify all ptrace accesses in the smack
Smack: fix the subject/object order in smack_ptrace_traceme()
Minor improvement of 'smack_sb_kern_mount'
smack: fix key permission verification
KEYS: Move the flags representing required permission to linux/key.h
|
|
This typedef is unnecessary and should just be removed.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs into next
|
|
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull security subsystem updates from James Morris:
"Apart from reordering the SELinux mmap code to ensure DAC is called
before MAC, these are minor maintenance updates"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (23 commits)
selinux: correctly label /proc inodes in use before the policy is loaded
selinux: put the mmap() DAC controls before the MAC controls
selinux: fix the output of ./scripts/get_maintainer.pl for SELinux
evm: enable key retention service automatically
ima: skip memory allocation for empty files
evm: EVM does not use MD5
ima: return d_name.name if d_path fails
integrity: fix checkpatch errors
ima: fix erroneous removal of security.ima xattr
security: integrity: Use a more current logging style
MAINTAINERS: email updates and other misc. changes
ima: reduce memory usage when a template containing the n field is used
ima: restore the original behavior for sending data with ima template
Integrity: Pass commname via get_task_comm()
fs: move i_readcount
ima: use static const char array definitions
security: have cap_dentry_init_security return error
ima: new helper: file_inode(file)
kernel: Mark function as static in kernel/seccomp.c
capability: Use current logging styles
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 compat wrapper rework from Heiko Carstens:
"S390 compat system call wrapper simplification work.
The intention of this work is to get rid of all hand written assembly
compat system call wrappers on s390, which perform proper sign or zero
extension, or pointer conversion of compat system call parameters.
Instead all of this should be done with C code eg by using Al's
COMPAT_SYSCALL_DEFINEx() macro.
Therefore all common code and s390 specific compat system calls have
been converted to the COMPAT_SYSCALL_DEFINEx() macro.
In order to generate correct code all compat system calls may only
have eg compat_ulong_t parameters, but no unsigned long parameters.
Those patches which change parameter types from unsigned long to
compat_ulong_t parameters are separate in this series, but shouldn't
cause any harm.
The only compat system calls which intentionally have 64 bit
parameters (preadv64 and pwritev64) in support of the x86/32 ABI
haven't been changed, but are now only available if an architecture
defines __ARCH_WANT_COMPAT_SYS_PREADV64/PWRITEV64.
System calls which do not have a compat variant but still need proper
zero extension on s390, like eg "long sys_brk(unsigned long brk)" will
get a proper wrapper function with the new s390 specific
COMPAT_SYSCALL_WRAPx() macro:
COMPAT_SYSCALL_WRAP1(brk, unsigned long, brk);
which generates the following code (simplified):
asmlinkage long sys_brk(unsigned long brk);
asmlinkage long compat_sys_brk(long brk)
{
return sys_brk((u32)brk);
}
Given that the C file which contains all the COMPAT_SYSCALL_WRAP lines
includes both linux/syscall.h and linux/compat.h, it will generate
build errors, if the declaration of sys_brk() doesn't match, or if
there exists a non-matching compat_sys_brk() declaration.
In addition this will intentionally result in a link error if
somewhere else a compat_sys_brk() function exists, which probably
should have been used instead. Two more BUILD_BUG_ONs make sure the
size and type of each compat syscall parameter can be handled
correctly with the s390 specific macros.
I converted the compat system calls step by step to verify the
generated code is correct and matches the previous code. In fact it
did not always match, however that was always a bug in the hand
written asm code.
