Age | Commit message (Collapse) | Author | Files | Lines |
|
For CIFS, we want to be able to store NTLM credentials (aka username
and password) in the keyring. We do not, however want to allow users
to fetch those keys back out of the keyring since that would be a
security risk.
Unfortunately, due to the nuances of key permission bits, it's not
possible to do this. We need to grant search permissions so the kernel
can find these keys, but that also implies permissions to read the
payload.
Resolve this by adding a new key_type. This key type is essentially
the same as key_type_user, but does not define a .read op. This
prevents the payload from ever being visible from userspace. This
key type also vets the description to ensure that it's "qualified"
by checking to ensure that it has a ':' in it that is preceded by
other characters.
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Steve French <smfrench@gmail.com>
|
|
Give keys their own lockdep class to differentiate them from each other in case
a key of one type has to refer to a key of another type.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Mimi Zohar <zohar@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
unregister_key_type() has code to mark a key as dead and make it unavailable in
one loop and then destroy all those unavailable key payloads in the next loop.
However, the loop to mark keys dead renders the key undetectable to the second
loop by changing the key type pointer also.
Fix this by the following means:
(1) The key code has two garbage collectors: one deletes unreferenced keys and
the other alters keyrings to delete links to old dead, revoked and expired
keys. They can end up holding each other up as both want to scan the key
serial tree under spinlock. Combine these into a single routine.
(2) Move the dead key marking, dead link removal and dead key removal into the
garbage collector as a three phase process running over the three cycles
of the normal garbage collection procedure. This is tracked by the
KEY_GC_REAPING_DEAD_1, _2 and _3 state flags.
unregister_key_type() then just unlinks the key type from the list, wakes
up the garbage collector and waits for the third phase to complete.
(3) Downgrade the key types sem in unregister_key_type() once it has deleted
the key type from the list so that it doesn't block the keyctl() syscall.
(4) Dead keys that cannot be simply removed in the third phase have their
payloads destroyed with the key's semaphore write-locked to prevent
interference by the keyctl() syscall. There should be no in-kernel users
of dead keys of that type by the point of unregistration, though keyctl()
may be holding a reference.
(5) Only perform timer recalculation in the GC if the timer actually expired.
If it didn't, we'll get another cycle when it goes off - and if the key
that actually triggered it has been removed, it's not a problem.
(6) Only garbage collect link if the timer expired or if we're doing dead key
clean up phase 2.
(7) As only key_garbage_collector() is permitted to use rb_erase() on the key
serial tree, it doesn't need to revalidate its cursor after dropping the
spinlock as the node the cursor points to must still exist in the tree.
(8) Drop the spinlock in the GC if there is contention on it or if we need to
reschedule. After dealing with that, get the spinlock again and resume
scanning.
This has been tested in the following ways:
(1) Run the keyutils testsuite against it.
(2) Using the AF_RXRPC and RxKAD modules to test keytype removal:
Load the rxrpc_s key type:
# insmod /tmp/af-rxrpc.ko
# insmod /tmp/rxkad.ko
Create a key (http://people.redhat.com/~dhowells/rxrpc/listen.c):
# /tmp/listen &
[1] 8173
Find the key:
# grep rxrpc_s /proc/keys
091086e1 I--Q-- 1 perm 39390000 0 0 rxrpc_s 52:2
Link it to a session keyring, preferably one with a higher serial number:
# keyctl link 0x20e36251 @s
Kill the process (the key should remain as it's linked to another place):
# fg
/tmp/listen
^C
Remove the key type:
rmmod rxkad
rmmod af-rxrpc
This can be made a more effective test by altering the following part of
the patch:
if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
/* Make sure everyone revalidates their keys if we marked a
* bunch as being dead and make sure all keyring ex-payloads
* are destroyed.
*/
kdebug("dead sync");
synchronize_rcu();
To call synchronize_rcu() in GC phase 1 instead. That causes that the
keyring's old payload content to hang around longer until it's RCU
destroyed - which usually happens after GC phase 3 is complete. This
allows the destroy_dead_key branch to be tested.
