Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit 05a82481a3024b94db00b8c816bb3d526b5209e0 ]
All entries in 'rds_ib_stat_names' are stringified versions
of the corresponding "struct rds_ib_statistics" element
without the "s_"-prefix.
Fix entry 'ib_evt_handler_call' to do the same.
Fixes: f4f943c958a2 ("RDS: IB: ack more receive completions to improve performance")
Signed-off-by: Gerd Rausch <gerd.rausch@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 55c70ca00c982fbc0df4c4d3e31747fb73f4ddb5 ]
In a previous commit, fields were added to "struct rds_statistics"
but array "rds_stat_names" was not updated accordingly.
Please note the inconsistent naming of the string representations
that is done in the name of compatibility
with the Oracle internal code-base.
s_recv_bytes_added_to_socket -> "recv_bytes_added_to_sock"
s_recv_bytes_removed_from_socket -> "recv_bytes_freed_fromsock"
Fixes: 192a798f5299 ("RDS: add stat for socket recv memory usage")
Signed-off-by: Gerd Rausch <gerd.rausch@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d64bf89a75b65f83f06be9fb8f978e60d53752db ]
rds_ibdev:ipaddr_list and rds_ibdev:conn_list are initialized
after allocation some resources such as protection domain.
If allocation of such resources fail, then these uninitialized
variables are accessed in rds_ib_dev_free() in failure path. This
can potentially crash the system. The code has been updated to
initialize these variables very early in the function.
Signed-off-by: Dotan Barak <dotanb@dev.mellanox.co.il>
Signed-off-by: Sudhakar Dindukurti <sudhakar.dindukurti@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 85cb928787eab6a2f4ca9d2a798b6f3bed53ced1 ]
When the following tests last for several hours, the problem will occur.
Server:
rds-stress -r 1.1.1.16 -D 1M
Client:
rds-stress -r 1.1.1.14 -s 1.1.1.16 -D 1M -T 30
The following will occur.
"
Starting up....
tsks tx/s rx/s tx+rx K/s mbi K/s mbo K/s tx us/c rtt us cpu
%
1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00
1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00
1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00
1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00
"
>From vmcore, we can find that clean_list is NULL.
>From the source code, rds_mr_flushd calls rds_ib_mr_pool_flush_worker.
Then rds_ib_mr_pool_flush_worker calls
"
rds_ib_flush_mr_pool(pool, 0, NULL);
"
Then in function
"
int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
int free_all, struct rds_ib_mr **ibmr_ret)
"
ibmr_ret is NULL.
In the source code,
"
...
list_to_llist_nodes(pool, &unmap_list, &clean_nodes, &clean_tail);
if (ibmr_ret)
*ibmr_ret = llist_entry(clean_nodes, struct rds_ib_mr, llnode);
/* more than one entry in llist nodes */
if (clean_nodes->next)
llist_add_batch(clean_nodes->next, clean_tail, &pool->clean_list);
...
"
When ibmr_ret is NULL, llist_entry is not executed. clean_nodes->next
instead of clean_nodes is added in clean_list.
So clean_nodes is discarded. It can not be used again.
The workqueue is executed periodically. So more and more clean_nodes are
discarded. Finally the clean_list is NULL.
Then this problem will occur.
Fixes: 1bc144b62524 ("net, rds, Replace xlist in net/rds/xlist.h with llist")
Signed-off-by: Zhu Yanjun <yanjun.zhu@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 4b9fc7146249a6e0e3175d0acc033fdcd2bfcb17 ]
Before the commit 490ea5967b0d ("RDS: IB: move FMR code to its own file"),
when the dirty_count is greater than 9/10 of max_items of 8K pool,
1M pool is used, Vice versa. After the commit 490ea5967b0d ("RDS: IB: move
FMR code to its own file"), the above is removed. When we make the
following tests.
Server:
rds-stress -r 1.1.1.16 -D 1M
Client:
rds-stress -r 1.1.1.14 -s 1.1.1.16 -D 1M
The following will appear.
"
connecting to 1.1.1.16:4000
negotiated options, tasks will start in 2 seconds
Starting up..header from 1.1.1.166:4001 to id 4001 bogus
..
tsks tx/s rx/s tx+rx K/s mbi K/s mbo K/s tx us/c rtt us
cpu %
1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00
1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00
1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00
1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00
1 0 0 0.00 0.00 0.00 0.00 0.00 -1.00
...
"
So this exchange between 8K and 1M pool is added back.
Fixes: commit 490ea5967b0d ("RDS: IB: move FMR code to its own file")
Signed-off-by: Zhu Yanjun <yanjun.zhu@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit cb66ddd156203daefb8d71158036b27b0e2caf63 ]
When it is to cleanup net namespace, rds_tcp_exit_net() will call
rds_tcp_kill_sock(), if t_sock is NULL, it will not call
rds_conn_destroy(), rds_conn_path_destroy() and rds_tcp_conn_free() to free
connection, and the worker cp_conn_w is not stopped, afterwards the net is freed in
net_drop_ns(); While cp_conn_w rds_connect_worker() will call rds_tcp_conn_path_connect()
and reference 'net' which has already been freed.
In rds_tcp_conn_path_connect(), rds_tcp_set_callbacks() will set t_sock = sock before
sock->ops->connect, but if connect() is failed, it will call
rds_tcp_restore_callbacks() and set t_sock = NULL, if connect is always
failed, rds_connect_worker() will try to reconnect all the time, so
rds_tcp_kill_sock() will never to cancel worker cp_conn_w and free the
connections.
Therefore, the condition !tc->t_sock is not needed if it is going to do
cleanup_net->rds_tcp_exit_net->rds_tcp_kill_sock, because tc->t_sock is always
NULL, and there is on other path to cancel cp_conn_w and free
connection. So this patch is to fix this.
rds_tcp_kill_sock():
...
if (net != c_net || !tc->t_sock)
...