In result we get less code, less bugs, and much more sanity checking"
* 'compat' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (44 commits)
s390/compat: add copyright statement
compat: include linux/unistd.h within linux/compat.h
s390/compat: get rid of compat wrapper assembly code
s390/compat: build error for large compat syscall args
mm/compat: convert to COMPAT_SYSCALL_DEFINE with changing parameter types
kexec/compat: convert to COMPAT_SYSCALL_DEFINE with changing parameter types
net/compat: convert to COMPAT_SYSCALL_DEFINE with changing parameter types
ipc/compat: convert to COMPAT_SYSCALL_DEFINE with changing parameter types
fs/compat: convert to COMPAT_SYSCALL_DEFINE with changing parameter types
ipc/compat: convert to COMPAT_SYSCALL_DEFINE
fs/compat: convert to COMPAT_SYSCALL_DEFINE
security/compat: convert to COMPAT_SYSCALL_DEFINE
mm/compat: convert to COMPAT_SYSCALL_DEFINE
net/compat: convert to COMPAT_SYSCALL_DEFINE
kernel/compat: convert to COMPAT_SYSCALL_DEFINE
fs/compat: optional preadv64/pwrite64 compat system calls
ipc/compat_sys_msgrcv: change msgtyp type from long to compat_long_t
s390/compat: partial parameter conversion within syscall wrappers
s390/compat: automatic zero, sign and pointer conversion of syscalls
s390/compat: add sync_file_range and fallocate compat syscalls
...
|
|
Move the flags representing required permission to linux/key.h as the perm
parameter of security_key_permission() is in terms of them - and not the
permissions mask flags used in key->perm.
Whilst we're at it:
(1) Rename them to be KEY_NEED_xxx rather than KEY_xxx to avoid collisions
with symbols in uapi/linux/input.h.
(2) Don't use key_perm_t for a mask of required permissions, but rather limit
it to the permissions mask attached to the key and arguments related
directly to that.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Dmitry Kasatkin <d.kasatkin@samsung.com>
|
|
This fixes CVE-2014-0102.
The following command sequence produces an oops:
keyctl new_session
i=`keyctl newring _ses @s`
keyctl link @s $i
The problem is that search_nested_keyrings() sees two keyrings that have
matching type and description, so keyring_compare_object() returns true.
s_n_k() then passes the key to the iterator function -
keyring_detect_cycle_iterator() - which *should* check to see whether this is
the keyring of interest, not just one with the same name.
Because assoc_array_find() will return one and only one match, I assumed that
the iterator function would only see an exact match or never be called - but
the iterator isn't only called from assoc_array_find()...
The oops looks something like this:
kernel BUG at /data/fs/linux-2.6-fscache/security/keys/keyring.c:1003!
invalid opcode: 0000 [#1] SMP
...
RIP: keyring_detect_cycle_iterator+0xe/0x1f
...
Call Trace:
search_nested_keyrings+0x76/0x2aa
__key_link_check_live_key+0x50/0x5f
key_link+0x4e/0x85
keyctl_keyring_link+0x60/0x81
SyS_keyctl+0x65/0xe4
tracesys+0xdd/0xe2
The fix is to make keyring_detect_cycle_iterator() check that the key it
has is the key it was actually looking for rather than calling BUG_ON().
A testcase has been included in the keyutils testsuite for this:
http://git.kernel.org/cgit/linux/kernel/git/dhowells/keyutils.git/commit/?id=891f3365d07f1996778ade0e3428f01878a1790b
Reported-by: Tommi Rantala <tt.rantala@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Convert all compat system call functions where all parameter types
have a size of four or less than four bytes, or are pointer types
to COMPAT_SYSCALL_DEFINE.
The implicit casts within COMPAT_SYSCALL_DEFINE will perform proper
zero and sign extension to 64 bit of all parameters if needed.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
The usage of strict_strto*() is not preferred, because
strict_strto*() is obsolete. Thus, kstrto*() should be
used.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: James Morris <james.l.morris@oracle.com>
|
|
We have a problem where the big_key key storage implementation uses a
shmem backed inode to hold the key contents. Because of this detail of
implementation LSM checks are being done between processes trying to
read the keys and the tmpfs backed inode. The LSM checks are already
being handled on the key interface level and should not be enforced at
the inode level (since the inode is an implementation detail, not a
part of the security model)
This patch implements a new function shmem_kernel_file_setup() which
returns the equivalent to shmem_file_setup() only the underlying inode
has S_PRIVATE set. This means that all LSM checks for the inode in
question are skipped. It should only be used for kernel internal
operations where the inode is not exposed to userspace without proper
LSM checking. It is possible that some other users of
shmem_file_setup() should use the new interface, but this has not been
explored.