Reported-by: Benjamin Coddington <bcodding@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Make the key reaper non-reentrant by sticking it on the appropriate system work
queue when we queue it. This will allow it to have global state and drop
locks. It should probably be non-reentrant already as it may spend a long time
holding the key serial spinlock, and so multiple entrants can spend long
periods of time just sitting there spinning, waiting to get the lock.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Move the unreferenced key reaper function to the keys garbage collector file
as that's a more appropriate place with the dead key link reaper.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Add a new keyctl op to reject a key with a specified error code. This works
much the same as negating a key, and so keyctl_negate_key() is made a special
case of keyctl_reject_key(). The difference is that keyctl_negate_key()
selects ENOKEY as the error to be reported.
Typically the key would be rejected with EKEYEXPIRED, EKEYREVOKED or
EKEYREJECTED, but this is not mandatory.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Add a key type operation to permit the key type to vet the description of a new
key that key_alloc() is about to allocate. The operation may reject the
description if it wishes with an error of its choosing. If it does this, the
key will not be allocated.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Mimi Zohar <zohar@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Fix __key_link_end()'s attempt to fix up the quota if an error occurs.
There are two erroneous cases: Firstly, we always decrease the quota if
the preallocated replacement keyring needs cleaning up, irrespective of
whether or not we should (we may have replaced a pointer rather than
adding another pointer).
Secondly, we never clean up the quota if we added a pointer without the
keyring storage being extended (we allocate multiple pointers at a time,
even if we're not going to use them all immediately).
We handle this by setting the bottom bit of the preallocation pointer in
__key_link_begin() to indicate that the quota needs fixing up, which is
then passed to __key_link() (which clears the whole thing) and
__key_link_end().
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix up comments in the key management code. No functional changes.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Do a bit of a style clean up in the key management code. No functional
changes.
Done using:
perl -p -i -e 's!^/[*]*/\n!!' security/keys/*.c
perl -p -i -e 's!} /[*] end [a-z0-9_]*[(][)] [*]/\n!}\n!' security/keys/*.c
sed -i -s -e ": next" -e N -e 's/^\n[}]$/}/' -e t -e P -e 's/^.*\n//' -e "b next" security/keys/*.c
To remove /*****/ lines, remove comments on the closing brace of a
function to name the function and remove blank lines before the closing
brace of a function.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Do preallocation for __key_link() so that the various callers in request_key.c
can deal with any errors from this source before attempting to construct a key.
This allows them to assume that the actual linkage step is guaranteed to be
successful.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Whitespace coding style fixes.
Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Fix a number of problems with the new key garbage collector:
(1) A rogue semicolon in keyring_gc() was causing the initial count of dead
keys to be miscalculated.
(2) A missing return in keyring_gc() meant that under certain circumstances,
the keyring semaphore would be unlocked twice.
(3) The key serial tree iterator (key_garbage_collector()) part of the garbage
collector has been modified to:
(a) Complete each scan of the keyrings before setting the new timer.
(b) Only set the new timer for keys that have yet to expire. This means
that the new timer is now calculated correctly, and the gc doesn't
get into a loop continually scanning for keys that have expired, and
preventing other things from happening, like RCU cleaning up the old
keyring contents.
(c) Perform an extra scan if any keys were garbage collected in this one
as a key might become garbage during a scan, and (b) could mean we
don't set the timer again.
(4) Made key_schedule_gc() take the time at which to do a collection run,
rather than the time at which the key expires. This means the collection
of dead keys (key type unregistered) can happen immediately.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Add garbage collection for dead, revoked and expired keys. This involved
erasing all links to such keys from keyrings that point to them. At that
point, the key will be deleted in the normal manner.
Keyrings from which garbage collection occurs are shrunk and their quota
consumption reduced as appropriate.
Dead keys (for which the key type has been removed) will be garbage collected
immediately.
Revoked and expired keys will hang around for a number of seconds, as set in
/proc/sys/kernel/keys/gc_delay before being automatically removed. The default
is 5 minutes.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Set the KEY_FLAG_DEAD flag on keys for which the type has been removed. This
causes the key_permission() function to return EKEYREVOKED in response to
various commands. It does not, however, prevent unlinking or clearing of
keyrings from detaching the key.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Allow keys for which the key type has been removed to be unlinked. Currently
dead-type keys can only be disposed of by completely clearing the keyrings
that point to them.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
per-uid keys were looked by uid only. Use the user namespace
to distinguish the same uid in different namespaces.