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
==================================================================
BUG: KASAN: use-after-free in inet_create+0xbcc/0xd28
net/ipv4/af_inet.c:340
Read of size 4 at addr ffff8003496a4684 by task kworker/u8:4/3721
CPU: 3 PID: 3721 Comm: kworker/u8:4 Not tainted 5.1.0 #11
Hardware name: linux,dummy-virt (DT)
Workqueue: krdsd rds_connect_worker
Call trace:
dump_backtrace+0x0/0x3c0 arch/arm64/kernel/time.c:53
show_stack+0x28/0x38 arch/arm64/kernel/traps.c:152
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x120/0x188 lib/dump_stack.c:113
print_address_description+0x68/0x278 mm/kasan/report.c:253
kasan_report_error mm/kasan/report.c:351 [inline]
kasan_report+0x21c/0x348 mm/kasan/report.c:409
__asan_report_load4_noabort+0x30/0x40 mm/kasan/report.c:429
inet_create+0xbcc/0xd28 net/ipv4/af_inet.c:340
__sock_create+0x4f8/0x770 net/socket.c:1276
sock_create_kern+0x50/0x68 net/socket.c:1322
rds_tcp_conn_path_connect+0x2b4/0x690 net/rds/tcp_connect.c:114
rds_connect_worker+0x108/0x1d0 net/rds/threads.c:175
process_one_work+0x6e8/0x1700 kernel/workqueue.c:2153
worker_thread+0x3b0/0xdd0 kernel/workqueue.c:2296
kthread+0x2f0/0x378 kernel/kthread.c:255
ret_from_fork+0x10/0x18 arch/arm64/kernel/entry.S:1117
Allocated by task 687:
save_stack mm/kasan/kasan.c:448 [inline]
set_track mm/kasan/kasan.c:460 [inline]
kasan_kmalloc+0xd4/0x180 mm/kasan/kasan.c:553
kasan_slab_alloc+0x14/0x20 mm/kasan/kasan.c:490
slab_post_alloc_hook mm/slab.h:444 [inline]
slab_alloc_node mm/slub.c:2705 [inline]
slab_alloc mm/slub.c:2713 [inline]
kmem_cache_alloc+0x14c/0x388 mm/slub.c:2718
kmem_cache_zalloc include/linux/slab.h:697 [inline]
net_alloc net/core/net_namespace.c:384 [inline]
copy_net_ns+0xc4/0x2d0 net/core/net_namespace.c:424
create_new_namespaces+0x300/0x658 kernel/nsproxy.c:107
unshare_nsproxy_namespaces+0xa0/0x198 kernel/nsproxy.c:206
ksys_unshare+0x340/0x628 kernel/fork.c:2577
__do_sys_unshare kernel/fork.c:2645 [inline]
__se_sys_unshare kernel/fork.c:2643 [inline]
__arm64_sys_unshare+0x38/0x58 kernel/fork.c:2643
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:47 [inline]
el0_svc_common+0x168/0x390 arch/arm64/kernel/syscall.c:83
el0_svc_handler+0x60/0xd0 arch/arm64/kernel/syscall.c:129
el0_svc+0x8/0xc arch/arm64/kernel/entry.S:960
Freed by task 264:
save_stack mm/kasan/kasan.c:448 [inline]
set_track mm/kasan/kasan.c:460 [inline]
__kasan_slab_free+0x114/0x220 mm/kasan/kasan.c:521
kasan_slab_free+0x10/0x18 mm/kasan/kasan.c:528
slab_free_hook mm/slub.c:1370 [inline]
slab_free_freelist_hook mm/slub.c:1397 [inline]
slab_free mm/slub.c:2952 [inline]
kmem_cache_free+0xb8/0x3a8 mm/slub.c:2968
net_free net/core/net_namespace.c:400 [inline]
net_drop_ns.part.6+0x78/0x90 net/core/net_namespace.c:407
net_drop_ns net/core/net_namespace.c:406 [inline]
cleanup_net+0x53c/0x6d8 net/core/net_namespace.c:569
process_one_work+0x6e8/0x1700 kernel/workqueue.c:2153
worker_thread+0x3b0/0xdd0 kernel/workqueue.c:2296
kthread+0x2f0/0x378 kernel/kthread.c:255
ret_from_fork+0x10/0x18 arch/arm64/kernel/entry.S:1117
The buggy address belongs to the object at ffff8003496a3f80
which belongs to the cache net_namespace of size 7872
The buggy address is located 1796 bytes inside of
7872-byte region [ffff8003496a3f80, ffff8003496a5e40)
The buggy address belongs to the page:
page:ffff7e000d25a800 count:1 mapcount:0 mapping:ffff80036ce4b000
index:0x0 compound_mapcount: 0
flags: 0xffffe0000008100(slab|head)
raw: 0ffffe0000008100 dead000000000100 dead000000000200 ffff80036ce4b000
raw: 0000000000000000 0000000080040004 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8003496a4580: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8003496a4600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff8003496a4680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8003496a4700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8003496a4780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
Fixes: 467fa15356ac("RDS-TCP: Support multiple RDS-TCP listen endpoints, one per netns.")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Mao Wenan <maowenan@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 6fa19f5637a6c22bc0999596bcc83bdcac8a4fa6 ]
syzbot was able to catch a bug in rds [1]
The issue here is that the socket might be found in a hash table
but that its refcount has already be set to 0 by another cpu.
We need to use refcount_inc_not_zero() to be safe here.
[1]
refcount_t: increment on 0; use-after-free.
WARNING: CPU: 1 PID: 23129 at lib/refcount.c:153 refcount_inc_checked lib/refcount.c:153 [inline]
WARNING: CPU: 1 PID: 23129 at lib/refcount.c:153 refcount_inc_checked+0x61/0x70 lib/refcount.c:151
Kernel panic - not syncing: panic_on_warn set ...
CPU: 1 PID: 23129 Comm: syz-executor3 Not tainted 5.0.0-rc4+ #53
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x1db/0x2d0 lib/dump_stack.c:113
panic+0x2cb/0x65c kernel/panic.c:214
__warn.cold+0x20/0x48 kernel/panic.c:571
report_bug+0x263/0x2b0 lib/bug.c:186
fixup_bug arch/x86/kernel/traps.c:178 [inline]
fixup_bug arch/x86/kernel/traps.c:173 [inline]
do_error_trap+0x11b/0x200 arch/x86/kernel/traps.c:271
do_invalid_op+0x37/0x50 arch/x86/kernel/traps.c:290
invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:973
RIP: 0010:refcount_inc_checked lib/refcount.c:153 [inline]
RIP: 0010:refcount_inc_checked+0x61/0x70 lib/refcount.c:151
Code: 1d 51 63 c8 06 31 ff 89 de e8 eb 1b f2 fd 84 db 75 dd e8 a2 1a f2 fd 48 c7 c7 60 9f 81 88 c6 05 31 63 c8 06 01 e8 af 65 bb fd <0f> 0b eb c1 90 66 2e 0f 1f 84 00 00 00 00 00 55 48 89 e5 41 54 49
RSP: 0018:ffff8880a0cbf1e8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffc90006113000
RDX: 000000000001047d RSI: ffffffff81685776 RDI: 0000000000000005
RBP: ffff8880a0cbf1f8 R08: ffff888097c9e100 R09: ffffed1015ce5021
R10: ffffed1015ce5020 R11: ffff8880ae728107 R12: ffff8880723c20c0
R13: ffff8880723c24b0 R14: dffffc0000000000 R15: ffffed1014197e64
sock_hold include/net/sock.h:647 [inline]
rds_sock_addref+0x19/0x20 net/rds/af_rds.c:675
rds_find_bound+0x97c/0x1080 net/rds/bind.c:82
rds_recv_incoming+0x3be/0x1430 net/rds/recv.c:362
rds_loop_xmit+0xf3/0x2a0 net/rds/loop.c:96
rds_send_xmit+0x1355/0x2a10 net/rds/send.c:355
rds_sendmsg+0x323c/0x44e0 net/rds/send.c:1368
sock_sendmsg_nosec net/socket.c:621 [inline]
sock_sendmsg+0xdd/0x130 net/socket.c:631
__sys_sendto+0x387/0x5f0 net/socket.c:1788
__do_sys_sendto net/socket.c:1800 [inline]
__se_sys_sendto net/socket.c:1796 [inline]
__x64_sys_sendto+0xe1/0x1a0 net/socket.c:1796
do_syscall_64+0x1a3/0x800 arch/x86/entry/common.c:290
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x458089
Code: 6d b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 3b b7 fb ff c3 66 2e 0f 1f 84 00 00 00 00
RSP: 002b:00007fc266df8c78 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 0000000000000006 RCX: 0000000000458089
RDX: 0000000000000000 RSI: 00000000204b3fff RDI: 0000000000000005
RBP: 000000000073bf00 R08: 00000000202b4000 R09: 0000000000000010
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fc266df96d4
R13: 00000000004c56e4 R14: 00000000004d94a8 R15: 00000000ffffffff
Fixes: cc4dfb7f70a3 ("rds: fix two RCU related problems")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Cc: rds-devel@oss.oracle.com
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f394ad28feffbeebab77c8bf9a203bd49b957c9a upstream.
