summaryrefslogtreecommitdiff
path: root/scripts/Makefile.build
AgeCommit message (Collapse)AuthorFilesLines
2024-08-22kbuild: fix typos "prequisites" to "prerequisites"Masahiro Yamada1-1/+1
This typo in scripts/Makefile.build has been present for more than 20 years. It was accidentally copy-pasted to other scripts/Makefile.* files. Fix them all. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nathan Chancellor <nathan@kernel.org>
2024-05-18Merge tag 'kbuild-v6.10' of ↵Linus Torvalds1-18/+18
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Avoid 'constexpr', which is a keyword in C23 - Allow 'dtbs_check' and 'dt_compatible_check' run independently of 'dt_binding_check' - Fix weak references to avoid GOT entries in position-independent code generation - Convert the last use of 'optional' property in arch/sh/Kconfig - Remove support for the 'optional' property in Kconfig - Remove support for Clang's ThinLTO caching, which does not work with the .incbin directive - Change the semantics of $(src) so it always points to the source directory, which fixes Makefile inconsistencies between upstream and downstream - Fix 'make tar-pkg' for RISC-V to produce a consistent package - Provide reasonable default coverage for objtool, sanitizers, and profilers - Remove redundant OBJECT_FILES_NON_STANDARD, KASAN_SANITIZE, etc. - Remove the last use of tristate choice in drivers/rapidio/Kconfig - Various cleanups and fixes in Kconfig * tag 'kbuild-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (46 commits) kconfig: use sym_get_choice_menu() in sym_check_prop() rapidio: remove choice for enumeration kconfig: lxdialog: remove initialization with A_NORMAL kconfig: m/nconf: merge two item_add_str() calls kconfig: m/nconf: remove dead code to display value of bool choice kconfig: m/nconf: remove dead code to display children of choice members kconfig: gconf: show checkbox for choice correctly kbuild: use GCOV_PROFILE and KCSAN_SANITIZE in scripts/Makefile.modfinal Makefile: remove redundant tool coverage variables kbuild: provide reasonable defaults for tool coverage modules: Drop the .export_symbol section from the final modules kconfig: use menu_list_for_each_sym() in sym_check_choice_deps() kconfig: use sym_get_choice_menu() in conf_write_defconfig() kconfig: add sym_get_choice_menu() helper kconfig: turn defaults and additional prompt for choice members into error kconfig: turn missing prompt for choice members into error kconfig: turn conf_choice() into void function kconfig: use linked list in sym_set_changed() kconfig: gconf: use MENU_CHANGED instead of SYMBOL_CHANGED kconfig: gconf: remove debug code ...
2024-05-14kbuild: provide reasonable defaults for tool coverageMasahiro Yamada1-1/+1
The objtool, sanitizers (KASAN, UBSAN, etc.), and profilers (GCOV, etc.) are intended only for kernel space objects. For instance, the following are not kernel objects, and therefore should opt out of coverage: - vDSO - purgatory - bootloader (arch/*/boot/) However, to exclude these from coverage, you need to explicitly set OBJECT_FILES_NON_STNDARD=y, KASAN_SANITIZE=n, etc. Kbuild can achieve this without relying on such variables because objects not directly linked to vmlinux or modules are considered "non-standard objects". Detecting standard objects is straightforward: - objects added to obj-y or lib-y are linked to vmlinux - objects added to obj-m are linked to modules There are some exceptional Makefiles (e.g., arch/s390/boot/Makefile, arch/xtensa/boot/lib/Makefile) that use obj-y or lib-y for non-kernel space objects, but they can be fixed later if necessary. Going forward, objects that are not listed in obj-y, lib-y, or obj-m will opt out of objtool, sanitizers, and profilers by default. You can still override the Kbuild decision by explicitly specifying OBJECT_FILES_NON_STANDARD, KASAN_SANITIZE, etc. but most of such Make variables can be removed. The next commit will clean up redundant variables. Note: This commit changes the coverage for some objects: - exclude .vmlinux.export.o from UBSAN, KCOV - exclude arch/csky/kernel/vdso/vgettimeofday.o from UBSAN - exclude arch/parisc/kernel/vdso32/vdso32.so from UBSAN - exclude arch/parisc/kernel/vdso64/vdso64.so from UBSAN - exclude arch/x86/um/vdso/um_vdso.o from UBSAN - exclude drivers/misc/lkdtm/rodata.o from UBSAN, KCOV - exclude init/version-timestamp.o from UBSAN, KCOV - exclude lib/test_fortify/*.o from all santizers and profilers I believe these are positive effects. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Roberto Sassu <roberto.sassu@huawei.com>
2024-05-14Merge tag 'rust-6.10' of https://github.com/Rust-for-Linux/linuxLinus Torvalds1-1/+1
Pull Rust updates from Miguel Ojeda: "The most notable change is the drop of the 'alloc' in-tree fork. This is nicely reflected in the diffstat as a ~10k lines drop. In turn, this makes the version upgrades way simpler and smaller in the future, e.g. the latest one in commit 56f64b370612 ("rust: upgrade to Rust 1.78.0"). More importantly, this increases the chances that a newer compiler version just works, which in turn means supporting several compiler versions is easier now. Thus we will look into finally setting a minimum version in the near future. Toolchain and infrastructure: - Upgrade to Rust 1.78.0 This time around, due to how the kernel and Rust schedules have aligned, there are two upgrades in fact. These allow us to remove one more unstable feature ('offset_of') from the list, among other improvements - Drop 'alloc' in-tree fork of the standard library crate, which means all the unstable features used by 'alloc' (~30 language ones, ~60 library ones) are not a concern anymore - Support DWARFv5 via the '-Zdwarf-version' flag - Support zlib and zstd debuginfo compression via the '-Zdebuginfo-compression' flag 'kernel' crate: - Support allocation flags ('GFP_*'), particularly in 'Box' (via 'BoxExt'), 'Vec' (via 'VecExt'), 'Arc' and 'UniqueArc', as well as in the 'init' module APIs - Remove usage of the 'allocator_api' unstable feature - Remove 'try_' prefix in allocation APIs' names - Add 'VecExt' (an extension trait) to be able to drop the 'alloc' fork - Add the '{make,to}_{upper,lower}case()' methods to 'CStr'/'CString' - Add the 'as_ptr' method to 'ThisModule' - Add the 'from_raw' method to 'ArcBorrow' - Add the 'into_unique_or_drop' method to 'Arc' - Display column number in the 'dbg!' macro output by applying the equivalent change done to the standard library one - Migrate 'Work' to '#[pin_data]' thanks to the changes in the 'macros' crate, which allows to remove an unsafe call in its 'new' associated function - Prevent namespacing issues when using the '[try_][pin_]init!' macros by changing the generated name of guard variables - Make the 'get' method in 'Opaque' const - Implement the 'Default' trait for 'LockClassKey' - Remove unneeded 'kernel::prelude' imports from doctests - Remove redundant imports 'macros' crate: - Add 'decl_generics' to 'parse_generics()' to support default values, and use that to allow them in '#[pin_data]' Helpers: - Trivial English grammar fix Documentation: - Add section on Rust Kselftests to the 'Testing' document - Expand the 'Abstractions vs. bindings' section of the 'General Information' document" * tag 'rust-6.10' of https://github.com/Rust-for-Linux/linux: (31 commits) rust: alloc: fix dangling pointer in VecExt<T>::reserve() rust: upgrade to Rust 1.78.0 rust: kernel: remove redundant imports rust: sync: implement `Default` for `LockClassKey` docs: rust: extend abstraction and binding documentation docs: rust: Add instructions for the Rust kselftest rust: remove unneeded `kernel::prelude` imports from doctests rust: update `dbg!()` to format column number rust: helpers: Fix grammar in comment rust: init: change the generated name of guard variables rust: sync: add `Arc::into_unique_or_drop` rust: sync: add `ArcBorrow::from_raw` rust: types: Make Opaque::get const rust: kernel: remove usage of `allocator_api` unstable feature rust: init: update `init` module to take allocation flags rust: sync: update `Arc` and `UniqueArc` to take allocation flags rust: alloc: update `VecExt` to take allocation flags rust: alloc: introduce the `BoxExt` trait rust: alloc: introduce allocation flags rust: alloc: remove our fork of the `alloc` crate ...