This does not address key_permission. So a task can for instance
try to join a keyring owned by the same uid in another namespace.
That will be handled by a separate patch.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Wrap access to task credentials so that they can be separated more easily from
the task_struct during the introduction of COW creds.
Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id().
Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more
sense to use RCU directly rather than a convenient wrapper; these will be
addressed by later patches.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
|
|
Make the keyring quotas controllable through /proc/sys files:
(*) /proc/sys/kernel/keys/root_maxkeys
/proc/sys/kernel/keys/root_maxbytes
Maximum number of keys that root may have and the maximum total number of
bytes of data that root may have stored in those keys.
(*) /proc/sys/kernel/keys/maxkeys
/proc/sys/kernel/keys/maxbytes
Maximum number of keys that each non-root user may have and the maximum
total number of bytes of data that each of those users may have stored in
their keys.
Also increase the quotas as a number of people have been complaining that it's
not big enough. I'm not sure that it's big enough now either, but on the
other hand, it can now be set in /etc/sysctl.conf.
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: <kwc@citi.umich.edu>
Cc: <arunsr@cse.iitk.ac.in>
Cc: <dwalsh@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Don't generate the per-UID user and user session keyrings unless they're
explicitly accessed. This solves a problem during a login process whereby
set*uid() is called before the SELinux PAM module, resulting in the per-UID
keyrings having the wrong security labels.
This also cures the problem of multiple per-UID keyrings sometimes appearing
due to PAM modules (including pam_keyinit) setuiding and causing user_structs
to come into and go out of existence whilst the session keyring pins the user
keyring. This is achieved by first searching for extant per-UID keyrings
before inventing new ones.
The serial bound argument is also dropped from find_keyring_by_name() as it's
not currently made use of (setting it to 0 disables the feature).
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: <kwc@citi.umich.edu>
Cc: <arunsr@cse.iitk.ac.in>
Cc: <dwalsh@redhat.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The key_create_or_update() function provided by the keyring code has a default
set of permissions that are always applied to the key when created. This
might not be desirable to all clients.
Here's a patch that adds a "perm" parameter to the function to address this,
which can be set to KEY_PERM_UNDEF to revert to the current behaviour.
Signed-off-by: Arun Raghavan <arunsr@cse.iitk.ac.in>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Satyam Sharma <ssatyam@cse.iitk.ac.in>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Convert instances of ERR_PTR(PTR_ERR(p)) to ERR_CAST(p) using:
perl -spi -e 's/ERR_PTR[(]PTR_ERR[(](.*)[)][)]/ERR_CAST(\1)/' `grep -rl 'ERR_PTR[(]*PTR_ERR' fs crypto net security`
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Make request_key() and co fundamentally asynchronous to make it easier for
NFS to make use of them. There are now accessor functions that do
asynchronous constructions, a wait function to wait for construction to
complete, and a completion function for the key type to indicate completion
of construction.
Note that the construction queue is now gone. Instead, keys under
construction are linked in to the appropriate keyring in advance, and that
anyone encountering one must wait for it to be complete before they can use
it. This is done automatically for userspace.
The following auxiliary changes are also made:
(1) Key type implementation stuff is split from linux/key.h into
linux/key-type.h.
(2) AF_RXRPC provides a way to allocate null rxrpc-type keys so that AFS does
not need to call key_instantiate_and_link() directly.
(3) Adjust the debugging macros so that they're -Wformat checked even if
they are disabled, and make it so they can be enabled simply by defining
__KDEBUG to be consistent with other code of mine.
(3) Documentation.
[alan@lxorguk.ukuu.org.uk: keys: missing word in documentation]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Slab destructors were no longer supported after Christoph's
c59def9f222d44bb7e2f0a559f2906191a0862d7 change. They've been
BUGs for both slab and slub, and slob never supported them
either.
This rips out support for the dtor pointer from kmem_cache_create()
completely and fixes up every single callsite in the kernel (there were
about 224, not including the slab allocator definitions themselves,
or the documentation references).
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|
|
Fix the key serial number collision avoidance code in key_alloc_serial().
This didn't use to be so much of a problem as the key serial numbers were
allocated from a simple incremental counter, and it would have to go through
two billion keys before it could possibly encounter a collision. However, now
that random numbers are used instead, collisions are much more likely.