Reproducing this bug is a little bit difficult. The steps I used on
Fedora are:
(1) Turn off selinux enforcing:
setenforce 0
(2) Create a huge key
k=`dd if=/dev/zero bs=8192 count=1 | keyctl padd big_key test-key @s`
(3) Access the key in another context:
runcon system_u:system_r:httpd_t:s0-s0:c0.c1023 keyctl print $k >/dev/null
(4) Examine the audit logs:
ausearch -m AVC -i --subject httpd_t | audit2allow
If the last command's output includes a line that looks like:
allow httpd_t user_tmpfs_t:file { open read };
There was an inode check between httpd and the tmpfs filesystem. With
this patch no such denial will be seen. (NOTE! you should clear your
audit log if you have tested for this previously)
(Please return you box to enforcing)
Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Hugh Dickins <hughd@google.com>
cc: linux-mm@kvack.org
|
|
If a keyring contains more than 16 keyrings (the capacity of a single node in
the associative array) then those keyrings are split over multiple nodes
arranged as a tree.
If search_nested_keyrings() is called to search the keyring then it will
attempt to manually walk over just the 0 branch of the associative array tree
where all the keyring links are stored. This works provided the key is found
before the algorithm steps from one node containing keyrings to a child node
or if there are sufficiently few keyring links that the keyrings are all in
one node.
However, if the algorithm does need to step from a node to a child node, it
doesn't change the node pointer unless a shortcut also gets transited. This
means that the algorithm will keep scanning the same node over and over again
without terminating and without returning.
To fix this, move the internal-pointer-to-node translation from inside the
shortcut transit handler so that it applies it to node arrival as well.
This can be tested by:
r=`keyctl newring sandbox @s`
for ((i=0; i<=16; i++)); do keyctl newring ring$i $r; done
for ((i=0; i<=16; i++)); do keyctl add user a$i a %:ring$i; done
for ((i=0; i<=16; i++)); do keyctl search $r user a$i; done
for ((i=17; i<=20; i++)); do keyctl search $r user a$i; done
The searches should all complete successfully (or with an error for 17-20),
but instead one or more of them will hang.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Stephen Gallagher <sgallagh@redhat.com>
|
|
If sufficient keys (or keyrings) are added into a keyring such that a node in
the associative array's tree overflows (each node has a capacity N, currently
16) and such that all N+1 keys have the same index key segment for that level
of the tree (the level'th nibble of the index key), then assoc_array_insert()
calls ops->diff_objects() to indicate at which bit position the two index keys
vary.
However, __key_link_begin() passes a NULL object to assoc_array_insert() with
the intention of supplying the correct pointer later before we commit the
change. This means that keyring_diff_objects() is given a NULL pointer as one
of its arguments which it does not expect. This results in an oops like the
attached.
With the previous patch to fix the keyring hash function, this can be forced
much more easily by creating a keyring and only adding keyrings to it. Add any
other sort of key and a different insertion path is taken - all 16+1 objects
must want to cluster in the same node slot.
This can be tested by:
r=`keyctl newring sandbox @s`
for ((i=0; i<=16; i++)); do keyctl newring ring$i $r; done
This should work fine, but oopses when the 17th keyring is added.
Since ops->diff_objects() is always called with the first pointer pointing to
the object to be inserted (ie. the NULL pointer), we can fix the problem by
changing the to-be-inserted object pointer to point to the index key passed
into assoc_array_insert() instead.