2024-05-09kbuild: add 'private' to target-specific variablesMasahiro Yamada1-3/+3
Currently, Kbuild produces inconsistent results in some cases. You can do an interesting experiment using the --shuffle option, which is supported by GNU Make 4.4 or later. Set CONFIG_KVM_INTEL=y and CONFIG_KVM_AMD=m (or vice versa), and repeat incremental builds w/wo --shuffle=reverse. $ make [ snip ] CC arch/x86/kvm/kvm-asm-offsets.s $ make --shuffle=reverse [ snip ] CC [M] arch/x86/kvm/kvm-asm-offsets.s $ make [ snip ] CC arch/x86/kvm/kvm-asm-offsets.s arch/x86/kvm/kvm-asm-offsets.s is rebuilt every time w/wo the [M] marker. arch/x86/kvm/kvm-asm-offsets.s is built as built-in when it is built as a prerequisite of arch/x86/kvm/kvm-intel.o, which is built-in. arch/x86/kvm/kvm-asm-offsets.s is built as modular when it is built as a prerequisite of arch/x86/kvm/kvm-amd.o, which is a module. Another odd example is single target builds. When CONFIG_LKDTM=m, drivers/misc/lkdtm/rodata.o can be built as built-in or modular, depending on how it is built. $ make drivers/misc/lkdtm/lkdtm.o [ snip ] CC [M] drivers/misc/lkdtm/rodata.o $ make drivers/misc/lkdtm/rodata.o [ snip ] CC drivers/misc/lkdtm/rodata.o drivers/misc/lkdtm/rodata.o is built as modular when it is built as a prerequisite of another, but built as built-in when it is a final target. The same thing happens to drivers/memory/emif-asm-offsets.s when CONFIG_TI_EMIF_SRAM=m. $ make drivers/memory/ti-emif-sram.o [ snip ] CC [M] drivers/memory/emif-asm-offsets.s $ make drivers/memory/emif-asm-offsets.s [ snip ] CC drivers/memory/emif-asm-offsets.s This is because the part-of-module=y flag defined for the modules is inherited by its prerequisites. Target-specific variables are likely intended only for local use. This commit adds 'private' to them. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nicolas Schier <n.schier@avm.de>
2024-05-09kbuild: use $(src) instead of $(srctree)/$(src) for source directoryMasahiro Yamada1-1/+1
Kbuild conventionally uses $(obj)/ for generated files, and $(src)/ for checked-in source files. It is merely a convention without any functional difference. In fact, $(obj) and $(src) are exactly the same, as defined in scripts/Makefile.build: src := $(obj) When the kernel is built in a separate output directory, $(src) does not accurately reflect the source directory location. While Kbuild resolves this discrepancy by specifying VPATH=$(srctree) to search for source files, it does not cover all cases. For example, when adding a header search path for local headers, -I$(srctree)/$(src) is typically passed to the compiler. This introduces inconsistency between upstream and downstream Makefiles because $(src) is used instead of $(srctree)/$(src) for the latter. To address this inconsistency, this commit changes the semantics of $(src) so that it always points to the directory in the source tree. Going forward, the variables used in Makefiles will have the following meanings: $(obj) - directory in the object tree $(src) - directory in the source tree (changed by this commit) $(objtree) - the top of the kernel object tree $(srctree) - the top of the kernel source tree Consequently, $(srctree)/$(src) in upstream Makefiles need to be replaced with $(src). Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
2024-05-09kbuild: use $(obj)/ instead of $(src)/ for common pattern rulesMasahiro Yamada1-13/+13
Kbuild conventionally uses $(obj)/ for generated files, and $(src)/ for checked-in source files. It is merely a convention without any functional difference. In fact, $(obj) and $(src) are exactly the same, as defined in scripts/Makefile.build: src := $(obj) Before changing the semantics of $(src) in the next commit, this commit replaces $(obj)/ with $(src)/ in pattern rules where the prerequisite might be a generated file. C, assembly, Rust, and DTS files are sometimes generated by tools, so they could be either generated files or real sources. The $(obj)/ prefix works for both cases with the help of VPATH. As mentioned above, $(obj) and $(src) are the same at this point, hence this commit has no functional change. I did not modify scripts/Makefile.userprogs because there is no use case where userspace C files are generated. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
2024-04-25kbuild: rust: force `alloc` extern to allow "empty" Rust filesMiguel Ojeda1-1/+1
If one attempts to build an essentially empty file somewhere in the kernel tree, it leads to a build error because the compiler does not recognize the `new_uninit` unstable feature: error[E0635]: unknown feature `new_uninit` --> <crate attribute>:1:9 | 1 | feature(new_uninit) | ^^^^^^^^^^ The reason is that we pass `-Zcrate-attr='feature(new_uninit)'` (together with `-Zallow-features=new_uninit`) to let non-`rust/` code use that unstable feature. However, the compiler only recognizes the feature if the `alloc` crate is resolved (the feature is an `alloc` one). `--extern alloc`, which we pass, is not enough to resolve the crate. Introducing a reference like `use alloc;` or `extern crate alloc;` solves the issue, thus this is not seen in normal files. For instance, `use`ing the `kernel` prelude introduces such a reference, since `alloc` is used inside. While normal use of the build system is not impacted by this, it can still be fairly confusing for kernel developers [1], thus use the unstable `force` option of `--extern` [2] (added in Rust 1.71 [3]) to force the compiler to resolve `alloc`. This new unstable feature is only needed meanwhile we use the other unstable feature, since then we will not need `-Zcrate-attr`. Cc: stable@vger.kernel.org # v6.6+ Reported-by: Daniel Almeida <daniel.almeida@collabora.com> Reported-by: Julian Stecklina <julian.stecklina@cyberus-technology.de> Closes: https://rust-for-linux.zulipchat.com/#narrow/stream/288089-General/topic/x/near/424096982 [1] Fixes: 2f7ab1267dc9 ("Kbuild: add Rust support") Link: https://github.com/rust-lang/rust/issues/111302 [2] Link: https://github.com/rust-lang/rust/pull/109421 [3] Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Link: https://lore.kernel.org/r/20240422090644.525520-1-ojeda@kernel.org Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-03-29rust: upgrade to Rust 1.77.1Miguel Ojeda1-1/+1
This is the next upgrade to the Rust toolchain, from 1.76.0 to 1.77.1 (i.e. the latest) [1]. See the upgrade policy [2] and the comments on the first upgrade in commit 3ed03f4da06e ("rust: upgrade to Rust 1.68.2"). # Unstable features The `offset_of` feature (single-field `offset_of!`) that we were using got stabilized in Rust 1.77.0 [3]. Therefore, now the only unstable features allowed to be used outside the `kernel` crate is `new_uninit`, though other code to be upstreamed may increase the list. Please see [4] for details. # Required changes Rust 1.77.0 merged the `unused_tuple_struct_fields` lint into `dead_code`, thus upgrading it from `allow` to `warn` [5]. In turn, this made `rustc` complain about the `ThisModule`'s pointer field being never read, but the previous patch adds the `as_ptr` method to it, needed by Binder [6], so that we do not need to locally `allow` it. # Other changes Rust 1.77.0 introduces the `--check-cfg` feature [7], for which there is a Call for Testing going on [8]. We were requested to test it and we found it useful [9] -- we will likely enable it in the future. # `alloc` upgrade and reviewing The vast majority of changes are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://github.com/rust-lang/rust/blob/stable/RELEASES.md#version-1770-2024-03-21 [1] Link: https://rust-for-linux.com/rust-version-policy [2] Link: https://github.com/rust-lang/rust/pull/118799 [3] Link: https://github.com/Rust-for-Linux/linux/issues/2 [4] Link: https://github.com/rust-lang/rust/pull/118297 [5] Link: https://lore.kernel.org/rust-for-linux/20231101-rust-binder-v1-2-08ba9197f637@google.com/#Z31rust:kernel:lib.rs [6] Link: https://doc.rust-lang.org/nightly/unstable-book/compiler-flags/check-cfg.html [7] Link: https://github.com/rust-lang/rfcs/pull/3013#issuecomment-1936648479 [8] Link: https://github.com/rust-lang/rust/issues/82450#issuecomment-1947462977 [9] Reviewed-by: Alice Ryhl <aliceryhl@google.com> Tested-by: Boqun Feng <boqun.feng@gmail.com> Link: https://lore.kernel.org/r/20240217002717.57507-1-ojeda@kernel.org [ Upgraded to 1.77.1. Removed `allow(dead_code)` thanks to the previous patch. Reworded accordingly. No changes to `alloc` during the beta. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-03-22Merge tag 'kbuild-v6.9' of ↵Linus Torvalds1-9/+13
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Generate a list of built DTB files (arch/*/boot/dts/dtbs-list) - Use more threads when building Debian packages in parallel - Fix warnings shown during the RPM kernel package uninstallation - Change OBJECT_FILES_NON_STANDARD_*.o etc. to take a relative path to Makefile - Support GCC's -fmin-function-alignment flag - Fix a null pointer dereference bug in modpost - Add the DTB support to the RPM package - Various fixes and cleanups in Kconfig * tag 'kbuild-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (67 commits) kconfig: tests: test dependency after shuffling choices kconfig: tests: add a test for randconfig with dependent choices kconfig: tests: support KCONFIG_SEED for the randconfig runner kbuild: rpm-pkg: add dtb files in kernel rpm kconfig: remove unneeded menu_is_visible() call in conf_write_defconfig() kconfig: check prompt for choice while parsing kconfig: lxdialog: remove unused dialog colors kconfig: lxdialog: fix button color for blackbg theme modpost: fix null pointer dereference kbuild: remove GCC's default -Wpacked-bitfield-compat flag kbuild: unexport abs_srctree and abs_objtree kbuild: Move -Wenum-{compare-conditional,enum-conversion} into W=1 kconfig: remove named choice support kconfig: use linked list in get_symbol_str() to iterate over menus kconfig: link menus to a symbol kbuild: fix inconsistent indentation in top Makefile kbuild: Use -fmin-function-alignment when available alpha: merge two entries for CONFIG_ALPHA_GAMMA alpha: merge two entries for CONFIG_ALPHA_EV4 kbuild: change DTC_FLAGS_<basetarget>.o to take the path relative to $(obj) ...