This is fixed by finding a hole in the rbtree where the next unused serial
number ought to be and using that by going almost back to the top of the
insertion routine and redoing the insertion with the new serial number rather
than trying to be clever and attempting to work out the insertion point
pointer directly.
This fixes kernel BZ #7727.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: Eric Sesterhenn <snakebyte@gmx.de>
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-By: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Replace all uses of kmem_cache_t with struct kmem_cache.
The patch was generated using the following script:
#!/bin/sh
#
# Replace one string by another in all the kernel sources.
#
set -e
for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do
quilt add $file
sed -e "1,\$s/$1/$2/g" $file >/tmp/$$
mv /tmp/$$ $file
quilt refresh
done
The script was run like this
sh replace kmem_cache_t "struct kmem_cache"
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
SLAB_KERNEL is an alias of GFP_KERNEL.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Pass the work_struct pointer to the work function rather than context data.
The work function can use container_of() to work out the data.
For the cases where the container of the work_struct may go away the moment the
pending bit is cleared, it is made possible to defer the release of the
structure by deferring the clearing of the pending bit.
To make this work, an extra flag is introduced into the management side of the
work_struct. This governs auto-release of the structure upon execution.
Ordinarily, the work queue executor would release the work_struct for further
scheduling or deallocation by clearing the pending bit prior to jumping to the
work function. This means that, unless the driver makes some guarantee itself
that the work_struct won't go away, the work function may not access anything
else in the work_struct or its container lest they be deallocated.. This is a
problem if the auxiliary data is taken away (as done by the last patch).
However, if the pending bit is *not* cleared before jumping to the work
function, then the work function *may* access the work_struct and its container
with no problems. But then the work function must itself release the
work_struct by calling work_release().
In most cases, automatic release is fine, so this is the default. Special
initiators exist for the non-auto-release case (ending in _NAR).
Signed-Off-By: David Howells <dhowells@redhat.com>
|
|
Add more poison values to include/linux/poison.h. It's not clear to me
whether some others should be added or not, so I haven't added any of
these:
./include/linux/libata.h:#define ATA_TAG_POISON 0xfafbfcfdU
./arch/ppc/8260_io/fcc_enet.c:1918: memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
./drivers/usb/mon/mon_text.c:429: memset(mem, 0xe5, sizeof(struct mon_event_text));
./drivers/char/ftape/lowlevel/ftape-ctl.c:738: memset(ft_buffer[i]->address, 0xAA, FT_BUFF_SIZE);
./drivers/block/sx8.c:/* 0xf is just arbitrary, non-zero noise; this is sorta like poisoning */
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Cause key_alloc_serial() to generate key serial numbers randomly rather than
in linear sequence.
Using an linear sequence permits a covert communication channel to be
established, in which one process can communicate with another by creating or
not creating new keys within a certain timeframe. The second process can
probe for the expected next key serial number and judge its existence by the
error returned.
This is a problem as the serial number namespace is globally shared between
all tasks, regardless of their context.
For more information on this topic, this old TCSEC guide is recommended:
http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-030.html
Signed-off-by: Michael LeMay <mdlemay@epoch.ncsc.mil>
Signed-off-by: James Morris <jmorris@namei.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Add the ability for key creation to overrun the user's quota in some
circumstances - notably when a session keyring is created and assigned to a
process that didn't previously have one.
This means it's still possible to log in, should PAM require the creation of a
new session keyring, and fix an overburdened key quota.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Add a revocation notification method to the key type and calls it whilst
the key's semaphore is still write-locked after setting the revocation
flag.
The patch then uses this to maintain a reference on the task_struct of the
process that calls request_key() for as long as the authorisation key
remains unrevoked.
This fixes a potential race between two processes both of which have
assumed the authority to instantiate a key (one may have forked the other
for example). The problem is that there's no locking around the check for
revocation of the auth key and the use of the task_struct it points to, nor
does the auth key keep a reference on the task_struct.
Access to the "context" pointer in the auth key must thenceforth be done
with the auth key semaphore held. The revocation method is called with the
target key semaphore held write-locked and the search of the context
process's keyrings is done with the auth key semaphore read-locked.
