summaryrefslogtreecommitdiff
path: root/net/ipv6/tcp_ipv6.c
AgeCommit message (Collapse)AuthorFilesLines
2023-07-27tcp: annotate data-races around tcp_rsk(req)->ts_recentEric Dumazet1-1/+1
[ Upstream commit eba20811f32652bc1a52d5e7cc403859b86390d9 ] TCP request sockets are lockless, tcp_rsk(req)->ts_recent can change while being read by another cpu as syzbot noticed. This is harmless, but we should annotate the known races. Note that tcp_check_req() changes req->ts_recent a bit early, we might change this in the future. BUG: KCSAN: data-race in tcp_check_req / tcp_check_req write to 0xffff88813c8afb84 of 4 bytes by interrupt on cpu 1: tcp_check_req+0x694/0xc70 net/ipv4/tcp_minisocks.c:762 tcp_v4_rcv+0x12db/0x1b70 net/ipv4/tcp_ipv4.c:2071 ip_protocol_deliver_rcu+0x356/0x6d0 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x13c/0x1a0 net/ipv4/ip_input.c:233 NF_HOOK include/linux/netfilter.h:303 [inline] ip_local_deliver+0xec/0x1c0 net/ipv4/ip_input.c:254 dst_input include/net/dst.h:468 [inline] ip_rcv_finish net/ipv4/ip_input.c:449 [inline] NF_HOOK include/linux/netfilter.h:303 [inline] ip_rcv+0x197/0x270 net/ipv4/ip_input.c:569 __netif_receive_skb_one_core net/core/dev.c:5493 [inline] __netif_receive_skb+0x90/0x1b0 net/core/dev.c:5607 process_backlog+0x21f/0x380 net/core/dev.c:5935 __napi_poll+0x60/0x3b0 net/core/dev.c:6498 napi_poll net/core/dev.c:6565 [inline] net_rx_action+0x32b/0x750 net/core/dev.c:6698 __do_softirq+0xc1/0x265 kernel/softirq.c:571 do_softirq+0x7e/0xb0 kernel/softirq.c:472 __local_bh_enable_ip+0x64/0x70 kernel/softirq.c:396 local_bh_enable+0x1f/0x20 include/linux/bottom_half.h:33 rcu_read_unlock_bh include/linux/rcupdate.h:843 [inline] __dev_queue_xmit+0xabb/0x1d10 net/core/dev.c:4271 dev_queue_xmit include/linux/netdevice.h:3088 [inline] neigh_hh_output include/net/neighbour.h:528 [inline] neigh_output include/net/neighbour.h:542 [inline] ip_finish_output2+0x700/0x840 net/ipv4/ip_output.c:229 ip_finish_output+0xf4/0x240 net/ipv4/ip_output.c:317 NF_HOOK_COND include/linux/netfilter.h:292 [inline] ip_output+0xe5/0x1b0 net/ipv4/ip_output.c:431 dst_output include/net/dst.h:458 [inline] ip_local_out net/ipv4/ip_output.c:126 [inline] __ip_queue_xmit+0xa4d/0xa70 net/ipv4/ip_output.c:533 ip_queue_xmit+0x38/0x40 net/ipv4/ip_output.c:547 __tcp_transmit_skb+0x1194/0x16e0 net/ipv4/tcp_output.c:1399 tcp_transmit_skb net/ipv4/tcp_output.c:1417 [inline] tcp_write_xmit+0x13ff/0x2fd0 net/ipv4/tcp_output.c:2693 __tcp_push_pending_frames+0x6a/0x1a0 net/ipv4/tcp_output.c:2877 tcp_push_pending_frames include/net/tcp.h:1952 [inline] __tcp_sock_set_cork net/ipv4/tcp.c:3336 [inline] tcp_sock_set_cork+0xe8/0x100 net/ipv4/tcp.c:3343 rds_tcp_xmit_path_complete+0x3b/0x40 net/rds/tcp_send.c:52 rds_send_xmit+0xf8d/0x1420 net/rds/send.c:422 rds_send_worker+0x42/0x1d0 net/rds/threads.c:200 process_one_work+0x3e6/0x750 kernel/workqueue.c:2408 worker_thread+0x5f2/0xa10 kernel/workqueue.c:2555 kthread+0x1d7/0x210 kernel/kthread.c:379 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 read to 0xffff88813c8afb84 of 4 bytes by interrupt on cpu 0: tcp_check_req+0x32a/0xc70 net/ipv4/tcp_minisocks.c:622 tcp_v4_rcv+0x12db/0x1b70 net/ipv4/tcp_ipv4.c:2071 ip_protocol_deliver_rcu+0x356/0x6d0 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x13c/0x1a0 net/ipv4/ip_input.c:233 NF_HOOK include/linux/netfilter.h:303 [inline] ip_local_deliver+0xec/0x1c0 net/ipv4/ip_input.c:254 dst_input include/net/dst.h:468 [inline] ip_rcv_finish net/ipv4/ip_input.c:449 [inline] NF_HOOK include/linux/netfilter.h:303 [inline] ip_rcv+0x197/0x270 net/ipv4/ip_input.c:569 __netif_receive_skb_one_core net/core/dev.c:5493 [inline] __netif_receive_skb+0x90/0x1b0 net/core/dev.c:5607 process_backlog+0x21f/0x380 net/core/dev.c:5935 __napi_poll+0x60/0x3b0 net/core/dev.c:6498 napi_poll net/core/dev.c:6565 [inline] net_rx_action+0x32b/0x750 net/core/dev.c:6698 __do_softirq+0xc1/0x265 kernel/softirq.c:571 run_ksoftirqd+0x17/0x20 kernel/softirq.c:939 smpboot_thread_fn+0x30a/0x4a0 kernel/smpboot.c:164 kthread+0x1d7/0x210 kernel/kthread.c:379 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 value changed: 0x1cd237f1 -> 0x1cd237f2 Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20230717144445.653164-3-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27bpf: Remove extra lock_sock for TCP_ZEROCOPY_RECEIVEStanislav Fomichev1-0/+1
[ Upstream commit 9cacf81f8161111db25f98e78a7a0e32ae142b3f ] Add custom implementation of getsockopt hook for TCP_ZEROCOPY_RECEIVE. We skip generic hooks for TCP_ZEROCOPY_RECEIVE and have a custom call in do_tcp_getsockopt using the on-stack data. This removes 3% overhead for locking/unlocking the socket. Without this patch: 3.38% 0.07% tcp_mmap [kernel.kallsyms] [k] __cgroup_bpf_run_filter_getsockopt | --3.30%--__cgroup_bpf_run_filter_getsockopt | --0.81%--__kmalloc With the patch applied: 0.52% 0.12% tcp_mmap [kernel.kallsyms] [k] __cgroup_bpf_run_filter_getsockopt_kern Note, exporting uapi/tcp.h requires removing netinet/tcp.h from test_progs.h because those headers have confliciting definitions. Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210115163501.805133-2-sdf@google.com Stable-dep-of: 2598619e012c ("sctp: add bpf_bypass_getsockopt proto callback") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-30net: Find dst with sk's xfrm policy not ctl_sksewookseo1-1/+4