Currently, rds_ib_conn_alloc() calls rds_ib_recv_alloc_caches()
without passing along the gfp_t flag. But rds_ib_recv_alloc_caches()
and rds_ib_recv_alloc_cache() should take a gfp_t parameter so that
rds_ib_recv_alloc_cache() can call alloc_percpu_gfp() using the
correct flag instead of calling alloc_percpu().
Signed-off-by: Ka-Cheong Poon <ka-cheong.poon@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Håkon Bugge <haakon.bugge@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit cc4dfb7f70a344f24c1c71e298deea0771dadcb2 ]
When a rds sock is bound, it is inserted into the bind_hash_table
which is protected by RCU. But when releasing rds sock, after it
is removed from this hash table, it is freed immediately without
respecting RCU grace period. This could cause some use-after-free
as reported by syzbot.
Mark the rds sock with SOCK_RCU_FREE before inserting it into the
bind_hash_table, so that it would be always freed after a RCU grace
period.
The other problem is in rds_find_bound(), the rds sock could be
freed in between rhashtable_lookup_fast() and rds_sock_addref(),
so we need to extend RCU read lock protection in rds_find_bound()
to close this race condition.
Reported-and-tested-by: syzbot+8967084bcac563795dc6@syzkaller.appspotmail.com
Reported-by: syzbot+93a5839deb355537440f@syzkaller.appspotmail.com
Cc: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Cc: rds-devel@oss.oracle.com
Signed-off-by: Cong Wang <xiyou.wangcong@gmail.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oarcle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 5941923da29e84bc9e2a1abb2c14fffaf8d71e2f ]
Fix a static code checker warning:
net/rds/ib_frmr.c:82 rds_ib_alloc_frmr() warn: passing zero to 'ERR_PTR'
The error path for ib_alloc_mr failure should set err to PTR_ERR.
Fixes: 1659185fb4d0 ("RDS: IB: Support Fastreg MR (FRMR) memory registration mode")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f1693c63ab133d16994cc50f773982b5905af264 upstream.
Loop transport which is self loopback, remote port congestion
update isn't relevant. Infact the xmit path already ignores it.
Receive path needs to do the same.
Reported-by: syzbot+4c20b3866171ce8441d2@syzkaller.appspotmail.com
Reviewed-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 91a825290ca4eae88603bc811bf74a45f94a3f46 ]
The function rds_ib_setup_qp is calling rds_ib_get_client_data and
should correspondingly call rds_ib_dev_put. This call was lost in
the non-error path with the introduction of error handling done in
commit 3b12f73a5c29 ("rds: ib: add error handle")
Signed-off-by: Dag Moxnes <dag.moxnes@oracle.com>
Reviewed-by: Håkon Bugge <haakon.bugge@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 84eef2b2187ed73c0e4520cbfeb874e964a0b56a ]
Commit 0933a578cd55 ("rds: tcp: use sock_create_lite() to create the
accept socket") has a reference counting issue in TCP socket creation
when accepting a new connection. The code uses sock_create_lite() to
create a kernel socket. But it does not do __module_get() on the
socket owner. When the connection is shutdown and sock_release() is
called to free the socket, the owner's reference count is decremented
and becomes incorrect. Note that this bug only shows up when the socket
owner is configured as a kernel module.
v2: Update comments
Fixes: 0933a578cd55 ("rds: tcp: use sock_create_lite() to create the accept socket")
Signed-off-by: Ka-Cheong Poon <ka-cheong.poon@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Acked-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit eb80ca476ec11f67a62691a93604b405ffc7d80c ]
syzbot/KMSAN reported an uninit-value in put_cmsg(), originating
from rds_cmsg_recv().
Simply clear the structure, since we have holes there, or since
rx_traces might be smaller than RDS_MSG_RX_DGRAM_TRACE_MAX.