2024-03-01kbuild: mark `rustc` (and others) invocations as recursiveMiguel Ojeda1-4/+4
`rustc` (like Cargo) may take advantage of the jobserver at any time (e.g. for backend parallelism, or eventually frontend too). In the kernel, we call `rustc` with `-Ccodegen-units=1` (and `-Zthreads` is 1 so far), so we do not expect parallelism. However, in the upcoming Rust 1.76.0, a warning is emitted by `rustc` [1] when it cannot connect to the jobserver it was passed (in many cases, but not all: compiling and `--print sysroot` do, but `--version` does not). And given GNU Make always passes the jobserver in the environment variable (even when a line is deemed non-recursive), `rustc` will end up complaining about it (in particular in Make 4.3 where there is only the simple pipe jobserver style). One solution is to remove the jobserver from `MAKEFLAGS`. However, we can mark the lines with calls to `rustc` (and Cargo) as recursive, which looks simpler. This is being documented as a recommendation in `rustc` [2] and allows us to be ready for the time we may use parallelism inside `rustc` (potentially now, if a user passes `-Zthreads`). Thus do so. Similarly, do the same for `rustdoc` and `cargo` calls. Finally, there is one case that the solution does not cover, which is the `$(shell ...)` call we have. Thus, for that one, set an empty `MAKEFLAGS` environment variable. Link: https://github.com/rust-lang/rust/issues/120515 [1] Acked-by: Masahiro Yamada <masahiroy@kernel.org> Link: https://github.com/rust-lang/rust/pull/121564 [2] Link: https://lore.kernel.org/r/20240217002638.57373-1-ojeda@kernel.org [ Reworded to add link to PR documenting the recommendation. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2024-02-23kbuild: change tool coverage variables to take the path relative to $(obj)Masahiro Yamada1-1/+1
Commit 54b8ae66ae1a ("kbuild: change *FLAGS_<basetarget>.o to take the path relative to $(obj)") changed the syntax of per-file compiler flags. The situation is the same for the following variables: OBJECT_FILES_NON_STANDARD_<basetarget>.o GCOV_PROFILE_<basetarget>.o KASAN_SANITIZE_<basetarget>.o KMSAN_SANITIZE_<basetarget>.o KMSAN_ENABLE_CHECKS_<basetarget>.o UBSAN_SANITIZE_<basetarget>.o KCOV_INSTRUMENT_<basetarget>.o KCSAN_SANITIZE_<basetarget>.o KCSAN_INSTRUMENT_BARRIERS_<basetarget>.o The <basetarget> is the filename of the target with its directory and suffix stripped. This syntax comes into a trouble when two files with the same basename appear in one Makefile, for example: obj-y += dir1/foo.o obj-y += dir2/foo.o OBJECT_FILES_NON_STANDARD_foo.o := y OBJECT_FILES_NON_STANDARD_foo.o is applied to both dir1/foo.o and dir2/foo.o. This syntax is not flexbile enough to handle cases where one of them is a standard object, but the other is not. It is more sensible to use the relative path to the Makefile, like this: obj-y += dir1/foo.o OBJECT_FILES_NON_STANDARD_dir1/foo.o := y obj-y += dir2/foo.o OBJECT_FILES_NON_STANDARD_dir2/foo.o := y To maintain the current behavior, I made adjustments to the following two Makefiles: - arch/x86/entry/vdso/Makefile, which compiles vclock_gettime.o, vgetcpu.o, and their vdso32 variants. - arch/x86/kvm/Makefile, which compiles vmx/vmenter.o and svm/vmenter.o Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nicolas Schier <nicolas@fjasle.eu> Acked-by: Sean Christopherson <seanjc@google.com>
2024-02-19kbuild: create a list of all built DTB filesMasahiro Yamada1-8/+12
It is useful to have a list of all *.dtb and *.dtbo files generated from the current build. With this commit, 'make dtbs' creates arch/*/boot/dts/dtbs-list, which lists the dtb(o) files created in the current build. It maintains the order of the dtb-y additions in Makefiles although the order is not important for DTBs. It is a (good) side effect through the reuse of the modules.order rule. Please note this list only includes the files directly added to dtb-y. For example, consider this case: foo-dtbs := foo_base.dtb foo_overlay.dtbo dtb-y := foo.dtb In this example, the list will include foo.dtb, but not foo_base.dtb or foo_overlay.dtbo. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-12-14rust: Suppress searching builtin sysrootMatthew Maurer1-0/+1
By default, if Rust is passed `--target=foo` rather than a target.json file, it will infer a default sysroot if that component is installed. As the proposed aarch64 support [1] uses `aarch64-unknown-none` rather than a target.json file, this is needed [2] to prevent rustc from being confused between the custom kernel sysroot and the pre-installed one. [ Miguel: Applied Boqun's extra case (for `rusttest`) and reworded to add links to the arm64 patch series discussion. In addition, fixed the `rustdoc` target too (which requires a conditional since `cmd_rustdoc` is also used for host crates like `macros`). ] Signed-off-by: Matthew Maurer <mmaurer@google.com> Tested-by: Boqun Feng <boqun.feng@gmail.com> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Link: https://lore.kernel.org/rust-for-linux/20231020155056.3495121-1-Jamie.Cunliffe@arm.com/ [1] Link: https://lore.kernel.org/rust-for-linux/CAGSQo01pOixiPXkW867h4vPUaAjtKtHGKhkV-rpifJvKxAf4Ww@mail.gmail.com/ [2] Link: https://lore.kernel.org/r/20231031201752.1189213-1-mmaurer@google.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-11-04Merge tag 'kbuild-v6.7' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Implement the binary search in modpost for faster symbol lookup - Respect HOSTCC when linking host programs written in Rust - Change the binrpm-pkg target to generate kernel-devel RPM package - Fix endianness issues for tee and ishtp MODULE_DEVICE_TABLE - Unify vdso_install rules - Remove unused __memexit* annotations - Eliminate stale whitelisting for __devinit/__devexit from modpost - Enable dummy-tools to handle the -fpatchable-function-entry flag - Add 'userldlibs' syntax * tag 'kbuild-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (30 commits) kbuild: support 'userldlibs' syntax kbuild: dummy-tools: pretend we understand -fpatchable-function-entry kbuild: Correct missing architecture-specific hyphens modpost: squash ALL_{INIT,EXIT}_TEXT_SECTIONS to ALL_TEXT_SECTIONS modpost: merge sectioncheck table entries regarding init/exit sections modpost: use ALL_INIT_SECTIONS for the section check from DATA_SECTIONS modpost: disallow the combination of EXPORT_SYMBOL and __meminit* modpost: remove EXIT_SECTIONS macro modpost: remove MEM_INIT_SECTIONS macro modpost: remove more symbol patterns from the section check whitelist modpost: disallow *driver to reference .meminit* sections linux/init: remove __memexit* annotations modpost: remove ALL_EXIT_DATA_SECTIONS macro kbuild: simplify cmd_ld_multi_m kbuild: avoid too many execution of scripts/pahole-flags.sh kbuild: remove ARCH_POSTLINK from module builds kbuild: unify no-compiler-targets and no-sync-config-targets kbuild: unify vdso_install rules docs: kbuild: add INSTALL_DTBS_PATH UML: remove unused cmd_vdso_install ...
2023-10-28kbuild: simplify cmd_ld_multi_mMasahiro Yamada1-1/+1
$(patsubst %.o,%.mod,$@) can be replaced with $<. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-09-25rust: workqueue: add helper for defining work_struct fieldsAlice Ryhl1-1/+1
The main challenge with defining `work_struct` fields is making sure that the function pointer stored in the `work_struct` is appropriate for the work item type it is embedded in. It needs to know the offset of the `work_struct` field being used (even if there are several!) so that it can do a `container_of`, and it needs to know the type of the work item so that it can call into the right user-provided code. All of this needs to happen in a way that provides a safe API to the user, so that users of the workqueue cannot mix up the function pointers. There are three important pieces that are relevant when doing this: * The pointer type. * The work item struct. This is what the pointer points at. * The `work_struct` field. This is a field of the work item struct. This patch introduces a separate trait for each piece. The pointer type is given a `WorkItemPointer` trait, which pointer types need to implement to be usable with the workqueue. This trait will be implemented for `Arc` and `Box` in a later patch in this patchset. Implementing this trait is unsafe because this is where the `container_of` operation happens, but user-code will not need to implement it themselves. The work item struct should then implement the `WorkItem` trait. This trait is where user-code specifies what they want to happen when a work item is executed. It also specifies what the correct pointer type is. Finally, to make the work item struct know the offset of its `work_struct` field, we use a trait called `HasWork<T, ID>`. If a type implements this trait, then the type declares that, at the given offset, there is a field of type `Work<T, ID>`. The trait is marked unsafe because the OFFSET constant must be correct, but we provide an `impl_has_work!` macro that can safely implement `HasWork<T>` on a type. The macro expands to something that only compiles if the specified field really has the type `Work<T>`. It is used like this: ``` struct MyWorkItem { work_field: Work<MyWorkItem, 1>, } impl_has_work! { impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field } } ``` Note that since the `Work` type is annotated with an id, you can have several `work_struct` fields by using a different id for each one. Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Signed-off-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Reviewed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2023-07-23kbuild: rust: avoid creating temporary filesMiguel Ojeda1-1/+4
`rustc` outputs by default the temporary files (i.e. the ones saved by `-Csave-temps`, such as `*.rcgu*` files) in the current working directory when `-o` and `--out-dir` are not given (even if `--emit=x=path` is given, i.e. it does not use those for temporaries). Since out-of-tree modules are compiled from the `linux` tree, `rustc` then tries to create them there, which may not be accessible. Thus pass `--out-dir` explicitly, even if it is just for the temporary files. Similarly, do so for Rust host programs too. Reported-by: Raphael Nestler <raphael.nestler@gmail.com> Closes: https://github.com/Rust-for-Linux/linux/issues/1015 Reported-by: Andrea Righi <andrea.righi@canonical.com> Tested-by: Raphael Nestler <raphael.nestler@gmail.com> # non-hostprogs Tested-by: Andrea Righi <andrea.righi@canonical.com> # non-hostprogs Fixes: 295d8398c67e ("kbuild: specify output names separately for each emission type from rustc") Cc: stable@vger.kernel.org Signed-off-by: Miguel Ojeda <ojeda@kernel.org> Tested-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-07-01Merge tag 'kbuild-v6.5' of ↵Linus Torvalds1-24/+7
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Remove the deprecated rule to build *.dtbo from *.dts - Refactor section mismatch detection in modpost - Fix bogus ARM section mismatch detections - Fix error of 'make gtags' with O= option - Add Clang's target triple to KBUILD_CPPFLAGS to fix a build error with the latest LLVM version - Rebuild the built-in initrd when KBUILD_BUILD_TIMESTAMP is changed - Ignore more compiler-generated symbols for kallsyms - Fix 'make local*config' to handle the ${CONFIG_FOO} form in Makefiles - Enable more kernel-doc warnings with W=2 - Refactor <linux/export.h> by generating KSYMTAB data by modpost - Deprecate <asm/export.h> and <asm-generic/export.h> - Remove the EXPORT_DATA_SYMBOL macro - Move the check for static EXPORT_SYMBOL back to modpost, which makes the build faster - Re-implement CONFIG_TRIM_UNUSED_KSYMS with one-pass algorithm - Warn missing MODULE_DESCRIPTION when building modules with W=1 - Make 'make clean' robust against too long argument error - Exclude more objects from GCOV to fix CFI failures with GCOV - Allow 'make modules_install' to install modules.builtin and modules.builtin.modinfo even when CONFIG_MODULES is disabled - Include modules.builtin and modules.builtin.modinfo in the linux-image Debian package even when CONFIG_MODULES is disabled - Revive "Entering directory" logging for the latest Make version * tag 'kbuild-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (72 commits) modpost: define more R_ARM_* for old distributions kbuild: revive "Entering directory" for Make >= 4.4.1 kbuild: set correct abs_srctree and abs_objtree for package builds scripts/mksysmap: Ignore prefixed KCFI symbols kbuild: deb-pkg: remove the CONFIG_MODULES check in buildeb kbuild: builddeb: always make modules_install, to install modules.builtin* modpost: continue even with unknown relocation type modpost: factor out Elf_Sym pointer calculation to section_rel() modpost: factor out inst location calculation to section_rel() kbuild: Disable GCOV for *.mod.o kbuild: Fix CFI failures with GCOV kbuild: make clean rule robust against too long argument error script: modpost: emit a warning when the description is missing kbuild: make modules_install copy modules.builtin(.modinfo) linux/export.h: rename 'sec' argument to 'license' modpost: show offset from symbol for section mismatch warnings modpost: merge two similar section mismatch warnings kbuild: implement CONFIG_TRIM_UNUSED_KSYMS without recursion modpost: use null string instead of NULL pointer for default namespace modpost: squash sym_update_namespace() into sym_add_exported() ...