The check for the revocation state of the auth key just prior to searching
it is done after the auth key is read-locked for the search. This ensures
that the auth key can't be revoked between the check and the search.
The revocation notification method is added so that the context task_struct
can be released as soon as instantiation happens rather than waiting for
the auth key to be destroyed, thus avoiding the unnecessary pinning of the
requesting process.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Introduce SELinux hooks to support the access key retention subsystem
within the kernel. Incorporate new flask headers from a modified version
of the SELinux reference policy, with support for the new security class
representing retained keys. Extend the "key_alloc" security hook with a
task parameter representing the intended ownership context for the key
being allocated. Attach security information to root's default keyrings
within the SELinux initialization routine.
Has passed David's testsuite.
Signed-off-by: Michael LeMay <mdlemay@epoch.ncsc.mil>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
This fixes the problem of an oops occuring when a user attempts to add a
key to a non-keyring key [CVE-2006-1522].
The problem is that __keyring_search_one() doesn't check that the
keyring it's been given is actually a keyring.
I've fixed this problem by:
(1) declaring that caller of __keyring_search_one() must guarantee that
the keyring is a keyring; and
(2) making key_create_or_update() check that the keyring is a keyring,
and return -ENOTDIR if it isn't.
This can be tested by:
keyctl add user b b `keyctl add user a a @s`
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Cause an attempt to add a duplicate non-updateable key (such as a keyring) to
a keyring to discard the extant copy in favour of the new one rather than
failing with EEXIST:
# do the test in an empty session
keyctl session
# create a new keyring called "a" and attach to session
keyctl newring a @s
# create another new keyring called "a" and attach to session,
# displacing the keyring added by the second command:
keyctl newring a @s
Without this patch, the third command will fail.
For updateable keys (such as those of "user" type), the update method will
still be called rather than a new key being created.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Make key quota detection generate an error if either quota is exceeded rather
than only if both quotas are exceeded.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
make needlessly global code static
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Remove the key duplication stuff since there's nothing that uses it, no way
to get at it and it's awkward to deal with for LSM purposes.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
This is the security/ part of the big kfree cleanup patch.
Remove pointless checks for NULL prior to calling kfree() in security/.
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The attached patch adds LSM hooks for key management facilities. The notable
changes are:
(1) The key struct now supports a security pointer for the use of security
modules. This will permit key labelling and restrictions on which
programs may access a key.
(2) Security modules get a chance to note (or abort) the allocation of a key.
(3) The key permission checking can now be enhanced by the security modules;
the permissions check consults LSM if all other checks bear out.
(4) The key permissions checking functions now return an error code rather
than a boolean value.
(5) An extra permission has been added to govern the modification of
attributes (UID, GID, permissions).
Note that there isn't an LSM hook specifically for each keyctl() operation,
but rather the permissions hook allows control of individual operations based
on the permission request bits.
Key management access control through LSM is enabled by automatically if both
CONFIG_KEYS and CONFIG_SECURITY are enabled.
This should be applied on top of the patch ensubjected:
[PATCH] Keys: Possessor permissions should be additive
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Chris Wright <chrisw@osdl.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The attached patch adds extra permission grants to keys for the possessor of a
key in addition to the owner, group and other permissions bits. This makes
SUID binaries easier to support without going as far as labelling keys and key
targets using the LSM facilities.
This patch adds a second "pointer type" to key structures (struct key_ref *)
that can have the bottom bit of the address set to indicate the possession of
a key. This is propagated through searches from the keyring to the discovered
key. It has been made a separate type so that the compiler can spot attempts
to dereference a potentially incorrect pointer.
The "possession" attribute can't be attached to a key structure directly as
it's not an intrinsic property of a key.
Pointers to keys have been replaced with struct key_ref *'s wherever
possession information needs to be passed through.
This does assume that the bottom bit of the pointer will always be zero on
return from kmem_cache_alloc().
The key reference type has been made into a typedef so that at least it can be
located in the sources, even though it's basically a pointer to an undefined
type. I've also renamed the accessor functions to be more useful, and all
reference variables should now end in "_ref".