BUG: KMSAN: uninit-value in copy_to_user include/linux/uaccess.h:184 [inline]
BUG: KMSAN: uninit-value in put_cmsg+0x600/0x870 net/core/scm.c:242
CPU: 0 PID: 4459 Comm: syz-executor582 Not tainted 4.16.0+ #87
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:17 [inline]
dump_stack+0x185/0x1d0 lib/dump_stack.c:53
kmsan_report+0x142/0x240 mm/kmsan/kmsan.c:1067
kmsan_internal_check_memory+0x135/0x1e0 mm/kmsan/kmsan.c:1157
kmsan_copy_to_user+0x69/0x160 mm/kmsan/kmsan.c:1199
copy_to_user include/linux/uaccess.h:184 [inline]
put_cmsg+0x600/0x870 net/core/scm.c:242
rds_cmsg_recv net/rds/recv.c:570 [inline]
rds_recvmsg+0x2db5/0x3170 net/rds/recv.c:657
sock_recvmsg_nosec net/socket.c:803 [inline]
sock_recvmsg+0x1d0/0x230 net/socket.c:810
___sys_recvmsg+0x3fb/0x810 net/socket.c:2205
__sys_recvmsg net/socket.c:2250 [inline]
SYSC_recvmsg+0x298/0x3c0 net/socket.c:2262
SyS_recvmsg+0x54/0x80 net/socket.c:2257
do_syscall_64+0x309/0x430 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
Fixes: 3289025aedc0 ("RDS: add receive message trace used by application")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Cc: linux-rdma <linux-rdma@vger.kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 2c0aa08631b86a4678dbc93b9caa5248014b4458 ]
Scenario:
1. Port down and do fail over
2. Ap do rds_bind syscall
PID: 47039 TASK: ffff89887e2fe640 CPU: 47 COMMAND: "kworker/u:6"
#0 [ffff898e35f159f0] machine_kexec at ffffffff8103abf9
#1 [ffff898e35f15a60] crash_kexec at ffffffff810b96e3
#2 [ffff898e35f15b30] oops_end at ffffffff8150f518
#3 [ffff898e35f15b60] no_context at ffffffff8104854c
#4 [ffff898e35f15ba0] __bad_area_nosemaphore at ffffffff81048675
#5 [ffff898e35f15bf0] bad_area_nosemaphore at ffffffff810487d3
#6 [ffff898e35f15c00] do_page_fault at ffffffff815120b8
#7 [ffff898e35f15d10] page_fault at ffffffff8150ea95
[exception RIP: unknown or invalid address]
RIP: 0000000000000000 RSP: ffff898e35f15dc8 RFLAGS: 00010282
RAX: 00000000fffffffe RBX: ffff889b77f6fc00 RCX:ffffffff81c99d88
RDX: 0000000000000000 RSI: ffff896019ee08e8 RDI:ffff889b77f6fc00
RBP: ffff898e35f15df0 R8: ffff896019ee08c8 R9:0000000000000000
R10: 0000000000000400 R11: 0000000000000000 R12:ffff896019ee08c0
R13: ffff889b77f6fe68 R14: ffffffff81c99d80 R15: ffffffffa022a1e0
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#8 [ffff898e35f15dc8] cma_ndev_work_handler at ffffffffa022a228 [rdma_cm]
#9 [ffff898e35f15df8] process_one_work at ffffffff8108a7c6
#10 [ffff898e35f15e58] worker_thread at ffffffff8108bda0
#11 [ffff898e35f15ee8] kthread at ffffffff81090fe6
PID: 45659 TASK: ffff880d313d2500 CPU: 31 COMMAND: "oracle_45659_ap"
#0 [ffff881024ccfc98] __schedule at ffffffff8150bac4
#1 [ffff881024ccfd40] schedule at ffffffff8150c2cf
#2 [ffff881024ccfd50] __mutex_lock_slowpath at ffffffff8150cee7
#3 [ffff881024ccfdc0] mutex_lock at ffffffff8150cdeb
#4 [ffff881024ccfde0] rdma_destroy_id at ffffffffa022a027 [rdma_cm]
#5 [ffff881024ccfe10] rds_ib_laddr_check at ffffffffa0357857 [rds_rdma]
#6 [ffff881024ccfe50] rds_trans_get_preferred at ffffffffa0324c2a [rds]
#7 [ffff881024ccfe80] rds_bind at ffffffffa031d690 [rds]
#8 [ffff881024ccfeb0] sys_bind at ffffffff8142a670
PID: 45659 PID: 47039
rds_ib_laddr_check
/* create id_priv with a null event_handler */
rdma_create_id
rdma_bind_addr
cma_acquire_dev
/* add id_priv to cma_dev->id_list */
cma_attach_to_dev
cma_ndev_work_handler
/* event_hanlder is null */
id_priv->id.event_handler
Signed-off-by: Guanglei Li <guanglei.li@oracle.com>
Signed-off-by: Honglei Wang <honglei.wang@oracle.com>
Reviewed-by: Junxiao Bi <junxiao.bi@oracle.com>
Reviewed-by: Yanjun Zhu <yanjun.zhu@oracle.com>
Reviewed-by: Leon Romanovsky <leonro@mellanox.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Acked-by: Doug Ledford <dledford@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit a43cced9a348901f9015f4730b70b69e7c41a9c9 ]
rds_sendmsg() calls rds_send_mprds_hash() to find a c_path to use to
send a message. Suppose the RDS connection is not yet up. In
rds_send_mprds_hash(), it does
if (conn->c_npaths == 0)
wait_event_interruptible(conn->c_hs_waitq,
(conn->c_npaths != 0));
If it is interrupted before the connection is set up,
rds_send_mprds_hash() will return a non-zero hash value. Hence
rds_sendmsg() will use a non-zero c_path to send the message. But if
the RDS connection ends up to be non-MP capable, the message will be
lost as only the zero c_path can be used.
Signed-off-by: Ka-Cheong Poon <ka-cheong.poon@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 7ae0c649c47f1c5d2db8cee6dd75855970af1669 ]
If the rds_sock is not added to the bind_hash_table, we must
reset rs_bound_addr so that rds_remove_bound will not trip on
this rds_sock.
rds_add_bound() does a rds_sock_put() in this failure path, so
failing to reset rs_bound_addr will result in a socket refcount
bug, and will trigger a WARN_ON with the stack shown below when
the application subsequently tries to close the PF_RDS socket.
WARNING: CPU: 20 PID: 19499 at net/rds/af_rds.c:496 \
rds_sock_destruct+0x15/0x30 [rds]
:
__sk_destruct+0x21/0x190
rds_remove_bound.part.13+0xb6/0x140 [rds]
rds_release+0x71/0x120 [rds]
sock_release+0x1a/0x70
sock_close+0xe/0x20
__fput+0xd5/0x210
task_work_run+0x82/0xa0
do_exit+0x2ce/0xb30
? syscall_trace_enter+0x1cc/0x2b0
do_group_exit+0x39/0xa0
SyS_exit_group+0x10/0x10
do_syscall_64+0x61/0x1a0
Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f10b4cff98c6977668434fbf5dd58695eeca2897 upstream.
The rds_tcp_kill_sock() function parses the rds_tcp_conn_list
to find the rds_connection entries marked for deletion as part
of the netns deletion under the protection of the rds_tcp_conn_lock.
Since the rds_tcp_conn_list tracks rds_tcp_connections (which
have a 1:1 mapping with rds_conn_path), multiple tc entries in
the rds_tcp_conn_list will map to a single rds_connection, and will
be deleted as part of the rds_conn_destroy() operation that is
done outside the rds_tcp_conn_lock.
The rds_tcp_conn_list traversal done under the protection of
rds_tcp_conn_lock should not leave any doomed tc entries in
the list after the rds_tcp_conn_lock is released, else another
concurrently executiong netns delete (for a differnt netns) thread
may trip on these entries.
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 681648e67d43cf269c5590ecf021ed481f4551fc upstream.
Commit 8edc3affc077 ("rds: tcp: Take explicit refcounts on struct net")
introduces a regression in rds-tcp netns cleanup. The cleanup_net(),
(and thus rds_tcp_dev_event notification) is only called from put_net()
when all netns refcounts go to 0, but this cannot happen if the
rds_connection itself is holding a c_net ref that it expects to
release in rds_tcp_kill_sock.
Instead, the rds_tcp_kill_sock callback should make sure to
tear down state carefully, ensuring that the socket teardown
is only done after all data-structures and workqs that depend
on it are quiesced.