2023-06-22kbuild: implement CONFIG_TRIM_UNUSED_KSYMS without recursionMasahiro Yamada1-14/+1
When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. Linus stated negative opinions about this slowness in commits: - 5cf0fd591f2e ("Kbuild: disable TRIM_UNUSED_KSYMS option") - a555bdd0c58c ("Kbuild: enable TRIM_UNUSED_KSYMS again, with some guarding") We can do this better now. The final data structures of EXPORT_SYMBOL are generated by the modpost stage, so modpost can selectively emit KSYMTAB entries that are really used by modules. Commit f73edc8951b2 ("kbuild: unify two modpost invocations") is another ground-work to do this in a one-pass algorithm. With the list of modules, modpost sets sym->used if it is used by a module. modpost emits KSYMTAB only for symbols with sym->used==true. BTW, Nicolas explained why the trimming was implemented with recursion: https://lore.kernel.org/all/2o2rpn97-79nq-p7s2-nq5-8p83391473r@syhkavp.arg/ Actually, we never achieved that level of optimization where the chain reaction of trimming comes into play because: - CONFIG_LTO_CLANG cannot remove any unused symbols - CONFIG_LD_DEAD_CODE_DATA_ELIMINATION is enabled only for vmlinux, but not modules If deeper trimming is required, we need to revisit this, but I guess that is unlikely to happen. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-06-22modpost: check static EXPORT_SYMBOL* by modpost againMasahiro Yamada1-4/+0
Commit 31cb50b5590f ("kbuild: check static EXPORT_SYMBOL* by script instead of modpost") moved the static EXPORT_SYMBOL* check from the mostpost to a shell script because I thought it must be checked per compilation unit to avoid false negatives. I came up with an idea to do this in modpost, against combined ELF files. The relocation entries in ELF will find the correct exported symbol even if there exist symbols with the same name in different compilation units. Again, the same sample code. Makefile: obj-y += foo1.o foo2.o foo1.c: #include <linux/export.h> static void foo(void) {} EXPORT_SYMBOL(foo); foo2.c: void foo(void) {} Then, modpost can catch it correctly. MODPOST Module.symvers ERROR: modpost: vmlinux: local symbol 'foo' was exported Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
2023-06-22kbuild: generate KSYMTAB entries by modpostMasahiro Yamada1-5/+3
Commit 7b4537199a4a ("kbuild: link symbol CRCs at final link, removing CONFIG_MODULE_REL_CRCS") made modpost output CRCs in the same way whether the EXPORT_SYMBOL() is placed in *.c or *.S. For further cleanups, this commit applies a similar approach to the entire data structure of EXPORT_SYMBOL(). The EXPORT_SYMBOL() compilation is split into two stages. When a source file is compiled, EXPORT_SYMBOL() will be converted into a dummy symbol in the .export_symbol section. For example, EXPORT_SYMBOL(foo); EXPORT_SYMBOL_NS_GPL(bar, BAR_NAMESPACE); will be encoded into the following assembly code: .section ".export_symbol","a" __export_symbol_foo: .asciz "" /* license */ .asciz "" /* name space */ .balign 8 .quad foo /* symbol reference */ .previous .section ".export_symbol","a" __export_symbol_bar: .asciz "GPL" /* license */ .asciz "BAR_NAMESPACE" /* name space */ .balign 8 .quad bar /* symbol reference */ .previous They are mere markers to tell modpost the name, license, and namespace of the symbols. They will be dropped from the final vmlinux and modules because the *(.export_symbol) will go into /DISCARD/ in the linker script. Then, modpost extracts all the information about EXPORT_SYMBOL() from the .export_symbol section, and generates the final C code: KSYMTAB_FUNC(foo, "", ""); KSYMTAB_FUNC(bar, "_gpl", "BAR_NAMESPACE"); KSYMTAB_FUNC() (or KSYMTAB_DATA() if it is data) is expanded to struct kernel_symbol that will be linked to the vmlinux or a module. With this change, EXPORT_SYMBOL() works in the same way for *.c and *.S files, providing the following benefits. [1] Deprecate EXPORT_DATA_SYMBOL() In the old days, EXPORT_SYMBOL() was only available in C files. To export a symbol in *.S, EXPORT_SYMBOL() was placed in a separate *.c file. arch/arm/kernel/armksyms.c is one example written in the classic manner. Commit 22823ab419d8 ("EXPORT_SYMBOL() for asm") removed this limitation. Since then, EXPORT_SYMBOL() can be placed close to the symbol definition in *.S files. It was a nice improvement. However, as that commit mentioned, you need to use EXPORT_DATA_SYMBOL() for data objects on some architectures. In the new approach, modpost checks symbol's type (STT_FUNC or not), and outputs KSYMTAB_FUNC() or KSYMTAB_DATA() accordingly. There are only two users of EXPORT_DATA_SYMBOL: EXPORT_DATA_SYMBOL_GPL(empty_zero_page) (arch/ia64/kernel/head.S) EXPORT_DATA_SYMBOL(ia64_ivt) (arch/ia64/kernel/ivt.S) They are transformed as follows and output into .vmlinux.export.c KSYMTAB_DATA(empty_zero_page, "_gpl", ""); KSYMTAB_DATA(ia64_ivt, "", ""); The other EXPORT_SYMBOL users in ia64 assembly are output as KSYMTAB_FUNC(). EXPORT_DATA_SYMBOL() is now deprecated. [2] merge <linux/export.h> and <asm-generic/export.h> There are two similar header implementations: include/linux/export.h for .c files include/asm-generic/export.h for .S files Ideally, the functionality should be consistent between them, but they tend to diverge. Commit 8651ec01daed ("module: add support for symbol namespaces.") did not support the namespace for *.S files. This commit shifts the essential implementation part to C, which supports EXPORT_SYMBOL_NS() for *.S files. <asm/export.h> and <asm-generic/export.h> will remain as a wrapper of <linux/export.h> for a while. They will be removed after #include <asm/export.h> directives are all replaced with #include <linux/export.h>. [3] Implement CONFIG_TRIM_UNUSED_KSYMS in one-pass algorithm (by a later commit) When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses the directory tree to determine which EXPORT_SYMBOL to trim. If an EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the second traverse, where some source files are recompiled with their EXPORT_SYMBOL() tuned into a no-op. We can do this better now; modpost can selectively emit KSYMTAB entries that are really used by modules. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
2023-06-10kbuild: enable kernel-doc -Wall for W=2Johannes Berg1-1/+3
For W=2, we can enable more kernel-doc warnings, such as missing return value descriptions etc. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-06-10kernel-doc: don't let V=1 change outcomeJohannes Berg1-1/+1
The kernel-doc script currently reports a number of issues only in "verbose" mode, but that's initialized from V=1 (via KBUILD_VERBOSE), so if you use KDOC_WERROR=1 then adding V=1 might actually break the build. This is rather unexpected. Change kernel-doc to not change its behaviour wrt. errors (or warnings) when verbose mode is enabled, but rather add separate warning flags (and -Wall) for it. Allow enabling those flags via environment/make variables in the kernel's build system for easier user use, but to not have to parse them in the script itself. Signed-off-by: Johannes Berg <johannes.berg@intel.com> Acked-by: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2023-05-31rust: upgrade to Rust 1.68.2Miguel Ojeda1-1/+1
This is the first upgrade to the Rust toolchain since the initial Rust merge, from 1.62.0 to 1.68.2 (i.e. the latest). # Context The kernel currently supports only a single Rust version [1] (rather than a minimum) given our usage of some "unstable" Rust features [2] which do not promise backwards compatibility. The goal is to reach a point where we can declare a minimum version for the toolchain. For instance, by waiting for some of the features to be stabilized. Therefore, the first minimum Rust version that the kernel will support is "in the future". # Upgrade policy Given we will eventually need to reach that minimum version, it would be ideal to upgrade the compiler from time to time to be as close as possible to that goal and find any issues sooner. In the extreme, we could upgrade as soon as a new Rust release is out. Of course, upgrading so often is in stark contrast to what one normally would need for GCC and LLVM, especially given the release schedule: 6 weeks for Rust vs. half a year for LLVM and a year for GCC. Having said that, there is no particular advantage to updating slowly either: kernel developers in "stable" distributions are unlikely to be able to use their distribution-provided Rust toolchain for the kernel anyway [3]. Instead, by routinely upgrading to the latest instead, kernel developers using Linux distributions that track the latest Rust release may be able to use those rather than Rust-provided ones, especially if their package manager allows to pin / hold back / downgrade the version for some days during windows where the version may not match. For instance, Arch, Fedora, Gentoo and openSUSE all provide and track the latest version of Rust as they get released every 6 weeks. Then, when the minimum version is reached, we will stop upgrading and decide how wide the window of support will be. For instance, a year of Rust versions. We will probably want to start small, and then widen it over time, just like the kernel did originally for LLVM, see commit 3519c4d6e08e ("Documentation: add minimum clang/llvm version"). # Unstable features stabilized This upgrade allows us to remove the following unstable features since they were stabilized: - `feature(explicit_generic_args_with_impl_trait)` (1.63). - `feature(core_ffi_c)` (1.64). - `feature(generic_associated_types)` (1.65). - `feature(const_ptr_offset_from)` (1.65, *). - `feature(bench_black_box)` (1.66, *). - `feature(pin_macro)` (1.68). The ones marked with `*` apply only to our old `rust` branch, not mainline yet, i.e. only for code that we may potentially upstream. With this patch applied, the only unstable feature allowed to be used outside the `kernel` crate is `new_uninit`, though other code to be upstreamed may increase the list. Please see [2] for details. # Other required changes Since 1.63, `rustdoc` triggers the `broken_intra_doc_links` lint for links pointing to exported (`#[macro_export]`) `macro_rules`. An issue was opened upstream [4], but it turns out it is intended behavior. For the moment, just add an explicit reference for each link. Later we can revisit this if `rustdoc` removes the compatibility measure. Nevertheless, this was helpful to discover a link that was pointing to the wrong place unintentionally. Since that one was actually wrong, it is fixed in a previous commit independently. Another change was the addition of `cfg(no_rc)` and `cfg(no_sync)` in upstream [5], thus remove our original changes for that. Similarly, upstream now tests that it compiles successfully with `#[cfg(not(no_global_oom_handling))]` [6], which allow us to get rid of some changes, such as an `#[allow(dead_code)]`. In addition, remove another `#[allow(dead_code)]` due to new uses within the standard library. Finally, add `try_extend_trusted` and move the code in `spec_extend.rs` since upstream moved it for the infallible version. # `alloc` upgrade and reviewing There are a large