[ Upstream commit e22aa14866684f77b4f6b6cae98539e520ddb731 ] If we set XFRM security policy by calling setsockopt with option IPV6_XFRM_POLICY, the policy will be stored in 'sock_policy' in 'sock' struct. However tcp_v6_send_response doesn't look up dst_entry with the actual socket but looks up with tcp control socket. This may cause a problem that a RST packet is sent without ESP encryption & peer's TCP socket can't receive it. This patch will make the function look up dest_entry with actual socket, if the socket has XFRM policy(sock_policy), so that the TCP response packet via this function can be encrypted, & aligned on the encrypted TCP socket. Tested: We encountered this problem when a TCP socket which is encrypted in ESP transport mode encryption, receives challenge ACK at SYN_SENT state. After receiving challenge ACK, TCP needs to send RST to establish the socket at next SYN try. But the RST was not encrypted & peer TCP socket still remains on ESTABLISHED state. So we verified this with test step as below. [Test step] 1. Making a TCP state mismatch between client(IDLE) & server(ESTABLISHED). 2. Client tries a new connection on the same TCP ports(src & dst). 3. Server will return challenge ACK instead of SYN,ACK. 4. Client will send RST to server to clear the SOCKET. 5. Client will retransmit SYN to server on the same TCP ports. [Expected result] The TCP connection should be established. Cc: Maciej Żenczykowski <maze@google.com> Cc: Eric Dumazet <edumazet@google.com> Cc: Steffen Klassert <steffen.klassert@secunet.com> Cc: Sehee Lee <seheele@google.com> Signed-off-by: Sewook Seo <sewookseo@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Stable-dep-of: 1e306ec49a1f ("tcp: fix possible sk_priority leak in tcp_v4_send_reset()") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-04-26inet6: Remove inet6_destroy_sock() in sk->sk_prot->destroy().Kuniyuki Iwashima1-7/+1
commit b5fc29233d28be7a3322848ebe73ac327559cdb9 upstream. After commit d38afeec26ed ("tcp/udp: Call inet6_destroy_sock() in IPv6 sk->sk_destruct()."), we call inet6_destroy_sock() in sk->sk_destruct() by setting inet6_sock_destruct() to it to make sure we do not leak inet6-specific resources. Now we can remove unnecessary inet6_destroy_sock() calls in sk->sk_prot->destroy(). DCCP and SCTP have their own sk->sk_destruct() function, so we change them separately in the following patches. Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ziyang Xuan <william.xuanziyang@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-22ipv6: Fix tcp socket connection with DSCP.Guillaume Nault1-0/+1
commit 8230680f36fd1525303d1117768c8852314c488c upstream. Take into account the IPV6_TCLASS socket option (DSCP) in tcp_v6_connect(). Otherwise fib6_rule_match() can't properly match the DSCP value, resulting in invalid route lookup. For example: ip route add unreachable table main 2001:db8::10/124 ip route add table 100 2001:db8::10/124 dev eth0 ip -6 rule add dsfield 0x04 table 100 echo test | socat - TCP6:[2001:db8::11]:54321,ipv6-tclass=0x04 Without this patch, socat fails at connect() time ("No route to host") because the fib-rule doesn't jump to table 100 and the lookup ends up being done in the main table. Fixes: 2cc67cc731d9 ("[IPV6] ROUTE: Routing by Traffic Class.") Signed-off-by: Guillaume Nault <gnault@redhat.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Reviewed-by: David Ahern <dsahern@kernel.org> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-22dccp/tcp: Avoid negative sk_forward_alloc by ipv6_pinfo.pktoptions.Kuniyuki Iwashima1-7/+3
commit ca43ccf41224b023fc290073d5603a755fd12eed upstream. Eric Dumazet pointed out [0] that when we call skb_set_owner_r() for ipv6_pinfo.pktoptions, sk_rmem_schedule() has not been called, resulting in a negative sk_forward_alloc. We add a new helper which clones a skb and sets its owner only when sk_rmem_schedule() succeeds. Note that we move skb_set_owner_r() forward in (dccp|tcp)_v6_do_rcv() because tcp_send_synack() can make sk_forward_alloc negative before ipv6_opt_accepted() in the crossed SYN-ACK or self-connect() cases. [0]: https://lore.kernel.org/netdev/CANn89iK9oc20Jdi_41jb9URdF210r7d1Y-+uypbMSbOfY6jqrg@mail.gmail.com/ Fixes: 323fbd0edf3f ("net: dccp: Add handling of IPV6_PKTOPTIONS to dccp_v6_do_rcv()") Fixes: 3df80d9320bc ("[DCCP]: Introduce DCCPv6") Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-02dccp/tcp: Reset saddr on failure after inet6?_hash_connect().Kuniyuki Iwashima1-0/+2