The original motivation for commit 8edc3affc077 ("rds: tcp: Take explicit
refcounts on struct net") was to resolve a race condition reported by
syzkaller where workqs for tx/rx/connect were triggered after the
namespace was deleted. Those worker threads should have been
cancelled/flushed before socket tear-down and indeed,
rds_conn_path_destroy() does try to sequence this by doing
/* cancel cp_send_w */
/* cancel cp_recv_w */
/* flush cp_down_w */
/* free data structures */
Here the "flush cp_down_w" will trigger rds_conn_shutdown and thus
invoke rds_tcp_conn_path_shutdown() to close the tcp socket, so that
we ought to have satisfied the requirement that "socket-close is
done after all other dependent state is quiesced". However,
rds_conn_shutdown has a bug in that it *always* triggers the reconnect
workq (and if connection is successful, we always restart tx/rx
workqs so with the right timing, we risk the race conditions reported
by syzkaller).
Netns deletion is like module teardown- no need to restart a
reconnect in this case. We can use the c_destroy_in_prog bit
to avoid restarting the reconnect.
Fixes: 8edc3affc077 ("rds: tcp: Take explicit refcounts on struct net")
Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 7d11f77f84b27cef452cee332f4e469503084737 ]
set rm->atomic.op_active to 0 when rds_pin_pages() fails
or the user supplied address is invalid,
this prevents a NULL pointer usage in rds_atomic_free_op()
Signed-off-by: Mohamed Ghannam <simo.ghannam@gmail.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit c095508770aebf1b9218e77026e48345d719b17c ]
When args->nr_local is 0, nr_pages gets also 0 due some size
calculation via rds_rm_size(), which is later used to allocate
pages for DMA, this bug produces a heap Out-Of-Bound write access
to a specific memory region.
Signed-off-by: Mohamed Ghannam <simo.ghannam@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 14e138a86f6347c6199f610576d2e11c03bec5f0 ]
RDS currently doesn't check if the length of the control message is
large enough to hold the required data, before dereferencing the control
message data. This results in following crash:
BUG: KASAN: stack-out-of-bounds in rds_rdma_bytes net/rds/send.c:1013
[inline]
BUG: KASAN: stack-out-of-bounds in rds_sendmsg+0x1f02/0x1f90
net/rds/send.c:1066
Read of size 8 at addr ffff8801c928fb70 by task syzkaller455006/3157
CPU: 0 PID: 3157 Comm: syzkaller455006 Not tainted 4.15.0-rc3+ #161
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:17 [inline]
dump_stack+0x194/0x257 lib/dump_stack.c:53
print_address_description+0x73/0x250 mm/kasan/report.c:252
kasan_report_error mm/kasan/report.c:351 [inline]
kasan_report+0x25b/0x340 mm/kasan/report.c:409
__asan_report_load8_noabort+0x14/0x20 mm/kasan/report.c:430
rds_rdma_bytes net/rds/send.c:1013 [inline]
rds_sendmsg+0x1f02/0x1f90 net/rds/send.c:1066
sock_sendmsg_nosec net/socket.c:628 [inline]
sock_sendmsg+0xca/0x110 net/socket.c:638
___sys_sendmsg+0x320/0x8b0 net/socket.c:2018
__sys_sendmmsg+0x1ee/0x620 net/socket.c:2108
SYSC_sendmmsg net/socket.c:2139 [inline]
SyS_sendmmsg+0x35/0x60 net/socket.c:2134
entry_SYSCALL_64_fastpath+0x1f/0x96
RIP: 0033:0x43fe49
RSP: 002b:00007fffbe244ad8 EFLAGS: 00000217 ORIG_RAX: 0000000000000133
RAX: ffffffffffffffda RBX: 00000000004002c8 RCX: 000000000043fe49
RDX: 0000000000000001 RSI: 000000002020c000 RDI: 0000000000000003
RBP: 00000000006ca018 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000217 R12: 00000000004017b0
R13: 0000000000401840 R14: 0000000000000000 R15: 0000000000000000
To fix this, we verify that the cmsg_len is large enough to hold the
data to be read, before proceeding further.
Reported-by: syzbot <syzkaller-bugs@googlegroups.com>
Signed-off-by: Avinash Repaka <avinash.repaka@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Reviewed-by: Yuval Shaia <yuval.shaia@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit f3069c6d33f6ae63a1668737bc78aaaa51bff7ca ]
This is a fix for syzkaller719569, where memory registration was
attempted without any underlying transport being loaded.
Analysis of the case reveals that it is the setsockopt() RDS_GET_MR
(2) and RDS_GET_MR_FOR_DEST (7) that are vulnerable.
Here is an example stack trace when the bug is hit:
BUG: unable to handle kernel NULL pointer dereference at 00000000000000c0
IP: __rds_rdma_map+0x36/0x440 [rds]
PGD 2f93d03067 P4D 2f93d03067 PUD 2f93d02067 PMD 0
Oops: 0000 [#1] SMP
Modules linked in: bridge stp llc tun rpcsec_gss_krb5 nfsv4
dns_resolver nfs fscache rds binfmt_misc sb_edac intel_powerclamp
coretemp kvm_intel kvm irqbypass crct10dif_pclmul c rc32_pclmul
ghash_clmulni_intel pcbc aesni_intel crypto_simd glue_helper cryptd
iTCO_wdt mei_me sg iTCO_vendor_support ipmi_si mei ipmi_devintf nfsd
shpchp pcspkr i2c_i801 ioatd ma ipmi_msghandler wmi lpc_ich mfd_core
auth_rpcgss nfs_acl lockd grace sunrpc ip_tables ext4 mbcache jbd2
mgag200 i2c_algo_bit drm_kms_helper ixgbe syscopyarea ahci sysfillrect
sysimgblt libahci mdio fb_sys_fops ttm ptp libata sd_mod mlx4_core drm
crc32c_intel pps_core megaraid_sas i2c_core dca dm_mirror
dm_region_hash dm_log dm_mod
CPU: 48 PID: 45787 Comm: repro_set2 Not tainted 4.14.2-3.el7uek.x86_64 #2
Hardware name: Oracle Corporation ORACLE SERVER X5-2L/ASM,MOBO TRAY,2U, BIOS 31110000 03/03/2017
task: ffff882f9190db00 task.stack: ffffc9002b994000
RIP: 0010:__rds_rdma_map+0x36/0x440 [rds]
RSP: 0018:ffffc9002b997df0 EFLAGS: 00010202
RAX: 0000000000000000 RBX: ffff882fa2182580 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffc9002b997e40 RDI: ffff882fa2182580
RBP: ffffc9002b997e30 R08: 0000000000000000 R09: 0000000000000002
R10: ffff885fb29e3838 R11: 0000000000000000 R12: ffff882fa2182580
R13: ffff882fa2182580 R14: 0000000000000002 R15: 0000000020000ffc
FS: 00007fbffa20b700(0000) GS:ffff882fbfb80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000000c0 CR3: 0000002f98a66006 CR4: 00000000001606e0
Call Trace:
rds_get_mr+0x56/0x80 [rds]
rds_setsockopt+0x172/0x340 [rds]