amount of changes, but the vast majority of them are due to our `alloc` fork being upgraded at once. There are two kinds of changes to be aware of: the ones coming from upstream, which we should follow as closely as possible, and the updates needed in our added fallible APIs to keep them matching the newer infallible APIs coming from upstream. Instead of taking a look at the diff of this patch, an alternative approach is reviewing a diff of the changes between upstream `alloc` and the kernel's. This allows to easily inspect the kernel additions only, especially to check if the fallible methods we already have still match the infallible ones in the new version coming from upstream. Another approach is reviewing the changes introduced in the additions in the kernel fork between the two versions. This is useful to spot potentially unintended changes to our additions. To apply these approaches, one may follow steps similar to the following to generate a pair of patches that show the differences between upstream Rust and the kernel (for the subset of `alloc` we use) before and after applying this patch: # Get the difference with respect to the old version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > old.patch git -C linux restore rust/alloc # Apply this patch. git -C linux am rust-upgrade.patch # Get the difference with respect to the new version. git -C rust checkout $(linux/scripts/min-tool-version.sh rustc) git -C linux ls-tree -r --name-only HEAD -- rust/alloc | cut -d/ -f3- | grep -Fv README.md | xargs -IPATH cp rust/library/alloc/src/PATH linux/rust/alloc/PATH git -C linux diff --patch-with-stat --summary -R > new.patch git -C linux restore rust/alloc Now one may check the `new.patch` to take a look at the additions (first approach) or at the difference between those two patches (second approach). For the latter, a side-by-side tool is recommended. Link: https://rust-for-linux.com/rust-version-policy [1] Link: https://github.com/Rust-for-Linux/linux/issues/2 [2] Link: https://lore.kernel.org/rust-for-linux/CANiq72mT3bVDKdHgaea-6WiZazd8Mvurqmqegbe5JZxVyLR8Yg@mail.gmail.com/ [3] Link: https://github.com/rust-lang/rust/issues/106142 [4] Link: https://github.com/rust-lang/rust/pull/89891 [5] Link: https://github.com/rust-lang/rust/pull/98652 [6] Reviewed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-By: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Tested-by: Ariel Miculas <amiculas@cisco.com> Tested-by: David Gow <davidgow@google.com> Tested-by: Boqun Feng <boqun.feng@gmail.com> Link: https://lore.kernel.org/r/20230418214347.324156-4-ojeda@kernel.org [ Removed `feature(core_ffi_c)` from `uapi` ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-12rust: add pin-init API coreBenno Lossin1-1/+1
This API is used to facilitate safe pinned initialization of structs. It replaces cumbersome `unsafe` manual initialization with elegant safe macro invocations. Due to the size of this change it has been split into six commits: 1. This commit introducing the basic public interface: traits and functions to represent and create initializers. 2. Adds the `#[pin_data]`, `pin_init!`, `try_pin_init!`, `init!` and `try_init!` macros along with their internal types. 3. Adds the `InPlaceInit` trait that allows using an initializer to create an object inside of a `Box<T>` and other smart pointers. 4. Adds the `PinnedDrop` trait and adds macro support for it in the `#[pin_data]` macro. 5. Adds the `stack_pin_init!` macro allowing to pin-initialize a struct on the stack. 6. Adds the `Zeroable` trait and `init::zeroed` function to initialize types that have `0x00` in all bytes as a valid bit pattern. -- In this section the problem that the new pin-init API solves is outlined. This message describes the entirety of the API, not just the parts introduced in this commit. For a more granular explanation and additional information on pinning and this issue, view [1]. Pinning is Rust's way of enforcing the address stability of a value. When a value gets pinned it will be impossible for safe code to move it to another location. This is done by wrapping pointers to said object with `Pin<P>`. This wrapper prevents safe code from creating mutable references to the object, preventing mutable access, which is needed to move the value. `Pin<P>` provides `unsafe` functions to circumvent this and allow modifications regardless. It is then the programmer's responsibility to uphold the pinning guarantee. Many kernel data structures require a stable address, because there are foreign pointers to them which would get invalidated by moving the structure. Since these data structures are usually embedded in structs to use them, this pinning property propagates to the container struct. Resulting in most structs in both Rust and C code needing to be pinned. So if we want to have a `mutex` field in a Rust struct, this struct also needs to be pinned, because a `mutex` contains a `list_head`. Additionally initializing a `list_head` requires already having the final memory location available, because it is initialized by pointing it to itself. But this presents another challenge in Rust: values have to be initialized at all times. There is the `MaybeUninit<T>` wrapper type, which allows handling uninitialized memory, but this requires using the `unsafe` raw pointers and a casting the type to the initialized variant. This problem gets exacerbated when considering encapsulation and the normal safety requirements of Rust code. The fields of the Rust `Mutex<T>` should not be accessible to normal driver code. After all if anyone can modify the fields, there is no way to ensure the invariants of the `Mutex<T>` are upheld. But if the fields are inaccessible, then initialization of a `Mutex<T>` needs to be somehow achieved via a function or a macro. Because the `Mutex<T>` must be pinned in memory, the function cannot return it by value. It also cannot allocate a `Box` to put the `Mutex<T>` into, because that is an unnecessary allocation and indirection which would hurt performance. The solution in the rust tree (e.g. this commit: [2]) that is replaced by this API is to split this function into two parts: 1. A `new` function that returns a partially initialized `Mutex<T>`, 2. An `init` function that requires the `Mutex<T>` to be pinned and that fully initializes the `Mutex<T>`. Both of these functions have to be marked `unsafe`, since a call to `new` needs to be accompanied with a call to `init`, otherwise using the `Mutex<T>` could result in UB. And because calling `init` twice also is not safe. While `Mutex<T>` initialization cannot fail, other structs might also have to allocate memory, which would result in conditional successful initialization requiring even more manual accommodation work. Combine this with the problem of pin-projections -- the way of accessing fields of a pinned struct -- which also have an `unsafe` API, pinned initialization is riddled with `unsafe` resulting in very poor ergonomics. Not only that, but also having to call two functions possibly multiple lines apart makes it very easy to forget it outright or during refactoring. Here is an example of the current way of initializing a struct with two synchronization primitives (see [3] for the full example): struct SharedState { state_changed: CondVar, inner: Mutex<SharedStateInner>, } impl SharedState { fn try_new() -> Result<Arc<Self>> { let mut state = Pin::from(UniqueArc::try_new(Self { // SAFETY: `condvar_init!` is called below. state_changed: unsafe { CondVar::new() }, // SAFETY: `mutex_init!` is called below. inner: unsafe { Mutex::new(SharedStateInner { token_count: 0 }) }, })?); // SAFETY: `state_changed` is pinned when `state` is. let pinned = unsafe { state.as_mut().map_unchecked_mut(|s| &mut s.state_changed) }; kernel::condvar_init!(pinned, "SharedState::state_changed"); // SAFETY: `inner` is pinned when `state` is. let pinned = unsafe { state.as_mut().map_unchecked_mut(|s| &mut s.inner) }; kernel::mutex_init!(pinned, "SharedState::inner"); Ok(state.into()) } } The pin-init API of this patch solves this issue by providing a comprehensive solution comprised of macros and traits. Here is the example from above using the pin-init API: #[pin_data] struct SharedState { #[pin] state_changed: CondVar, #[pin] inner: Mutex<SharedStateInner>, } impl SharedState { fn new() -> impl PinInit<Self> { pin_init!(Self { state_changed <- new_condvar!("SharedState::state_changed"), inner <- new_mutex!( SharedStateInner { token_count: 0 }, "SharedState::inner", ), }) } } Notably the way the macro is used here requires no `unsafe` and thus comes with the usual Rust promise of safe code not introducing any memory violations. Additionally it is now up to the caller of `new()` to decide the memory location of the `SharedState`. They can choose at the moment `Arc<T>`, `Box<T>` or the stack. -- The API has the following architecture: 1. Initializer traits `PinInit<T, E>` and `Init<T, E>` that act like closures. 2. Macros to create these initializer traits safely. 3. Functions to allow manually writing initializers. The initializers (an `impl PinInit<T, E>`) receive a raw pointer pointing to uninitialized memory and their job is to fully initialize a `T` at that location. If initialization fails, they return an error (`E`) by value. This way of initializing cannot be safely exposed to the user, since it relies upon these properties outside of the control of the trait: - the memory location (slot) needs to be valid memory, - if initialization fails, the slot should not be read from, - the value in the slot should be pinned, so it cannot move and the memory cannot be deallocated until the value is dropped. This is why using an initializer is facilitated by another trait that ensures these requirements. These initializers can be created manually by just supplying a closure that fulfills the same safety requirements as `PinInit<T, E>`. But this is an `unsafe` operation. To allow safe initializer creation, the `pin_init!` is provided along with three other variants: `try_pin_init!`, `try_init!` and `init!`. These take a modified struct initializer as a parameter and generate a closure that initializes the fields in sequence. The macros take great care in upholding the safety requirements: - A shadowed struct type is used as the return type of the closure instead of `()`. This is to prevent early returns, as these would prevent full initialization. - To ensure every field is only initialized once, a normal struct initializer is placed in unreachable code. The type checker will emit errors if a field is missing or specified multiple times. - When initializing a field fails, the whole initializer will fail and automatically drop fields that have been initialized earlier. - Only the correct initializer type is allowed for unpinned fields. You cannot use a `impl PinInit<T, E>` to initialize a structurally not pinned field. To ensure the last point, an additional macro `#[pin_data]` is needed. This macro annotates the struct itself and the user specifies structurally pinned and not pinned fields. Because dropping a pinned struct is also not allowed to break the pinning invariants, another macro attribute `#[pinned_drop]` is needed. This macro is introduced in a following commit. These two macros also have mechanisms to ensure the overall safety of the API. Additionally, they utilize a combined proc-macro, declarative macro design: first a proc-macro enables the outer attribute syntax `#[...]