[ Upstream commit 77934dc6db0d2b111a8f2759e9ad2fb67f5cffa5 ] When connect() is called on a socket bound to the wildcard address, we change the socket's saddr to a local address. If the socket fails to connect() to the destination, we have to reset the saddr. However, when an error occurs after inet_hash6?_connect() in (dccp|tcp)_v[46]_conect(), we forget to reset saddr and leave the socket bound to the address. From the user's point of view, whether saddr is reset or not varies with errno. Let's fix this inconsistent behaviour. Note that after this patch, the repro [0] will trigger the WARN_ON() in inet_csk_get_port() again, but this patch is not buggy and rather fixes a bug papering over the bhash2's bug for which we need another fix. For the record, the repro causes -EADDRNOTAVAIL in inet_hash6_connect() by this sequence: s1 = socket() s1.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) s1.bind(('127.0.0.1', 10000)) s1.sendto(b'hello', MSG_FASTOPEN, (('127.0.0.1', 10000))) # or s1.connect(('127.0.0.1', 10000)) s2 = socket() s2.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) s2.bind(('0.0.0.0', 10000)) s2.connect(('127.0.0.1', 10000)) # -EADDRNOTAVAIL s2.listen(32) # WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2); [0]: https://syzkaller.appspot.com/bug?extid=015d756bbd1f8b5c8f09 Fixes: 3df80d9320bc ("[DCCP]: Introduce DCCPv6") Fixes: 7c657876b63c ("[DCCP]: Initial implementation") Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Acked-by: Joanne Koong <joannelkoong@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-10tcp/udp: Make early_demux back namespacified.Kuniyuki Iwashima1-7/+2
commit 11052589cf5c0bab3b4884d423d5f60c38fcf25d upstream. Commit e21145a9871a ("ipv4: namespacify ip_early_demux sysctl knob") made it possible to enable/disable early_demux on a per-netns basis. Then, we introduced two knobs, tcp_early_demux and udp_early_demux, to switch it for TCP/UDP in commit dddb64bcb346 ("net: Add sysctl to toggle early demux for tcp and udp"). However, the .proc_handler() was wrong and actually disabled us from changing the behaviour in each netns. We can execute early_demux if net.ipv4.ip_early_demux is on and each proto .early_demux() handler is not NULL. When we toggle (tcp|udp)_early_demux, the change itself is saved in each netns variable, but the .early_demux() handler is a global variable, so the handler is switched based on the init_net's sysctl variable. Thus, netns (tcp|udp)_early_demux knobs have nothing to do with the logic. Whether we CAN execute proto .early_demux() is always decided by init_net's sysctl knob, and whether we DO it or not is by each netns ip_early_demux knob. This patch namespacifies (tcp|udp)_early_demux again. For now, the users of the .early_demux() handler are TCP and UDP only, and they are called directly to avoid retpoline. So, we can remove the .early_demux() handler from inet6?_protos and need not dereference them in ip6?_rcv_finish_core(). If another proto needs .early_demux(), we can restore it at that time. Fixes: dddb64bcb346 ("net: Add sysctl to toggle early demux for tcp and udp") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Link: https://lore.kernel.org/r/20220713175207.7727-1-kuniyu@amazon.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26inet: fully convert sk->sk_rx_dst to RCU rulesEric Dumazet1-4/+7
commit 8f905c0e7354ef261360fb7535ea079b1082c105 upstream. syzbot reported various issues around early demux, one being included in this changelog [1] sk->sk_rx_dst is using RCU protection without clearly documenting it. And following sequences in tcp_v4_do_rcv()/tcp_v6_do_rcv() are not following standard RCU rules. [a] dst_release(dst); [b] sk->sk_rx_dst = NULL; They look wrong because a delete operation of RCU protected pointer is supposed to clear the pointer before the call_rcu()/synchronize_rcu() guarding actual memory freeing. In some cases indeed, dst could be freed before [b] is done. We could cheat by clearing sk_rx_dst before calling dst_release(), but this seems the right time to stick to standard RCU annotations and debugging facilities. [1] BUG: KASAN: use-after-free in dst_check include/net/dst.h:470 [inline] BUG: KASAN: use-after-free in tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 Read of size 2 at addr ffff88807f1cb73a by task syz-executor.5/9204 CPU: 0 PID: 9204 Comm: syz-executor.5 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x320 mm/kasan/report.c:247 __kasan_report mm/kasan/report.c:433 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:450 dst_check include/net/dst.h:470 [inline] tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 ip_rcv_finish_core.constprop.0+0x15de/0x1e80 net/ipv4/ip_input.c:340 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 invoke_softirq kernel/softirq.c:432 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:637 irq_exit_rcu+0x5/0x20 kernel/softirq.c:649 common_interrupt+0x52/0xc0 arch/x86/kernel/irq.c:240 asm_common_interrupt+0x1e/0x40 