? __fget_light+0x25/0x60
? __fdget+0x13/0x20
SyS_setsockopt+0x80/0xe0
do_syscall_64+0x67/0x1b0
entry_SYSCALL64_slow_path+0x25/0x25
RIP: 0033:0x7fbff9b117f9
RSP: 002b:00007fbffa20aed8 EFLAGS: 00000293 ORIG_RAX: 0000000000000036
RAX: ffffffffffffffda RBX: 00000000000c84a4 RCX: 00007fbff9b117f9
RDX: 0000000000000002 RSI: 0000400000000114 RDI: 000000000000109b
RBP: 00007fbffa20af10 R08: 0000000000000020 R09: 00007fbff9dd7860
R10: 0000000020000ffc R11: 0000000000000293 R12: 0000000000000000
R13: 00007fbffa20b9c0 R14: 00007fbffa20b700 R15: 0000000000000021
Code: 41 56 41 55 49 89 fd 41 54 53 48 83 ec 18 8b 87 f0 02 00 00 48
89 55 d0 48 89 4d c8 85 c0 0f 84 2d 03 00 00 48 8b 87 00 03 00 00 <48>
83 b8 c0 00 00 00 00 0f 84 25 03 00 0 0 48 8b 06 48 8b 56 08
The fix is to check the existence of an underlying transport in
__rds_rdma_map().
Signed-off-by: Håkon Bugge <haakon.bugge@oracle.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
rds_ib_recv_refill() is a function that refills an IB receive
queue. It can be called from both the CQE handler (tasklet) and a
worker thread.
Just after the call to ib_post_recv(), a debug message is printed with
rdsdebug():
ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
(long) ib_sg_dma_address(
ic->i_cm_id->device,
&recv->r_frag->f_sg),
ret);
Now consider an invocation of rds_ib_recv_refill() from the worker
thread, which is preemptible. Further, assume that the worker thread
is preempted between the ib_post_recv() and rdsdebug() statements.
Then, if the preemption is due to a receive CQE event, the
rds_ib_recv_cqe_handler() will be invoked. This function processes
receive completions, including freeing up data structures, such as the
recv->r_frag.
In this scenario, rds_ib_recv_cqe_handler() will process the receive
WR posted above. That implies, that the recv->r_frag has been freed
before the above rdsdebug() statement has been executed. When it is
later executed, we will have a NULL pointer dereference:
[ 4088.068008] BUG: unable to handle kernel NULL pointer dereference at 0000000000000020
[ 4088.076754] IP: rds_ib_recv_refill+0x87/0x620 [rds_rdma]
[ 4088.082686] PGD 0 P4D 0
[ 4088.085515] Oops: 0000 [#1] SMP
[ 4088.089015] Modules linked in: rds_rdma(OE) rds(OE) rpcsec_gss_krb5(E) nfsv4(E) dns_resolver(E) nfs(E) fscache(E) mlx4_ib(E) ib_ipoib(E) rdma_ucm(E) ib_ucm(E) ib_uverbs(E) ib_umad(E) rdma_cm(E) ib_cm(E) iw_cm(E) ib_core(E) binfmt_misc(E) sb_edac(E) intel_powerclamp(E) coretemp(E) kvm_intel(E) kvm(E) irqbypass(E) crct10dif_pclmul(E) crc32_pclmul(E) ghash_clmulni_intel(E) pcbc(E) aesni_intel(E) crypto_simd(E) iTCO_wdt(E) glue_helper(E) iTCO_vendor_support(E) sg(E) cryptd(E) pcspkr(E) ipmi_si(E) ipmi_devintf(E) ipmi_msghandler(E) shpchp(E) ioatdma(E) i2c_i801(E) wmi(E) lpc_ich(E) mei_me(E) mei(E) mfd_core(E) nfsd(E) auth_rpcgss(E) nfs_acl(E) lockd(E) grace(E) sunrpc(E) ip_tables(E) ext4(E) mbcache(E) jbd2(E) fscrypto(E) mgag200(E) i2c_algo_bit(E) drm_kms_helper(E) syscopyarea(E) sysfillrect(E) sysimgblt(E)
[ 4088.168486] fb_sys_fops(E) ahci(E) ixgbe(E) libahci(E) ttm(E) mdio(E) ptp(E) pps_core(E) drm(E) sd_mod(E) libata(E) crc32c_intel(E) mlx4_core(E) i2c_core(E) dca(E) megaraid_sas(E) dm_mirror(E) dm_region_hash(E) dm_log(E) dm_mod(E) [last unloaded: rds]
[ 4088.193442] CPU: 20 PID: 1244 Comm: kworker/20:2 Tainted: G OE 4.14.0-rc7.master.20171105.ol7.x86_64 #1
[ 4088.205097] Hardware name: Oracle Corporation ORACLE SERVER X5-2L/ASM,MOBO TRAY,2U, BIOS 31110000 03/03/2017
[ 4088.216074] Workqueue: ib_cm cm_work_handler [ib_cm]
[ 4088.221614] task: ffff885fa11d0000 task.stack: ffffc9000e598000
[ 4088.228224] RIP: 0010:rds_ib_recv_refill+0x87/0x620 [rds_rdma]
[ 4088.234736] RSP: 0018:ffffc9000e59bb68 EFLAGS: 00010286
[ 4088.240568] RAX: 0000000000000000 RBX: ffffc9002115d050 RCX: ffffc9002115d050
[ 4088.248535] RDX: ffffffffa0521380 RSI: ffffffffa0522158 RDI: ffffffffa0525580
[ 4088.256498] RBP: ffffc9000e59bbf8 R08: 0000000000000005 R09: 0000000000000000
[ 4088.264465] R10: 0000000000000339 R11: 0000000000000001 R12: 0000000000000000
[ 4088.272433] R13: ffff885f8c9d8000 R14: ffffffff81a0a060 R15: ffff884676268000
[ 4088.280397] FS: 0000000000000000(0000) GS:ffff885fbec80000(0000) knlGS:0000000000000000
[ 4088.289434] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 4088.295846] CR2: 0000000000000020 CR3: 0000000001e09005 CR4: 00000000001606e0
[ 4088.303816] Call Trace:
[ 4088.306557] rds_ib_cm_connect_complete+0xe0/0x220 [rds_rdma]
[ 4088.312982] ? __dynamic_pr_debug+0x8c/0xb0
[ 4088.317664] ? __queue_work+0x142/0x3c0
[ 4088.321944] rds_rdma_cm_event_handler+0x19e/0x250 [rds_rdma]
[ 4088.328370] cma_ib_handler+0xcd/0x280 [rdma_cm]
[ 4088.333522] cm_process_work+0x25/0x120 [ib_cm]
[ 4088.338580] cm_work_handler+0xd6b/0x17aa [ib_cm]
[ 4088.343832] process_one_work+0x149/0x360
[ 4088.348307] worker_thread+0x4d/0x3e0
[ 4088.352397] kthread+0x109/0x140
[ 4088.355996] ? rescuer_thread+0x380/0x380
[ 4088.360467] ? kthread_park+0x60/0x60
[ 4088.364563] ret_from_fork+0x25/0x30
[ 4088.368548] Code: 48 89 45 90 48 89 45 98 eb 4d 0f 1f 44 00 00 48 8b 43 08 48 89 d9 48 c7 c2 80 13 52 a0 48 c7 c6 58 21 52 a0 48 c7 c7 80 55 52 a0 <4c> 8b 48 20 44 89 64 24 08 48 8b 40 30 49 83 e1 fc 48 89 04 24
[ 4088.389612] RIP: rds_ib_recv_refill+0x87/0x620 [rds_rdma] RSP: ffffc9000e59bb68
[ 4088.397772] CR2: 0000000000000020
[ 4088.401505] ---[ end trace fe922e6ccf004431 ]---
This bug was provoked by compiling rds out-of-tree with
EXTRA_CFLAGS="-DRDS_DEBUG -DDEBUG" and inserting an artificial delay
between the rdsdebug() and ib_ib_port_recv() statements:
/* XXX when can this fail? */
ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
+ if (can_wait)
+ usleep_range(1000, 5000);
rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
(long) ib_sg_dma_address(
The fix is simply to move the rdsdebug() statement up before the
ib_post_recv() and remove the printing of ret, which is taken care of
anyway by the non-debug code.