` and does some important pre-parsing. Notably this prepares the generics such that the declarative macro can handle them using token trees. Then the actual parsing of the structure and the emission of code is handled by a declarative macro. For pin-projections the crates `pin-project` [4] and `pin-project-lite` [5] had been considered, but were ultimately rejected: - `pin-project` depends on `syn` [6] which is a very big dependency, around 50k lines of code. - `pin-project-lite` is a more reasonable 5k lines of code, but contains a very complex declarative macro to parse generics. On top of that it would require modification that would need to be maintained independently. Link: https://rust-for-linux.com/the-safe-pinned-initialization-problem [1] Link: https://github.com/Rust-for-Linux/linux/tree/0a04dc4ddd671efb87eef54dde0fb38e9074f4be [2] Link: https://github.com/Rust-for-Linux/linux/blob/f509ede33fc10a07eba3da14aa00302bd4b5dddd/samples/rust/rust_miscdev.rs [3] Link: https://crates.io/crates/pin-project [4] Link: https://crates.io/crates/pin-project-lite [5] Link: https://crates.io/crates/syn [6] Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Wedson Almeida Filho <wedsonaf@gmail.com> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Link: https://lore.kernel.org/r/20230408122429.1103522-7-y86-dev@protonmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-12rust: enable the `pin_macro` featureBenno Lossin1-1/+1
This feature enables the use of the `pin!` macro for the `stack_pin_init!` macro. This feature is already stabilized in Rust version 1.68. Signed-off-by: Benno Lossin <benno.lossin@proton.me> Reviewed-by: Alice Ryhl <aliceryhl@google.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Acked-by: Boqun Feng <boqun.feng@gmail.com> Link: https://lore.kernel.org/r/20230408122429.1103522-2-y86-dev@protonmail.com Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-04-10rust: Enable the new_uninit feature for kernel and driver cratesAsahi Lina1-1/+1
The unstable new_uninit feature enables various library APIs to create uninitialized containers, such as `Box::assume_init()`. This is necessary to build abstractions that directly initialize memory at the target location, instead of doing copies through the stack. Will be used by the DRM scheduler abstraction in the kernel crate, and by field-wise initialization (e.g. using `place!()` or a future replacement macro which may itself live in `kernel`) in driver crates. Link: https://github.com/Rust-for-Linux/linux/issues/879 Link: https://github.com/Rust-for-Linux/linux/issues/2 Link: https://github.com/rust-lang/rust/issues/63291 Signed-off-by: Asahi Lina <lina@asahilina.net> Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Reviewed-by: Gary Guo <gary@garyguo.net> Reviewed-by: Andreas Hindborg <a.hindborg@samsung.com> Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com> Link: https://lore.kernel.org/r/20230224-rust-new_uninit-v1-1-c951443d9e26@asahilina.net [ Reworded to use `Link` tags. ] Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2023-01-22kbuild: remove sed commands after rustc rulesMasahiro Yamada1-14/+4
rustc may put comments in dep-info, so sed is used to drop them before passing it to fixdep. Now that fixdep can remove comments, Makefiles do not need to run sed. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Miguel Ojeda <ojeda@kernel.org> Tested-by: Miguel Ojeda <ojeda@kernel.org> Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
2023-01-22kbuild: specify output names separately for each emission type from rustcMasahiro Yamada1-7/+7
In Kbuild, two different rules must not write to the same file, but it happens when compiling rust source files. For example, set CONFIG_SAMPLE_RUST_MINIMAL=m and run the following: $ make -j$(nproc) samples/rust/rust_minimal.o samples/rust/rust_minimal.rsi \ samples/rust/rust_minimal.s samples/rust/rust_minimal.ll [snip] RUSTC [M] samples/rust/rust_minimal.o RUSTC [M] samples/rust/rust_minimal.rsi RUSTC [M] samples/rust/rust_minimal.s RUSTC [M] samples/rust/rust_minimal.ll mv: cannot stat 'samples/rust/rust_minimal.d': No such file or directory make[3]: *** [scripts/Makefile.build:334: samples/rust/rust_minimal.ll] Error 1 make[3]: *** Waiting for unfinished jobs.... mv: cannot stat 'samples/rust/rust_minimal.d': No such file or directory make[3]: *** [scripts/Makefile.build:309: samples/rust/rust_minimal.o] Error 1 mv: cannot stat 'samples/rust/rust_minimal.d': No such file or directory make[3]: *** [scripts/Makefile.build:326: samples/rust/rust_minimal.s] Error 1 make[2]: *** [scripts/Makefile.build:504: samples/rust] Error 2 make[1]: *** [scripts/Makefile.build:504: samples] Error 2 make: *** [Makefile:2008: .] Error 2 The reason for the error is that 4 threads running in parallel renames the same file, samples/rust/rust_minimal.d. This does not happen when compiling C or assembly files because -Wp,-MMD,$(depfile) explicitly specifies the dependency filepath. $(depfile) is a unique path for each target. Currently, rustc is only given --out-dir and --emit=<list-of-types> So, all the rust build rules output the dep-info into the default <CRATE_NAME>.d, which causes the path conflict. Fortunately, the --emit option is able to specify the output path individually, with the form --emit=<type>=<path>. Add --emit=dep-info=$(depfile) to the common part. Also, remove the redundant --out-dir because the output path is specified for each type. The code gets much cleaner because we do not need to rename *.d files. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Miguel Ojeda <ojeda@kernel.org> Tested-by: Miguel Ojeda <ojeda@kernel.org> Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
2022-12-19Merge tag 'kbuild-v6.2' of ↵Linus Torvalds1-6/+8
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Support zstd-compressed debug info - Allow W=1 builds to detect objects shared among multiple modules - Add srcrpm-pkg target to generate a source RPM package - Make the -s option detection work for future GNU Make versions - Add -Werror to KBUILD_CPPFLAGS when CONFIG_WERROR=y - Allow W=1 builds to detect -Wundef warnings in any preprocessed files - Raise the minimum supported version of binutils to 2.25 - Use $(intcmp ...) to compare integers if GNU Make >= 4.4 is used - Use $(file ...) to read a file if GNU Make >= 4.2 is used - Print error if GNU Make older than 3.82 is used - Allow modpost to detect section mismatches with Clang LTO - Include vmlinuz.efi into kernel tarballs for arm64 CONFIG_EFI_ZBOOT=y * tag 'kbuild-v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (29 commits) buildtar: fix tarballs with EFI_ZBOOT enabled modpost: Include '.text.*' in TEXT_SECTIONS padata: Mark padata_work_init() as __ref kbuild: ensure Make >= 3.82 is used kbuild: refactor the prerequisites of the modpost rule kbuild: change module.order to list *.o instead of *.ko kbuild: use .NOTINTERMEDIATE for future GNU Make versions kconfig: refactor Makefile to reduce process forks kbuild: add read-file macro kbuild: do not sort after reading modules.order kbuild: add test-{ge,gt,le,lt} macros Documentation: raise minimum supported version of binutils to 2.25 kbuild: add -Wundef to KBUILD_CPPFLAGS for W=1 builds kbuild: move -Werror from KBUILD_CFLAGS to KBUILD_CPPFLAGS kbuild: Port silent mode detection to future gnu make. init/version.c: remove #include <generated/utsrelease.h> firmware_loader: remove #include <generated/utsrelease.h> modpost: Mark uuid_le type to be suitable only for MEI kbuild: add ability to make source rpm buildable using koji kbuild: warn objects shared among multiple modules ...
2022-12-14kbuild: change module.order to list *.o instead of *.koMasahiro Yamada1-1/+1
scripts/Makefile.build replaces the suffix .o with .ko, then scripts/Makefile.modpost calls the sed command to change .ko back to the original .o suffix. Instead of converting the suffixes back-and-forth, store the .o paths in modules.order, and replace it with .ko in 'make modules_install'. This avoids the unneeded sed command. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
2022-11-22kbuild: warn objects shared among multiple modulesMasahiro Yamada1-0/+6
If an object is shared among multiple modules, and some of them are configured as 'm', but the others as 'y', the shared object is built as modular, then linked to the modules and vmlinux. This is a potential issue because the expected CFLAGS are different between modules and builtins. Commit 637a642f5ca5 ("zstd: Fixing mixed module-builtin objects") reported that this could be even more fatal in some cases such as Clang LTO. That commit fixed lib/zlib/zstd_{compress,decompress}, but there are still more instances of breakage. This commit adds a W=1 warning for shared objects, so that the kbuild test robot, which provides build tests with W=1, will avoid a new breakage slipping in. Quick compile tests on v6.1-rc4 detected the following: scripts/Makefile.build:252: ./drivers/block/rnbd/Makefile: rnbd-common.o is added to multiple modules: rnbd-client rnbd-server scripts/Makefile.build:252: ./drivers/crypto/marvell/octeontx2/Makefile: cn10k_cpt.o is added to multiple modules: rvu_cptpf rvu_cptvf scripts/Makefile.build:252: ./drivers/crypto/marvell/octeontx2/Makefile: otx2_cptlf.o is added to multiple modules: rvu_cptpf rvu_cptvf scripts/Makefile.build:252: ./drivers/crypto/marvell/octeontx2/Makefile: otx2_cpt_mbox_common.o is added to multiple modules: rvu_cptpf rvu_cptvf scripts/Makefile.build:252: ./drivers/edac/Makefile: skx_common.o is added to multiple modules: i10nm_edac skx_edac scripts/Makefile.build:252: ./drivers/gpu/drm/bridge/imx/Makefile: imx-ldb-helper.o is added to multiple modules: imx8qm-ldb imx8qxp-ldb scripts/Makefile.build:252: ./drivers/mfd/Makefile: rsmu_core.o is added to multiple modules: rsmu-i2c rsmu-spi scripts/Makefile.build:252: ./drivers/mtd/tests/Makefile: mtd_test.o is added to multiple modules: mtd_nandbiterrs mtd_oobtest mtd_pagetest mtd_readtest mtd_speedtest mtd_stresstest mtd_subpagetest mtd_torturetest scripts/Makefile.build:252: ./drivers/net/dsa/ocelot/Makefile: felix.o is added to multiple modules: mscc_felix mscc_seville scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: cn23xx_pf_device.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: cn23xx_vf_device.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: cn66xx_device.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: cn68xx_device.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: lio_core.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: lio_ethtool.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: octeon_device.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: octeon_droq.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: octeon_mailbox.