arch/x86/include/asm/idtentry.h:629 RIP: 0033:0x7f5e972bfd57 Code: 39 d1 73 14 0f 1f 80 00 00 00 00 48 8b 50 f8 48 83 e8 08 48 39 ca 77 f3 48 39 c3 73 3e 48 89 13 48 8b 50 f8 48 89 38 49 8b 0e <48> 8b 3e 48 83 c3 08 48 83 c6 08 eb bc 48 39 d1 72 9e 48 39 d0 73 RSP: 002b:00007fff8a413210 EFLAGS: 00000283 RAX: 00007f5e97108990 RBX: 00007f5e97108338 RCX: ffffffff81d3aa45 RDX: ffffffff81d3aa45 RSI: 00007f5e97108340 RDI: ffffffff81d3aa45 RBP: 00007f5e97107eb8 R08: 00007f5e97108d88 R09: 0000000093c2e8d9 R10: 0000000000000000 R11: 0000000000000000 R12: 00007f5e97107eb0 R13: 00007f5e97108338 R14: 00007f5e97107ea8 R15: 0000000000000019 </TASK> Allocated by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 ip_route_input_slow+0x1817/0x3a20 net/ipv4/route.c:2340 ip_route_input_rcu net/ipv4/route.c:2470 [inline] ip_route_input_noref+0x116/0x2a0 net/ipv4/route.c:2415 ip_rcv_finish_core.constprop.0+0x288/0x1e80 net/ipv4/ip_input.c:354 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Freed by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track+0x21/0x30 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xff/0x130 mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:235 [inline] slab_free_hook mm/slub.c:1723 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1749 slab_free mm/slub.c:3513 [inline] kmem_cache_free+0xbd/0x5d0 mm/slub.c:3530 dst_destroy+0x2d6/0x3f0 net/core/dst.c:127 rcu_do_batch kernel/rcu/tree.c:2506 [inline] rcu_core+0x7ab/0x1470 kernel/rcu/tree.c:2741 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Last potentially related work creation: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 __kasan_record_aux_stack+0xf5/0x120 mm/kasan/generic.c:348 __call_rcu kernel/rcu/tree.c:2985 [inline] call_rcu+0xb1/0x740 kernel/rcu/tree.c:3065 dst_release net/core/dst.c:177 [inline] dst_release+0x79/0xe0 net/core/dst.c:167 tcp_v4_do_rcv+0x612/0x8d0 net/ipv4/tcp_ipv4.c:1712 sk_backlog_rcv include/net/sock.h:1030 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2768 release_sock+0x54/0x1b0 net/core/sock.c:3300 tcp_sendmsg+0x36/0x40 net/ipv4/tcp.c:1441 inet_sendmsg+0x99/0xe0 net/ipv4/af_inet.c:819 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 sock_write_iter+0x289/0x3c0 net/socket.c:1057 call_write_iter include/linux/fs.h:2162 [inline] new_sync_write+0x429/0x660 fs/read_write.c:503 vfs_write+0x7cd/0xae0 fs/read_write.c:590 ksys_write+0x1ee/0x250 fs/read_write.c:643 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff88807f1cb700 which belongs to the cache ip_dst_cache of size 176 The buggy address is located 58 bytes inside of 176-byte region [ffff88807f1cb700, ffff88807f1cb7b0) The buggy address belongs to the page: page:ffffea0001fc72c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x7f1cb flags: 0xfff00000000200(slab|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000000200 dead000000000100 dead000000000122 ffff8881413bb780 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112a20(GFP_ATOMIC|__GFP_NOWARN|__GFP_NORETRY|__GFP_HARDWALL), pid 5, ts 108466983062, free_ts 108048976062 prep_new_page mm/page_alloc.c:2418 [inline] get_page_from_freelist+0xa72/0x2f50 mm/page_alloc.c:4149 __alloc_pages+0x1b2/0x500 mm/page_alloc.c:5369 alloc_pages+0x1a7/0x300 mm/mempolicy.c:2191 alloc_slab_page mm/slub.c:1793 [inline] allocate_slab mm/slub.c:1930 [inline] new_slab+0x32d/0x4a0 mm/slub.c:1993 ___slab_alloc+0x918/0xfe0 mm/slub.c:3022 __slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3109 slab_alloc_node mm/slub.c:3200 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x35c/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 __mkroute_output net/ipv4/route.c:2564 [inline] ip_route_output_key_hash_rcu+0x921/0x2d00 net/ipv4/route.c:2791 ip_route_output_key_hash+0x18b/0x300 net/ipv4/route.c:2619 __ip_route_output_key include/net/route.h:126 [inline] ip_route_output_flow+0x23/0x150 net/ipv4/route.c:2850 ip_route_output_key include/net/route.h:142 [inline] geneve_get_v4_rt+0x3a6/0x830 drivers/net/geneve.c:809 geneve_xmit_skb drivers/net/geneve.c:899 [inline] geneve_xmit+0xc4a/0x3540 drivers/net/geneve.c:1082 __netdev_start_xmit include/linux/netdevice.h:4994 [inline] netdev_start_xmit include/linux/netdevice.h:5008 [inline] xmit_one net/core/dev.c:3590 [inline] dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3606 __dev_queue_xmit+0x299a/0x3650 net/core/dev.c:4229 page last free stack trace: reset_page_owner include/linux/page_owner.h:24 [inline] free_pages_prepare mm/page_alloc.c:1338 [inline] free_pcp_prepare+0x374/0x870 mm/page_alloc.c:1389 free_unref_page_prepare mm/page_alloc.c:3309 [inline] free_unref_page+0x19/0x690 mm/page_alloc.c:3388 qlink_free mm/kasan/quarantine.c:146 [inline] qlist_free_all+0x5a/0xc0 mm/kasan/quarantine.c:165 kasan_quarantine_reduce+0x180/0x200 mm/kasan/quarantine.c:272 __kasan_slab_alloc+0xa2/0xc0 mm/kasan/common.c:444 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] kmem_cache_alloc_node+0x255/0x3f0 