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
2.6.12-rc6-mm1 has a few remaining synchronize_kernel()s, some (but not
all) in comments. This patch changes these synchronize_kernel() calls (and
comments) to synchronize_rcu() or synchronize_sched() as follows:
- arch/x86_64/kernel/mce.c mce_read(): change to synchronize_sched() to
handle races with machine-check exceptions (synchronize_rcu() would not cut
it given RCU implementations intended for hardcore realtime use.
- drivers/input/serio/i8042.c i8042_stop(): change to synchronize_sched() to
handle races with i8042_interrupt() interrupt handler. Again,
synchronize_rcu() would not cut it given RCU implementations intended for
hardcore realtime use.
- include/*/kdebug.h comments: change to synchronize_sched() to handle races
with NMIs. As before, synchronize_rcu() would not cut it...
- include/linux/list.h comment: change to synchronize_rcu(), since this
comment is for list_del_rcu().
- security/keys/key.c unregister_key_type(): change to synchronize_rcu(),
since this is interacting with RCU read side.
- security/keys/process_keys.c install_session_keyring(): change to
synchronize_rcu(), since this is interacting with RCU read side.
Signed-off-by: "Paul E. McKenney" <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The attached patch makes the following changes:
(1) There's a new special key type called ".request_key_auth".
This is an authorisation key for when one process requests a key and
another process is started to construct it. This type of key cannot be
created by the user; nor can it be requested by kernel services.
Authorisation keys hold two references:
(a) Each refers to a key being constructed. When the key being
constructed is instantiated the authorisation key is revoked,
rendering it of no further use.
(b) The "authorising process". This is either:
(i) the process that called request_key(), or:
(ii) if the process that called request_key() itself had an
authorisation key in its session keyring, then the authorising
process referred to by that authorisation key will also be
referred to by the new authorisation key.
This means that the process that initiated a chain of key requests
will authorise the lot of them, and will, by default, wind up with
the keys obtained from them in its keyrings.
(2) request_key() creates an authorisation key which is then passed to
/sbin/request-key in as part of a new session keyring.
(3) When request_key() is searching for a key to hand back to the caller, if
it comes across an authorisation key in the session keyring of the
calling process, it will also search the keyrings of the process
specified therein and it will use the specified process's credentials
(fsuid, fsgid, groups) to do that rather than the calling process's
credentials.
This allows a process started by /sbin/request-key to find keys belonging
to the authorising process.
(4) A key can be read, even if the process executing KEYCTL_READ doesn't have
direct read or search permission if that key is contained within the
keyrings of a process specified by an authorisation key found within the
calling process's session keyring, and is searchable using the
credentials of the authorising process.
This allows a process started by /sbin/request-key to read keys belonging
to the authorising process.
(5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or
KEYCTL_NEGATE will specify a keyring of the authorising process, rather
than the process doing the instantiation.
(6) One of the process keyrings can be nominated as the default to which
request_key() should attach new keys if not otherwise specified. This is
done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_*
constants. The current setting can also be read using this call.
(7) request_key() is partially interruptible. If it is waiting for another
process to finish constructing a key, it can be interrupted. This permits
a request-key cycle to be broken without recourse to rebooting.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
The attached patch changes the key implementation in a number of ways:
(1) It removes the spinlock from the key structure.
(2) The key flags are now accessed using atomic bitops instead of
write-locking the key spinlock and using C bitwise operators.
The three instantiation flags are dealt with with the construction
semaphore held during the request_key/instantiate/negate sequence, thus
rendering the spinlock superfluous.
The key flags are also now bit numbers not bit masks.
(3) The key payload is now accessed using RCU. This permits the recursive
keyring search algorithm to be simplified greatly since no locks need be
taken other than the usual RCU preemption disablement. Searching now does
not require any locks or semaphores to be held; merely that the starting
keyring be pinned.
(4) The keyring payload now includes an RCU head so that it can be disposed
of by call_rcu(). This requires that the payload be copied on unlink to
prevent introducing races in copy-down vs search-up.
(5) The user key payload is now a structure with the data following it. It
includes an RCU head like the keyring payload and for the same reason. It
also contains a data length because the data length in the key may be
changed on another CPU whilst an RCU protected read is in progress on the
payload. This would then see the supposed RCU payload and the on-key data
length getting out of sync.
I'm tempted to drop the key's datalen entirely, except that it's used in
conjunction with quota management and so is a little tricky to get rid
of.
(6) Update the keys documentation.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|