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: octeon_mem_ops.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: octeon_nic.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: request_manager.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/cavium/liquidio/Makefile: response_manager.o is added to multiple modules: liquidio liquidio_vf scripts/Makefile.build:252: ./drivers/net/ethernet/freescale/dpaa2/Makefile: dpaa2-mac.o is added to multiple modules: fsl-dpaa2-eth fsl-dpaa2-switch scripts/Makefile.build:252: ./drivers/net/ethernet/freescale/dpaa2/Makefile: dpmac.o is added to multiple modules: fsl-dpaa2-eth fsl-dpaa2-switch scripts/Makefile.build:252: ./drivers/net/ethernet/freescale/enetc/Makefile: enetc_cbdr.o is added to multiple modules: fsl-enetc fsl-enetc-vf scripts/Makefile.build:252: ./drivers/net/ethernet/freescale/enetc/Makefile: enetc_ethtool.o is added to multiple modules: fsl-enetc fsl-enetc-vf scripts/Makefile.build:252: ./drivers/net/ethernet/freescale/enetc/Makefile: enetc.o is added to multiple modules: fsl-enetc fsl-enetc-vf scripts/Makefile.build:252: ./drivers/net/ethernet/hisilicon/hns3/Makefile: hns3_common/hclge_comm_cmd.o is added to multiple modules: hclge hclgevf scripts/Makefile.build:252: ./drivers/net/ethernet/hisilicon/hns3/Makefile: hns3_common/hclge_comm_rss.o is added to multiple modules: hclge hclgevf scripts/Makefile.build:252: ./drivers/net/ethernet/hisilicon/hns3/Makefile: hns3_common/hclge_comm_tqp_stats.o is added to multiple modules: hclge hclgevf scripts/Makefile.build:252: ./drivers/net/ethernet/marvell/octeontx2/nic/Makefile: otx2_dcbnl.o is added to multiple modules: rvu_nicpf rvu_nicvf scripts/Makefile.build:252: ./drivers/net/ethernet/marvell/octeontx2/nic/Makefile: otx2_devlink.o is added to multiple modules: rvu_nicpf rvu_nicvf scripts/Makefile.build:252: ./drivers/net/ethernet/ti/Makefile: cpsw_ale.o is added to multiple modules: keystone_netcp keystone_netcp_ethss ti_cpsw ti_cpsw_new scripts/Makefile.build:252: ./drivers/net/ethernet/ti/Makefile: cpsw_ethtool.o is added to multiple modules: ti_cpsw ti_cpsw_new scripts/Makefile.build:252: ./drivers/net/ethernet/ti/Makefile: cpsw_priv.o is added to multiple modules: ti_cpsw ti_cpsw_new scripts/Makefile.build:252: ./drivers/net/ethernet/ti/Makefile: cpsw_sl.o is added to multiple modules: ti_cpsw ti_cpsw_new scripts/Makefile.build:252: ./drivers/net/ethernet/ti/Makefile: davinci_cpdma.o is added to multiple modules: ti_cpsw ti_cpsw_new ti_davinci_emac scripts/Makefile.build:252: ./drivers/platform/x86/intel/int3472/Makefile: common.o is added to multiple modules: intel_skl_int3472_discrete intel_skl_int3472_tps68470 scripts/Makefile.build:252: ./sound/soc/codecs/Makefile: wcd-clsh-v2.o is added to multiple modules: snd-soc-wcd9335 snd-soc-wcd934x snd-soc-wcd938x Once all the warnings are fixed, it can become an error without the W= option. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Alexander Lobakin <alobakin@pm.me> Tested-by: Alexander Lobakin <alobakin@pm.me> Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
2022-11-22kbuild: add kbuild-file macroMasahiro Yamada1-5/+1
While building, installing, cleaning, Kbuild visits sub-directories and includes 'Kbuild' or 'Makefile' that exists there. Add 'kbuild-file' macro, and reuse it from scripts/Makefie.* Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nicolas Schier <nicolas@fjasle.eu> Reviewed-by: Alexander Lobakin <alobakin@pm.me> Tested-by: Alexander Lobakin <alobakin@pm.me>
2022-11-18kbuild: Cleanup DT Overlay intermediate files as appropriateAndrew Davis1-0/+2
%.dtbo.o and %.dtbo.S files are used to build-in DT Overlay. They should should not be removed by Make or the kernel will be needlessly rebuilt. These should be removed by "clean" and ignored by git like other intermediate files. Reported-by: Andy Shevchenko <andriy.shevchenko@intel.com> Signed-off-by: Andrew Davis <afd@ti.com> Fixes: 941214a512d8 ("kbuild: Allow DTB overlays to built into .dtbo.S files") Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Acked-by: Masahiro Yamada <masahiroy@kernel.org> Link: https://lore.kernel.org/r/20221114205939.27994-1-afd@ti.com Signed-off-by: Rob Herring <robh@kernel.org>
2022-10-14kbuild: add -fno-discard-value-names to cmd_cc_ll_cNick Desaulniers1-1/+1
When debugging LLVM IR, it can be handy for clang to not discard value names used for local variables and parameters. Compare the generated IR. -fdiscard-value-names: define i32 @core_sys_select(i32 %0, ptr %1, ptr %2, ptr %3, ptr %4) { %6 = alloca i64 %7 = alloca %struct.poll_wqueues %8 = alloca [64 x i32] -fno-discard-value-names: define i32 @core_sys_select(i32 %n, ptr %inp, ptr %outp, ptr %exp, ptr %end_time) { %expire.i = alloca i64 %table.i = alloca %struct.poll_wqueues %stack_fds = alloca [64 x i32] The rule for generating human readable LLVM IR (.ll) is only useful as a debugging feature: $ make LLVM=1 fs/select.ll As Fangrui notes: A LLVM_ENABLE_ASSERTIONS=off build of Clang defaults to -fdiscard-value-names. A LLVM_ENABLE_ASSERTIONS=on build of Clang defaults to -fno-discard-value-names. Explicitly enable -fno-discard-value-names so that the IR always contains value names regardless of whether assertions were enabled or not. Assertions generally are not enabled in releases of clang packaged by distributions. Link: https://github.com/ClangBuiltLinux/linux/issues/1467 Reviewed-by: Nathan Chancellor <nathan@kernel.org> Reviewed-by: Fangrui Song <maskray@google.com> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2022-10-10Merge tag 'kbuild-v6.1' of ↵Linus Torvalds1-39/+17
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Remove potentially incomplete targets when Kbuid is interrupted by SIGINT etc in case GNU Make may miss to do that when stderr is piped to another program. - Rewrite the single target build so it works more correctly. - Fix rpm-pkg builds with V=1. - List top-level subdirectories in ./Kbuild. - Ignore auto-generated __kstrtab_* and __kstrtabns_* symbols in kallsyms. - Avoid two different modules in lib/zstd/ having shared code, which potentially causes building the common code as build-in and modular back-and-forth. - Unify two modpost invocations to optimize the build process. - Remove head-y syntax in favor of linker scripts for placing particular sections in the head of vmlinux. - Bump the minimal GNU Make version to 3.82. - Clean up misc Makefiles and scripts. * tag 'kbuild-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (41 commits) docs: bump minimal GNU Make version to 3.82 ia64: simplify esi object addition in Makefile Revert "kbuild: Check if linker supports the -X option" kbuild: rebuild .vmlinux.export.o when its prerequisite is updated kbuild: move modules.builtin(.modinfo) rules to Makefile.vmlinux_o zstd: Fixing mixed module-builtin objects kallsyms: ignore __kstrtab_* and __kstrtabns_* symbols kallsyms: take the input file instead of reading stdin kallsyms: drop duplicated ignore patterns from kallsyms.c kbuild: reuse mksysmap output for kallsyms mksysmap: update comment about __crc_* kbuild: remove head-y syntax kbuild: use obj-y instead extra-y for objects placed at the head kbuild: hide error checker logs for V=1 builds kbuild: re-run modpost when it is updated kbuild: unify two modpost invocations kbuild: move vmlinux.o rule to the top Makefile kbuild: move .vmlinux.objs rule to Makefile.modpost kbuild: list sub-directories in ./Kbuild Makefile.compiler: replace cc-ifversion with compiler-specific macros ...
2022-09-28kbuild: fix and refactor single target buildMasahiro Yamada1-38/+16
The single target build has a subtle bug for the combination for an individual file and a subdirectory. [1] 'make kernel/fork.i' builds only kernel/fork.i $ make kernel/fork.i CALL scripts/checksyscalls.sh DESCEND objtool CPP kernel/fork.i [2] 'make kernel/' builds only under the kernel/ directory. $ make kernel/ CALL scripts/checksyscalls.sh DESCEND objtool CC kernel/fork.o CC kernel/exec_domain.o [snip] CC kernel/rseq.o AR kernel/built-in.a But, if you try to do [1] and [2] in a single command, you will get only [1] with a weird log: $ make kernel/fork.i kernel/ CALL scripts/checksyscalls.sh DESCEND objtool CPP kernel/fork.i make[2]: Nothing to be done for 'kernel/'. With 'make kernel/fork.i kernel/', you should get both [1] and [2]. Rewrite the single target build. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2022-09-28kbuild: do not deduplicate modules.orderMasahiro Yamada1-1/+1
The AWK code was added to deduplicate modules.order in case $(obj-m) contains the same module multiple times, but it is actually unneeded since commit b2c885549122 ("kbuild: update modules.order only when contained modules are updated"). The list is already deduplicated before being processed by AWK because $^ is the deduplicated list of prerequisites. (Please note the real-prereqs macro uses $^) Yet, modules.order will contain duplication if two different Makefiles build the same module: foo/Makefile: obj-m += bar/baz.o foo/bar/Makefile: obj-m += baz.o However, the parallel builds cannot properly handle this case in the first place. So, it is better to let it fail (as already done by scripts/modules-check.sh). Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2022-09-28Kbuild: add Rust supportMiguel Ojeda1-0/+60
Having most of the new files in place, we now enable Rust support in the build system, including `Kconfig` entries related to Rust, the Rust configuration printer and a few other bits. Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Co-developed-by: Alex Gaynor <alex.gaynor@gmail.com> Signed-off-by: Alex Gaynor <alex.gaynor@gmail.com> Co-developed-by: Finn Behrens <me@kloenk.de> Signed-off-by: Finn Behrens <me@kloenk.de> Co-developed-by: Adam Bratschi-Kaye <ark.email@gmail.com> Signed-off-by: Adam Bratschi-Kaye <ark.email@gmail.com> Co-developed-by: Wedson Almeida Filho <wedsonaf@google.com> Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com> Co-developed-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Co-developed-by: Sven Van Asbroeck <thesven73@gmail.com> Signed-off-by: Sven Van Asbroeck <thesven73@gmail.com> Co-developed-by: Gary Guo <gary@garyguo.net> Signed-off-by: Gary Guo <gary@garyguo.net> Co-developed-by: Boris-Chengbiao Zhou <bobo1239@web.de> Signed-off-by: Boris-Chengbiao Zhou <bobo1239@web.de> Co-developed-by: Boqun Feng <boqun.feng@gmail.com> Signed-off-by: Boqun Feng <boqun.feng@gmail.com> Co-developed-by: Douglas Su <d0u9.su@outlook.com> Signed-off-by: Douglas Su <d0u9.su@outlook.com> Co-developed-by: Dariusz Sosnowski <dsosnowski@dsosnowski.pl> Signed-off-by: Dariusz Sosnowski <dsosnowski@dsosnowski.pl> Co-developed-by: Antonio Terceiro <antonio.terceiro@linaro.org> Signed-off-by: Antonio Terceiro <antonio.terceiro@linaro.org> Co-developed-by: Daniel Xu <dxu@dxuuu.xyz> Signed-off-by: Daniel Xu <dxu@dxuuu.xyz> Co-developed-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Signed-off-by: Björn Roy Baron <bjorn3_gh@protonmail.com> Co-developed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com> Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2022-07-27kbuild: remove sed command from cmd_ar_builtinMasahiro Yamada1-3/+2