Signed-off-by: Håkon Bugge <haakon.bugge@oracle.com>
Reviewed-by: Knut Omang <knut.omang@oracle.com>
Reviewed-by: Wei Lin Guay <wei.lin.guay@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull initial SPDX identifiers from Greg KH:
"License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the
'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally
binding shorthand, which can be used instead of the full boiler plate
text.
This patch is based on work done by Thomas Gleixner and Kate Stewart
and Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset
of the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to
license had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied
to a file was done in a spreadsheet of side by side results from of
the output of two independent scanners (ScanCode & Windriver)
producing SPDX tag:value files created by Philippe Ombredanne.
Philippe prepared the base worksheet, and did an initial spot review
of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537
files assessed. Kate Stewart did a file by file comparison of the
scanner results in the spreadsheet to determine which SPDX license
identifier(s) to be applied to the file. She confirmed any
determination that was not immediately clear with lawyers working with
the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained
>5 lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that
was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that
became the concluded license(s).
- when there was disagreement between the two scanners (one detected
a license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply
(and which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases,
confirmation by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.
The Windriver scanner is based on an older version of FOSSology in
part, so they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot
checks in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect
the correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial
patch version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch
license was not GPL-2.0 WITH Linux-syscall-note to ensure that the
applied SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
* tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
License cleanup: add SPDX license identifier to uapi header files with a license
License cleanup: add SPDX license identifier to uapi header files with no license
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The number of unsignaled work-requests posted to the IB send queue is
tracked by a counter in the rds_ib_connection struct. When it reaches
zero, or the caller explicitly asks for it, the send-signaled bit is
set in send_flags and the counter is reset. This is performed by the
rds_ib_set_wr_signal_state() function.
However, this function is not always used which yields inaccurate
accounting. This commit fixes this, re-factors a code bloat related to
the matter, and makes the actual parameter type to the function
consistent.
Signed-off-by: Håkon Bugge <haakon.bugge@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
send_flags needs to be initialized before calling
rds_ib_set_wr_signal_state().
Signed-off-by: Håkon Bugge <haakon.bugge@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In rds_send_xmit() there is logic to batch the sends. However, if
another thread has acquired the lock and has incremented the send_gen,
it is considered a race and we yield. The code incrementing the
s_send_lock_queue_raced statistics counter did not count this event
correctly.
This commit counts the race condition correctly.
Changes from v1:
- Removed check for *someone_on_xmit()*
- Fixed incorrect indentation
Signed-off-by: Håkon Bugge <haakon.bugge@oracle.com>
Reviewed-by: Knut Omang <knut.omang@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The bits in m_flags in struct rds_message are used for a plurality of
reasons, and from different contexts. To avoid any missing updates to
m_flags, use the atomic set_bit() instead of the non-atomic equivalent.
Signed-off-by: Håkon Bugge <haakon.bugge@oracle.com>
Reviewed-by: Knut Omang <knut.omang@oracle.com>
Reviewed-by: Wei Lin Guay <wei.lin.guay@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Make this const as it is either used during a copy operation or passed
to a const argument of the function rhltable_init
Signed-off-by: Bhumika Goyal <bhumirks@gmail.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The UDP offload conflict is dealt with by simply taking what is
in net-next where we have removed all of the UFO handling code
entirely.
The TCP conflict was a case of local variables in a function
being removed from both net and net-next.
In netvsc we had an assignment right next to where a missing
set of u64 stats sync object inits were added.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
In commit 7e3f2952eeb1 ("rds: don't let RDS shutdown a connection
while senders are present"), refilling the receive queue was removed
from rds_ib_recv(), along with the increment of
s_ib_rx_refill_from_thread.
Commit 73ce4317bf98 ("RDS: make sure we post recv buffers")
re-introduces filling the receive queue from rds_ib_recv(), but does
not add the statistics counter. rds_ib_recv() was later renamed to
rds_ib_recv_path().
This commit reintroduces the statistics counting of
s_ib_rx_refill_from_thread and s_ib_rx_refill_from_cq.
Signed-off-by: Håkon Bugge <haakon.bugge@oracle.com>
Reviewed-by: Knut Omang <knut.omang@oracle.com>
Reviewed-by: Wei Lin Guay <wei.lin.guay@oracle.com>
Reviewed-by: Shamir Rabinovitch <shamir.rabinovitch@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
RDS over IB does not use multipath RDS, so the array
of additional rds_conn_path structures is always superfluous
in this case. Reduce the memory footprint of the rds module
by making this a dynamic allocation predicated on whether
the transport is mp_capable.
Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Tested-by: Efrain Galaviz <efrain.galaviz@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
cp->cp_send_gen is treated as a normal variable, although it may be
used by different threads.
This is fixed by using {READ,WRITE}_ONCE when it is incremented and
READ_ONCE when it is read outside the {acquire,release}_in_xmit
protection.
Normative reference from the Linux-Kernel Memory Model:
Loads from and stores to shared (but non-atomic) variables should
be protected with the READ_ONCE(), WRITE_ONCE(), and
ACCESS_ONCE().