mm/slub.c:3270 __alloc_skb+0x215/0x340 net/core/skbuff.c:414 alloc_skb include/linux/skbuff.h:1126 [inline] alloc_skb_with_frags+0x93/0x620 net/core/skbuff.c:6078 sock_alloc_send_pskb+0x783/0x910 net/core/sock.c:2575 mld_newpack+0x1df/0x770 net/ipv6/mcast.c:1754 add_grhead+0x265/0x330 net/ipv6/mcast.c:1857 add_grec+0x1053/0x14e0 net/ipv6/mcast.c:1995 mld_send_initial_cr.part.0+0xf6/0x230 net/ipv6/mcast.c:2242 mld_send_initial_cr net/ipv6/mcast.c:1232 [inline] mld_dad_work+0x1d3/0x690 net/ipv6/mcast.c:2268 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 Memory state around the buggy address: ffff88807f1cb600: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88807f1cb680: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc >ffff88807f1cb700: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88807f1cb780: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc ffff88807f1cb800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 41063e9dd119 ("ipv4: Early TCP socket demux.") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20211220143330.680945-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> [cmllamas: fixed trivial merge conflict] Signed-off-by: Carlos Llamas <cmllamas@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03tcp: Fix data-races around sysctl_tcp_reflect_tos.Kuniyuki Iwashima1-2/+2
[ Upstream commit 870e3a634b6a6cb1543b359007aca73fe6a03ac5 ] While reading sysctl_tcp_reflect_tos, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. Fixes: ac8f1710c12b ("tcp: reflect tos value received in SYN to the socket") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Acked-by: Wei Wang <weiwan@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-06-09lsm,selinux: pass flowi_common instead of flowi to the LSM hooksPaul Moore1-2/+2
[ Upstream commit 3df98d79215ace13d1e91ddfc5a67a0f5acbd83f ] As pointed out by Herbert in a recent related patch, the LSM hooks do not have the necessary address family information to use the flowi struct safely. As none of the LSMs currently use any of the protocol specific flowi information, replace the flowi pointers with pointers to the address family independent flowi_common struct. Reported-by: Herbert Xu <herbert@gondor.apana.org.au> Acked-by: James Morris <jamorris@linux.microsoft.com> Signed-off-by: Paul Moore <paul@paul-moore.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-25ipv6: tcp: drop silly ICMPv6 packet too big messagesEric Dumazet1-2/+17
commit c7bb4b89033b764eb07db4e060548a6311d801ee upstream. While TCP stack scales reasonably well, there is still one part that can be used to DDOS it. IPv6 Packet too big messages have to lookup/insert a new route, and if abused by attackers, can easily put hosts under high stress, with many cpus contending on a spinlock while one is stuck in fib6_run_gc() ip6_protocol_deliver_rcu() icmpv6_rcv() icmpv6_notify() tcp_v6_err() tcp_v6_mtu_reduced() inet6_csk_update_pmtu() ip6_rt_update_pmtu() __ip6_rt_update_pmtu() ip6_rt_cache_alloc() ip6_dst_alloc() dst_alloc() ip6_dst_gc() fib6_run_gc() spin_lock_bh() ... Some of our servers have been hit by malicious ICMPv6 packets trying to _increase_ the MTU/MSS of TCP flows. We believe these ICMPv6 packets are a result of a bug in one ISP stack, since they were blindly sent back for _every_ (small) packet sent to them. These packets are for one TCP flow: 09:24:36.266491 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240 09:24:36.266509 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240 09:24:36.316688 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240 09:24:36.316704 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240 09:24:36.608151 IP6 Addr1 > Victim ICMP6, packet too big, mtu 1460, length 1240 TCP stack can filter some silly requests : 1) MTU below IPV6_MIN_MTU can be filtered early in tcp_v6_err() 2) tcp_v6_mtu_reduced() can drop requests trying to increase current MSS. This tests happen before the IPv6 routing stack is entered, thus removing the potential contention and route exhaustion. Note that IPv6 stack was performing these checks, but too late (ie : after the route has been added, and after the potential garbage collect war) v2: fix typo caught by Martin, thanks ! v3: exports tcp_mtu_to_mss(), caught by David, thanks ! Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Reviewed-by: Maciej Żenczykowski <maze@google.com> Cc: Martin KaFai Lau <kafai@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-25tcp: annotate data races around tp->mtu_infoEric Dumazet1-2/+2
commit 561022acb1ce62e50f7a8258687a21b84282a4cb upstream. While tp->mtu_info is read while socket is owned, the write sides happen from err handlers (tcp_v[46]_mtu_reduced) which only own the socket spinlock. Fixes: 563d34d05786 ("tcp: dont drop MTU reduction indications") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-25net: send SYNACK packet with accepted fwmarkAlexander Ovechkin1-1/+1