Whilst we're at it, we also switch the arguments so that they are the same as
for ->compare_object().
BUG: unable to handle kernel NULL pointer dereference at 0000000000000088
IP: [<ffffffff81191ee4>] hash_key_type_and_desc+0x18/0xb0
...
RIP: 0010:[<ffffffff81191ee4>] hash_key_type_and_desc+0x18/0xb0
...
Call Trace:
[<ffffffff81191f9d>] keyring_diff_objects+0x21/0xd2
[<ffffffff811f09ef>] assoc_array_insert+0x3b6/0x908
[<ffffffff811929a7>] __key_link_begin+0x78/0xe5
[<ffffffff81191a2e>] key_create_or_update+0x17d/0x36a
[<ffffffff81192e0a>] SyS_add_key+0x123/0x183
[<ffffffff81400ddb>] tracesys+0xdd/0xe2
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Stephen Gallagher <sgallagh@redhat.com>
|
|
The keyring hash function (used by the associative array) is supposed to clear
the bottommost nibble of the index key (where the hash value resides) for
keyrings and make sure it is non-zero for non-keyrings. This is done to make
keyrings cluster together on one branch of the tree separately to other keys.
Unfortunately, the wrong mask is used, so only the bottom two bits are
examined and cleared and not the whole bottom nibble. This means that keys
and keyrings can still be successfully searched for under most circumstances
as the hash is consistent in its miscalculation, but if a keyring's
associative array bottom node gets filled up then approx 75% of the keyrings
will not be put into the 0 branch.
The consequence of this is that a key in a keyring linked to by another
keyring, ie.
keyring A -> keyring B -> key
may not be found if the search starts at keyring A and then descends into
keyring B because search_nested_keyrings() only searches up the 0 branch (as it
"knows" all keyrings must be there and not elsewhere in the tree).
The fix is to use the right mask.
This can be tested with:
r=`keyctl newring sandbox @s`
for ((i=0; i<=16; i++)); do keyctl newring ring$i $r; done
for ((i=0; i<=16; i++)); do keyctl add user a$i a %:ring$i; done
for ((i=0; i<=16; i++)); do keyctl search $r user a$i; done
This creates a sandbox keyring, then creates 17 keyrings therein (labelled
ring0..ring16). This causes the root node of the sandbox's associative array
to overflow and for the tree to have extra nodes inserted.
Each keyring then is given a user key (labelled aN for ringN) for us to search
for.
We then search for the user keys we added, starting from the sandbox. If
working correctly, it should return the same ordered list of key IDs as
for...keyctl add... did. Without this patch, it reports ENOKEY "Required key
not available" for some of the keys. Just which keys get this depends as the
kernel pointer to the key type forms part of the hash function.
Reported-by: Nalin Dahyabhai <nalin@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Stephen Gallagher <sgallagh@redhat.com>
|
|
The second word of key->payload does not get initialised in key_alloc(), but
the big_key type is relying on it having been cleared. The problem comes when
big_key fails to instantiate a large key and doesn't then set the payload. The
big_key_destroy() op is called from the garbage collector and this assumes that
the dentry pointer stored in the second word will be NULL if instantiation did
not complete.
Therefore just pre-clear the entire struct key on allocation rather than trying
to be clever and only initialising to 0 only those bits that aren't otherwise
initialised.
The lack of initialisation can lead to a bug report like the following if
big_key failed to initialise its file:
general protection fault: 0000 [#1] SMP
Modules linked in: ...
CPU: 0 PID: 51 Comm: kworker/0:1 Not tainted 3.10.0-53.el7.x86_64 #1
Hardware name: Dell Inc. PowerEdge 1955/0HC513, BIOS 1.4.4 12/09/2008
Workqueue: events key_garbage_collector
task: ffff8801294f5680 ti: ffff8801296e2000 task.ti: ffff8801296e2000
RIP: 0010:[<ffffffff811b4a51>] dput+0x21/0x2d0
...