Replace a pipeline of echo and sed with printf to decrease process forks. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
2022-06-07kbuild: avoid regex RS for POSIX awkKevin Locke1-2/+2
In 22f26f21774f8 awk was added to deduplicate *.mod files. The awk invocation passes -v RS='( |\n)' to match a space or newline character as the record separator. Unfortunately, POSIX states[1] > If RS contains more than one character, the results are unspecified. Some implementations (such as the One True Awk[2] used by the BSDs) do not treat RS as a regular expression. When awk does not support regex RS, build failures such as the following are produced (first error using allmodconfig): CC [M] arch/x86/events/intel/uncore.o CC [M] arch/x86/events/intel/uncore_nhmex.o CC [M] arch/x86/events/intel/uncore_snb.o CC [M] arch/x86/events/intel/uncore_snbep.o CC [M] arch/x86/events/intel/uncore_discovery.o LD [M] arch/x86/events/intel/intel-uncore.o ld: cannot find uncore_nhmex.o: No such file or directory ld: cannot find uncore_snb.o: No such file or directory ld: cannot find uncore_snbep.o: No such file or directory ld: cannot find uncore_discovery.o: No such file or directory make[3]: *** [scripts/Makefile.build:422: arch/x86/events/intel/intel-uncore.o] Error 1 make[2]: *** [scripts/Makefile.build:487: arch/x86/events/intel] Error 2 make[1]: *** [scripts/Makefile.build:487: arch/x86/events] Error 2 make: *** [Makefile:1839: arch/x86] Error 2 To avoid this, use printf(1) to produce a newline between each object path, instead of the space produced by echo(1), so that the default RS can be used by awk. [1]: https://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html [2]: https://github.com/onetrueawk/awk Fixes: 22f26f21774f ("kbuild: get rid of duplication in *.mod files") Signed-off-by: Kevin Locke <kevin@kevinlocke.name> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2022-06-05kbuild: factor out the common objtool argumentsMasahiro Yamada1-26/+0
scripts/Makefile.build and scripts/link-vmlinux.sh have similar setups for the objtool arguments. It was difficult to factor out them because all the vmlinux build rules were written in a shell script. It is somewhat tedious to touch the two files every time a new objtool option is supported. To reduce the code duplication, move the objtool for vmlinux.o into scripts/Makefile.vmlinux_o. Then, move the common macros to Makefile.lib so they are shared between Makefile.build and Makefile.vmlinux_o. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM-14 (x86-64)
2022-06-01kbuild: rebuild multi-object modules when objtool is updatedMasahiro Yamada1-3/+8
When CONFIG_LTO_CLANG or CONFIG_X86_KERNEL_IBT is enabled, objtool for multi-object modules is postponed until the objects are linked together. Make sure to re-run objtool and re-link multi-object modules when objtool is updated. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Tested-by: Nathan Chancellor <nathan@kernel.org> Reviewed-by: Nicolas Schier <n.schier@avm.de> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM-14 (x86-64)
2022-06-01kbuild: make *.mod rule robust against too long argument errorMasahiro Yamada1-2/+4
Like built-in.a, the command length of the *.mod rule scales with the depth of the directory times the number of objects in the Makefile. Add $(obj)/ by the shell command (awk) instead of by Make's builtin function. In-tree modules still have some room to the limit (ARG_MAX=2097152), but this is more future-proof for big modules in a deep directory. For example, you can build i915 as a module (CONFIG_DRM_I915=m) and compare drivers/gpu/drm/i915/.i915.mod.cmd with/without this commit. The issue is more critical for external modules because the M= path can be very long as Jeff Johnson reported before [1]. [1] https://lore.kernel.org/linux-kbuild/4c02050c4e95e4cb8cc04282695f8404@codeaurora.org/ Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nicolas Schier <nicolas@fjasle.eu> Tested-by: Nathan Chancellor <nathan@kernel.org> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM-14 (x86-64)
2022-06-01kbuild: make built-in.a rule robust against too long argument errorMasahiro Yamada1-1/+6
Kbuild runs at the top of objtree instead of changing the working directory to subdirectories. I think this design is nice overall but some commands have a scalability issue. The build command of built-in.a is one of them whose length scales with: O(D * N) Here, D is the length of the directory path (i.e. $(obj)/ prefix), N is the number of objects in the Makefile, O() is the big O notation. The deeper directory the Makefile directory is located, the more easily it will hit the too long argument error. We can make it better. Trim the $(obj)/ by Make's builtin function, and restore it by a shell command (sed). With this, the command length scales with: O(D + N) In-tree modules still have some room to the limit (ARG_MAX=2097152), but this is more future-proof for big modules in a deep directory. For example, you can build i915 as builtin (CONFIG_DRM_I915=y) and compare drivers/gpu/drm/i915/.built-in.a.cmd with/without this commit. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nicolas Schier <nicolas@fjasle.eu> Tested-by: Nathan Chancellor <nathan@kernel.org> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM-14 (x86-64)
2022-06-01kbuild: check static EXPORT_SYMBOL* by script instead of modpostMasahiro Yamada1-0/+4
The 'static' specifier and EXPORT_SYMBOL() are an odd combination. Commit 15bfc2348d54 ("modpost: check for static EXPORT_SYMBOL* functions") tried to detect it, but this check has false negatives. Here is the sample code. Makefile: obj-y += foo1.o foo2.o foo1.c: #include <linux/export.h> static void foo(void) {} EXPORT_SYMBOL(foo); foo2.c: void foo(void) {} foo1.c exports the static symbol 'foo', but modpost cannot catch it because it is fooled by foo2.c, which has a global symbol with the same name. s->is_static is cleared if a global symbol with the same name is found somewhere, but EXPORT_SYMBOL() and the global symbol do not necessarily belong to the same compilation unit. This check should be done per compilation unit, but I do not know how to do it in modpost. modpost runs against vmlinux.o or modules, which merges multiple objects, then forgets their origin. modpost cannot parse individual objects because they may not be ELF but LLVM IR when CONFIG_LTO_CLANG=y. Add a simple bash script to parse the output from ${NM}. This works for CONFIG_LTO_CLANG=y because llvm-nm can dump symbols of LLVM IR files. Revert 15bfc2348d54. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Nathan Chancellor <nathan@kernel.org> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM-14 (x86-64)
2022-05-29kbuild: do not create *.prelink.o for Clang LTO or IBTMasahiro Yamada1-43/+20
When CONFIG_LTO_CLANG=y, additional intermediate *.prelink.o is created for each module. Also, objtool is postponed until LLVM IR is converted to ELF. CONFIG_X86_KERNEL_IBT works in a similar way to postpone objtool until objects are merged together. This commit stops generating *.prelink.o, so the build flow will look similar with/without LTO. The following figures show how the LTO build currently works, and how this commit is changing it. Current build flow ================== [1] single-object module $(LD) $(CC) +objtool $(LD) foo.c --------------------> foo.o -----> foo.prelink.o -----> foo.ko (LLVM IR) (ELF) | (ELF) | foo.mod.o --/ (LLVM IR) [2] multi-object module $(LD) $(CC) $(AR) +objtool $(LD) foo1.c -----> foo1.o -----> foo.o -----> foo.prelink.o -----> foo.ko | (archive) (ELF) | (ELF) foo2.c -----> foo2.o --/ | (LLVM IR) foo.mod.o --/ (LLVM IR) One confusion is that foo.o in multi-object module is an archive despite of its suffix. New build flow ============== [1] single-object module Since there is only one object, there is no need to keep the LLVM IR. Use $(CC)+$(LD) to generate an ELF object in one build rule. When LTO is disabled, $(LD) is unneeded because $(CC) produces an ELF object. $(CC)+$(LD)+objtool $(LD) foo.c ----------------------------> foo.o ---------> foo.ko (ELF) | (ELF) | foo.mod.o --/ (LLVM IR) [2] multi-object module Previously, $(AR) was used to combine LLVM IR files into an archive, but there was no technical reason to do so. Use $(LD) to merge them into a single ELF object. $(LD) $(CC) +objtool $(LD) foo1.c ---------> foo1.o ---------> foo.o ---------> foo.ko | (ELF) | (ELF) foo2.c ---------> foo2.o ----/ | (LLVM IR) foo.mod.o --/ (LLVM IR) Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Nicolas Schier <nicolas@fjasle.eu> Tested-by: Nathan Chancellor <nathan@kernel.org> Reviewed-by: Sami Tolvanen <samitolvanen@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM-14 (x86-64) Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
2022-05-29kbuild: replace $(linked-object) with CONFIG optionsMasahiro Yamada1-2/+1
*.prelink.o is created when CONFIG_LTO_CLANG or CONFIG_X86_KERNEL_IBT is enabled. Replace $(linked-object) with $(CONFIG_LTO_CLANG)$(CONFIG_X86_KERNEL_IBT) so you will get a quick idea of when the --link option is passed. No functional change is intended. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM-14
2022-05-26Merge tag 'kbuild-v5.19' of ↵Linus Torvalds1-94/+39
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Add HOSTPKG_CONFIG env variable to allow users to override pkg-config - Support W=e as a shorthand for KCFLAGS=-Werror - Fix CONFIG_IKHEADERS build to support toybox cpio - Add scripts/dummy-tools/pahole to ease distro packagers' life - Suppress false-positive warnings from checksyscalls.sh for W=2 build - Factor out the common code of arch/*/boot/install.sh into scripts/install.sh - Support 'kernel-install' tool in scripts/prune-kernel - Refactor module-versioning to link the symbol versions at the final link of vmlinux and modules - Remove CONFIG_MODULE_REL_CRCS because module-versioning now works in an arch-agnostic way - Refactor modpost, Makefiles * tag 'kbuild-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (56 commits) genksyms: adjust the output format to modpost kbuild: stop merging *.symversions kbuild: link symbol CRCs at final link, removing CONFIG_MODULE_REL_CRCS modpost: extract symbol versions from *.cmd files modpost: add sym_find_with_module() helper modpost: change the license of EXPORT_SYMBOL to bool type modpost: remove left-over cross_compile declaration kbuild: record symbol versions in *.cmd files kbuild: generate a list of objects in vmlinux modpost: move *.mod.c generation to write_mod_c_files() modpost: merge add_{intree_flag,retpoline,staging_flag} to add_header scripts/prune-kernel: Use kernel-install if available kbuild: factor out the common installation code into scripts/install.sh modpost: split new_symbol() to symbol allocation and hash table addition modpost: make sym_add_exported() always allocate a new symbol modpost: make multiple export error modpost: dump Module.symvers in the same order of modules.order modpost: traverse the namespace_list in order modpost: use doubly linked list for dump_lists modpost: traverse unresolved symbols in order ...