commit 43b90bfad34bcb81b8a5bc7dc650800f4be1787e upstream. commit e05a90ec9e16 ("net: reflect mark on tcp syn ack packets") fixed IPv4 only. This part is for the IPv6 side. Fixes: e05a90ec9e16 ("net: reflect mark on tcp syn ack packets") Signed-off-by: Alexander Ovechkin <ovov@yandex-team.ru> Acked-by: Dmitry Yakunin <zeil@yandex-team.ru> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30ipv6: weaken the v4mapped source checkJakub Kicinski1-0/+5
[ Upstream commit dcc32f4f183ab8479041b23a1525d48233df1d43 ] This reverts commit 6af1799aaf3f1bc8defedddfa00df3192445bbf3. Commit 6af1799aaf3f ("ipv6: drop incoming packets having a v4mapped source address") introduced an input check against v4mapped addresses. Use of such addresses on the wire is indeed questionable and not allowed on public Internet. As the commit pointed out https://tools.ietf.org/html/draft-itojun-v6ops-v4mapped-harmful-02 lists potential issues. Unfortunately there are applications which use v4mapped addresses, and breaking them is a clear regression. For example v4mapped addresses (or any semi-valid addresses, really) may be used for uni-direction event streams or packet export. Since the issue which sparked the addition of the check was with TCP and request_socks in particular push the check down to TCPv6 and DCCP. This restores the ability to receive UDPv6 packets with v4mapped address as the source. Keep using the IPSTATS_MIB_INHDRERRORS statistic to minimize the user-visible changes. Fixes: 6af1799aaf3f ("ipv6: drop incoming packets having a v4mapped source address") Reported-by: Sunyi Shao <sunyishao@fb.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-12-10tcp: Retain ECT bits for tos reflectionWei Wang1-2/+5
For DCTCP, we have to retain the ECT bits set by the congestion control algorithm on the socket when reflecting syn TOS in syn-ack, in order to make ECN work properly. Fixes: ac8f1710c12b ("tcp: reflect tos value received in SYN to the socket") Reported-by: Alexander Duyck <alexanderduyck@fb.com> Signed-off-by: Wei Wang <weiwan@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-11-25tcp: Set ECT0 bit in tos/tclass for synack when BPF needs ECNAlexander Duyck1-2/+7
When a BPF program is used to select between a type of TCP congestion control algorithm that uses either ECN or not there is a case where the synack for the frame was coming up without the ECT0 bit set. A bit of research found that this was due to the final socket being configured to dctcp while the listener socket was staying in cubic. To reproduce it all that is needed is to monitor TCP traffic while running the sample bpf program "samples/bpf/tcp_cong_kern.c". What is observed, assuming tcp_dctcp module is loaded or compiled in and the traffic matches the rules in the sample file, is that for all frames with the exception of the synack the ECT0 bit is set. To address that it is necessary to make one additional call to tcp_bpf_ca_needs_ecn using the request socket and then use the output of that to set the ECT0 bit for the tos/tclass of the packet. Fixes: 91b5b21c7c16 ("bpf: Add support for changing congestion control") Signed-off-by: Alexander Duyck <alexanderduyck@fb.com> Link: https://lore.kernel.org/r/160593039663.2604.1374502006916871573.stgit@localhost.localdomain Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-11-24tcp: fix race condition when creating child sockets from syncookiesRicardo Dias1-1/+12
When the TCP stack is in SYN flood mode, the server child socket is created from the SYN cookie received in a TCP packet with the ACK flag set. The child socket is created when the server receives the first TCP packet with a valid SYN cookie from the client. Usually, this packet corresponds to the final step of the TCP 3-way handshake, the ACK packet. But is also possible to receive a valid SYN cookie from the first TCP data packet sent by the client, and thus create a child socket from that SYN cookie. Since a client socket is ready to send data as soon as it receives the SYN+ACK packet from the server, the client can send the ACK packet (sent by the TCP stack code), and the first data packet (sent by the userspace program) almost at the same time, and thus the server will equally receive the two TCP packets with valid SYN cookies almost at the same instant. When such event happens, the TCP stack code has a race condition that occurs between the momement a lookup is done to the established connections hashtable to check for the existence of a connection for the same client, and the moment that the child socket is added to the established connections hashtable. As a consequence, this race condition can lead to a situation where we add two child sockets to the established connections hashtable and deliver two sockets to the userspace program to the same client. This patch fixes the race condition by checking if an existing child socket exists for the same client when we are adding the second child socket to the established connections socket. If an existing child socket exists, we drop the packet and discard the second child socket to the same client. Signed-off-by: Ricardo Dias <rdias@singlestore.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20201120111133.GA67501@rdias-suse-pc.lan Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-11-21tcp: Allow full IP tos/IPv6 tclass to be reflected in L3 headerAlexander Duyck1-3/+3