Call Trace:
[<ffffffff811a7b06>] path_put+0x16/0x30
[<ffffffff81235604>] big_key_destroy+0x44/0x60
[<ffffffff8122dc4b>] key_gc_unused_keys.constprop.2+0x5b/0xe0
[<ffffffff8122df2f>] key_garbage_collector+0x1df/0x3c0
[<ffffffff8107759b>] process_one_work+0x17b/0x460
[<ffffffff8107834b>] worker_thread+0x11b/0x400
[<ffffffff81078230>] ? rescuer_thread+0x3e0/0x3e0
[<ffffffff8107eb00>] kthread+0xc0/0xd0
[<ffffffff8107ea40>] ? kthread_create_on_node+0x110/0x110
[<ffffffff815c4bec>] ret_from_fork+0x7c/0xb0
[<ffffffff8107ea40>] ? kthread_create_on_node+0x110/0x110
Reported-by: Patrik Kis <pkis@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Stephen Gallagher <sgallagh@redhat.com>
|
|
Key pointers stored in the keyring are marked in bit 1 to indicate if they
point to a keyring. We need to strip off this bit before using the pointer
when iterating over the keyring for the purpose of looking for links to garbage
collect.
This means that expirable keyrings aren't correctly expiring because the
checker is seeing their key pointer with 2 added to it.
Since the fix for this involves knowing about the internals of the keyring,
key_gc_keyring() is moved to keyring.c and merged into keyring_gc().
This can be tested by:
echo 2 >/proc/sys/kernel/keys/gc_delay
keyctl timeout `keyctl add keyring qwerty "" @s` 2
cat /proc/keys
sleep 5; cat /proc/keys
which should see a keyring called "qwerty" appear in the session keyring and
then disappear after it expires, and:
echo 2 >/proc/sys/kernel/keys/gc_delay
a=`keyctl get_persistent @s`
b=`keyctl add keyring 0 "" $a`
keyctl add user a a $b
keyctl timeout $b 2
cat /proc/keys
sleep 5; cat /proc/keys
which should see a keyring called "0" with a key called "a" in it appear in the
user's persistent keyring (which will be attached to the session keyring) and
then both the "0" keyring and the "a" key should disappear when the "0" keyring
expires.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Simo Sorce <simo@redhat.com>
|
|
In the big_key_instantiate() function we return 0 if kernel_write() returns us
an error rather than returning an error. This can potentially lead to
dentry_open() giving a BUG when called from big_key_read() with an unset
tmpfile path.
------------[ cut here ]------------
kernel BUG at fs/open.c:798!
...
RIP: 0010:[<ffffffff8119bbd1>] dentry_open+0xd1/0xe0
...
Call Trace:
[<ffffffff812350c5>] big_key_read+0x55/0x100
[<ffffffff81231084>] keyctl_read_key+0xb4/0xe0
[<ffffffff81231e58>] SyS_keyctl+0xf8/0x1d0
[<ffffffff815bb799>] system_call_fastpath+0x16/0x1b
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Stephen Gallagher <sgallagh@redhat.com>
|
|
If the UID is specified by userspace when calling the KEYCTL_GET_PERSISTENT
function and the process does not have the CAP_SETUID capability, then the
function will return -EPERM if the current process's uid, suid, euid and fsuid
all match the requested UID. This is incorrect.
Fix it such that when a non-privileged caller requests a persistent keyring by
a specific UID they can only request their own (ie. the specified UID matches
either then process's UID or the process's EUID).
This can be tested by logging in as the user and doing:
keyctl get_persistent @p
keyctl get_persistent @p `id -u`
keyctl get_persistent @p 0
The first two should successfully print the same key ID. The third should do
the same if called by UID 0 or indicate Operation Not Permitted otherwise.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephen Gallagher <sgallagh@redhat.com>
|