Clause 5.1.2.4/25 in the C standard is also relevant.
Signed-off-by: Håkon Bugge <haakon.bugge@oracle.com>
Reviewed-by: Knut Omang <knut.omang@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
We could end up executing rds_conn_shutdown before the rds_recv_worker
thread, then rds_conn_shutdown -> rds_tcp_conn_shutdown can do a
sock_release and set sock->sk to null, which may interleave in bad
ways with rds_recv_worker, e.g., it could result in:
"BUG: unable to handle kernel NULL pointer dereference at 0000000000000078"
[ffff881769f6fd70] release_sock at ffffffff815f337b
[ffff881769f6fd90] rds_tcp_recv at ffffffffa043c888 [rds_tcp]
[ffff881769f6fdb0] rds_recv_worker at ffffffffa04a4810 [rds]
[ffff881769f6fde0] process_one_work at ffffffff810a14c1
[ffff881769f6fe40] worker_thread at ffffffff810a1940
[ffff881769f6fec0] kthread at ffffffff810a6b1e
Also, do not enqueue any new shutdown workq items when the connection is
shutting down (this may happen for rds-tcp in softirq mode, if a FIN
or CLOSE is received while the modules is in the middle of an unload)
Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
There are two problems with calling sock_create_kern() from
rds_tcp_accept_one()
1. it sets up a new_sock->sk that is wasteful, because this ->sk
is going to get replaced by inet_accept() in the subsequent ->accept()
2. The new_sock->sk is a leaked reference in sock_graft() which
expects to find a null parent->sk
Avoid these problems by calling sock_create_lite().
Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
If we are unloading the rds_tcp module, we can set linger to 1
and drop pending packets to accelerate reconnect. The peer will
end up resetting the connection based on new generation numbers
of the new incarnation, so hanging on to unsent TCP packets via
linger is mostly pointless in this case.
Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Tested-by: Jenny Xu <jenny.x.xu@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The RDS handshake ping probe added by commit 5916e2c1554f
("RDS: TCP: Enable multipath RDS for TCP") is sent from rds_sendmsg()
before the first data packet is sent to a peer. If the conversation
is not bidirectional (i.e., one side is always passive and never
invokes rds_sendmsg()) and the passive side restarts its rds_tcp
module, a new HS ping probe needs to be sent, so that the number
of paths can be re-established.
This patch achieves that by sending a HS ping probe from
rds_tcp_accept_one() when c_npaths is 0 (i.e., we have not done
a handshake probe with this peer yet).
Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Tested-by: Jenny Xu <jenny.x.xu@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Each time we get an incoming SYN to the RDS_TCP_PORT, the TCP
layer accepts the connection and then the rds_tcp_accept_one()
callback is invoked to process the incoming connection.
rds_tcp_accept_one() may reject the incoming syn for a number of
reasons, e.g., commit 1a0e100fb2c9 ("RDS: TCP: Force every connection
to be initiated by numerically smaller IP address"), or because
we are getting spammed by a malicious node that is triggering
a flood of connection attempts to RDS_TCP_PORT. If the incoming
syn is rejected, no data would have been sent on the TCP socket,
and we do not need to be in TIME_WAIT state, so we set linger on
the TCP socket before closing, thereby closing the socket efficiently
with a RST.
Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Tested-by: Imanti Mendez <imanti.mendez@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Found when testing between sparc and x86 machines on different
subnets, so the address comparison patterns hit the corner cases and
brought out some bugs fixed by this patch.
Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Tested-by: Imanti Mendez <imanti.mendez@oracle.com>
Acked-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
After commit 1a0e100fb2c9 ("RDS: TCP: Force every connection to be
initiated by numerically smaller IP address") we no longer need
the logic associated with cp_outgoing, so clean up usage of this
field.
Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com>
Tested-by: Imanti Mendez <imanti.mendez@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Pull networking updates from David Millar:
"Here are some highlights from the 2065 networking commits that
happened this development cycle:
1) XDP support for IXGBE (John Fastabend) and thunderx (Sunil Kowuri)
2) Add a generic XDP driver, so that anyone can test XDP even if they
lack a networking device whose driver has explicit XDP support
(me).
3) Sparc64 now has an eBPF JIT too (me)
4) Add a BPF program testing framework via BPF_PROG_TEST_RUN (Alexei
Starovoitov)
5) Make netfitler network namespace teardown less expensive (Florian
Westphal)
6) Add symmetric hashing support to nft_hash (Laura Garcia Liebana)
7) Implement NAPI and GRO in netvsc driver (Stephen Hemminger)
8) Support TC flower offload statistics in mlxsw (Arkadi Sharshevsky)
9) Multiqueue support in stmmac driver (Joao Pinto)
10) Remove TCP timewait recycling, it never really could possibly work
well in the real world and timestamp randomization really zaps any
hint of usability this feature had (Soheil Hassas Yeganeh)
11) Support level3 vs level4 ECMP route hashing in ipv4 (Nikolay
Aleksandrov)
12) Add socket busy poll support to epoll (Sridhar Samudrala)
13) Netlink extended ACK support (Johannes Berg, Pablo Neira Ayuso,
and several others)
14) IPSEC hw offload infrastructure (Steffen Klassert)"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (2065 commits)
tipc: refactor function tipc_sk_recv_stream()
tipc: refactor function tipc_sk_recvmsg()
net: thunderx: Optimize page recycling for XDP
net: thunderx: Support for XDP header adjustment
net: thunderx: Add support for XDP_TX
net: thunderx: Add support for XDP_DROP
net: thunderx: Add basic XDP support
net: thunderx: Cleanup receive buffer allocation
net: thunderx: Optimize CQE_TX handling
net: thunderx: Optimize RBDR descriptor handling
net: thunderx: Support for page recycling
ipx: call ipxitf_put() in ioctl error path
net: sched: add helpers to handle extended actions
qed*: Fix issues in the ptp filter config implementation.
qede: Fix concurrency issue in PTP Tx path processing.
stmmac: Add support for SIMATIC IOT2000 platform
net: hns: fix ethtool_get_strings overflow in hns driver
tcp: fix wraparound issue in tcp_lp
bpf, arm64: fix jit branch offset related to ldimm64
bpf, arm64: implement jiting of BPF_XADD
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull iov_iter updates from Al Viro:
"Cleanups that sat in -next + -stable fodder that has just missed 4.11.
There's more iov_iter work in my local tree, but I'd prefer to push
the stuff that had been in -next first"
* 'work.iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
iov_iter: don't revert iov buffer if csum error
generic_file_read_iter(): make use of iov_iter_revert()
generic_file_direct_write(): make use of iov_iter_revert()
orangefs: use iov_iter_revert()
sctp: switch to copy_from_iter_full()
net/9p: switch to copy_from_iter_full()
switch memcpy_from_msg() to copy_from_iter_full()
rds: make use of iov_iter_revert()
|