An issue was recently found where DCTCP SYN/ACK packets did not have the ECT bit set in the L3 header. A bit of code review found that the recent change referenced below had gone though and added a mask that prevented the ECN bits from being populated in the L3 header. This patch addresses that by rolling back the mask so that it is only applied to the flags coming from the incoming TCP request instead of applying it to the socket tos/tclass field. Doing this the ECT bits were restored in the SYN/ACK packets in my testing. One thing that is not addressed by this patch set is the fact that tcp_reflect_tos appears to be incompatible with ECN based congestion avoidance algorithms. At a minimum the feature should likely be documented which it currently isn't. Fixes: ac8f1710c12b ("tcp: reflect tos value received in SYN to the socket") Signed-off-by: Alexander Duyck <alexanderduyck@fb.com> Acked-by: Wei Wang <weiwan@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-09-19net: ipv6: delete duplicated wordsRandy Dunlap1-1/+1
Drop repeated words in net/ipv6/. Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-10tcp: reflect tos value received in SYN to the socketWei Wang1-1/+9
This commit adds a new TCP feature to reflect the tos value received in SYN, and send it out on the SYN-ACK, and eventually set the tos value of the established socket with this reflected tos value. This provides a way to set the traffic class/QoS level for all traffic in the same connection to be the same as the incoming SYN request. It could be useful in data centers to provide equivalent QoS according to the incoming request. This feature is guarded by /proc/sys/net/ipv4/tcp_reflect_tos, and is by default turned off. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-09ipv6: add tos reflection in TCP reset and ackWei Wang1-5/+5
Currently, ipv6 stack does not do any TOS reflection. To make the behavior consistent with v4 stack, this commit adds TOS reflection in tcp_v6_reqsk_send_ack() and tcp_v6_send_reset(). We clear the lower 2-bit ECN value of the received TOS in compliance with RFC 3168 6.1.5 robustness principles. Signed-off-by: Wei Wang <weiwan@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-08-25bpf: tcp: Add bpf_skops_hdr_opt_len() and bpf_skops_write_hdr_opt()Martin KaFai Lau1-2/+3
The bpf prog needs to parse the SYN header to learn what options have been sent by the peer's bpf-prog before writing its options into SYNACK. This patch adds a "syn_skb" arg to tcp_make_synack() and send_synack(). This syn_skb will eventually be made available (as read-only) to the bpf prog. This will be the only SYN packet available to the bpf prog during syncookie. For other regular cases, the bpf prog can also use the saved_syn. When writing options, the bpf prog will first be called to tell the kernel its required number of bytes. It is done by the new bpf_skops_hdr_opt_len(). The bpf prog will only be called when the new BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG is set in tp->bpf_sock_ops_cb_flags. When the bpf prog returns, the kernel will know how many bytes are needed and then update the "*remaining" arg accordingly. 4 byte alignment will be included in the "*remaining" before this function returns. The 4 byte aligned number of bytes will also be stored into the opts->bpf_opt_len. "bpf_opt_len" is a newly added member to the struct tcp_out_options. Then the new bpf_skops_write_hdr_opt() will call the bpf prog to write the header options. The bpf prog is only called if it has reserved spaces before (opts->bpf_opt_len > 0). The bpf prog is the last one getting a chance to reserve header space and writing the header option. These two functions are half implemented to highlight the changes in TCP stack. The actual codes preparing the bpf running context and invoking the bpf prog will be added in the later patch with other necessary bpf pieces. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/bpf/20200820190052.2885316-1-kafai@fb.com
2020-07-25net/tcp: switch ->md5_parse to sockptr_tChristoph Hellwig1-2/+2
Pass a sockptr_t to prepare for set_fs-less handling of the kernel pointer from bpf-cgroup. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-07-20net/ipv6: remove compat_ipv6_{get,set}sockoptChristoph Hellwig1-12/+0
Handle the few cases that need special treatment in-line using in_compat_syscall(). This also removes all the now unused compat_{get,set}sockopt methods. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-21tcp: remove indirect calls for icsk->icsk_af_ops->send_checkEric Dumazet1-0/+7
Mitigate RETPOLINE costs in __tcp_transmit_skb() by using INDIRECT_CALL_INET() wrapper. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-06-02crypto/chtls: IPv6 support for inline TLSVinay Kumar Yadav1-0/+1
Extends support to IPv6 for Inline TLS server. Signed-off-by: Vinay Kumar Yadav <vinay.yadav@chelsio.com> v1->v2: - cc'd tcp folks. v2->v3: - changed EXPORT_SYMBOL() to EXPORT_SYMBOL_GPL() Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-28tcp: ipv6: support RFC 6069 (TCP-LD)Eric Dumazet1-0/+9
Make tcp_ld_RTO_revert() helper available to IPv6, and implement RFC 6069 : Quoting this RFC : 3. Connectivity Disruption Indication For Internet Protocol version 6 (IPv6) [RFC2460], the counterpart of the ICMP destination unreachable message of code 0 (net unreachable) and of code 1 (host unreachable) is the ICMPv6 destination unreachable message of code 0 (no route to destination) [RFC4443]. As with IPv4, a router should generate an ICMPv6 destination unreachable message of code 0 in response to a packet that cannot be delivered to its destination address because it lacks a matching entry in its routing table. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-05-26tcp: allow traceroute -Mtcp for unpriv usersEric Dumazet1-0/+2
Unpriv users can use traceroute over plain UDP sockets, but not TCP ones. $ traceroute -Mtcp 8.8.8.8 You do not have enough privileges to use this traceroute method. $ traceroute -n -Mudp 8.8.8.8 traceroute to 8.8.8.8 (8.8.8.8), 30 hops max, 60 byte packets 1 192.168.86.1 3.631 ms 3.512 ms 3.405 ms 2 10.1.10.1 4.183 ms 4.125 ms 4.072 ms 3 96.120.88.125 20.621 ms 19.462 ms 20.553 ms 4 96.110.177.65 24.271 ms 25.351 ms 25.250 ms 5 69.139.199.197 44.492 ms 43.075 ms 44.346 ms 6 68.86.143.93 27.969 ms 25.184 ms 25.092 ms 7 96.112.146.18 25.323 ms 96.112.146.22 25.583 ms 96.112.146.26 24.502 ms 8 72.14.239.204 24.405 ms 74.125.37.224 16.326 ms 17.194 ms 9 209.85.251.9 18.154 ms 209.85.247.55 14.449 ms 209.85.251.9 26.296 ms^C We can easily support traceroute over TCP, by queueing an error message into socket error queue. Note that applications need to set IP_RECVERR/IPV6_RECVERR option to enable this feature, and that the error message is only queued while in SYN_SNT state. socket(AF_INET6, SOCK_STREAM, IPPROTO_IP) = 3 setsockopt(3, SOL_IPV6, IPV6_RECVERR, [1], 4) = 0 setsockopt(3, SOL_SOCKET, SO_TIMESTAMP_OLD, [1], 4) = 0 setsockopt(3, SOL_IPV6, IPV6_UNICAST_HOPS, [5], 4) = 0 connect(3, {sa_family=AF_INET6, sin6_port=htons(8787), sin6_flowinfo=htonl(0), inet_pton(AF_INET6, "2002:a05:6608:297::", &sin6_addr), sin6_scope_id=0}, 28) = -1 EHOSTUNREACH (No route to host) recvmsg(3, {msg_name={sa_family=AF_INET6, sin6_port=htons(8787), sin6_flowinfo=htonl(0), inet_pton(AF_INET6, "2002:a05:6608:297::", &sin6_addr), sin6_scope_id=0}, msg_namelen=1024->28, msg_iov=[{iov_base="`\r\337\320\0004\6\1&\7\370\260\200\231\16\27\0\0\0\0\0\0\0\0 \2\n\5f\10\2\227"..., iov_len=1024}], msg_iovlen=1, msg_control=[{cmsg_len=32, cmsg_level=SOL_SOCKET, cmsg_type=SO_TIMESTAMP_OLD, cmsg_data={tv_sec=1590340680, tv_usec=272424}}, {cmsg_len=60, cmsg_level=SOL_IPV6, cmsg_type=IPV6_RECVERR}], msg_controllen=96, msg_flags=MSG_ERRQUEUE}, MSG_ERRQUEUE) = 144 Suggested-by: Maciej Żenczykowski <maze@google.com Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Willem de Bruijn <willemb@google.com> Reviewed-by: Maciej Żenczykowski <maze@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-13inet: Use fallthrough;Joe Perches1-1/+1
Convert the various uses of fallthrough comments to fallthrough; Done via script Link: https://lore.kernel.org/lkml/b56602fcf79f849e733e7b521bb0e17895d390fa.1582230379.git.joe@perches.com/ And by hand: net/ipv6/ip6_fib.c has a fallthrough comment outside of an #ifdef block that causes gcc to emit a warning if converted in-place. So move the new fallthrough; inside the containing #ifdef/#endif too. Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-30mptcp: Fix undefined mptcp_handle_ipv6_mapped for modular IPV6Geert Uytterhoeven1-3/+3
If CONFIG_MPTCP=y, CONFIG_MPTCP_IPV6=n, and CONFIG_IPV6=m: ERROR: "mptcp_handle_ipv6_mapped" [net/ipv6/ipv6.ko] undefined! This does not happen if CONFIG_MPTCP_IPV6=y, as CONFIG_MPTCP_IPV6 selects CONFIG_IPV6, and thus forces CONFIG_IPV6 builtin. As exporting a symbol for an empty function would be a bit wasteful, fix this by providing a dummy version of mptcp_handle_ipv6_mapped() for the CONFIG_MPTCP_IPV6=n case. Rename mptcp_handle_ipv6_mapped() to mptcpv6_handle_mapped(), to make it clear this is a pure-IPV6 function, just like mptcpv6_init(). Fixes: cec37a6e41aae7bf ("mptcp: Handle MP_CAPABLE options for outgoing connections") Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-24mptcp: Handle MP_CAPABLE options for outgoing connectionsPeter Krystad1-0/+6
Add hooks to tcp_output.c to add MP_CAPABLE to an outgoing SYN request, to capture the MP_CAPABLE in the received SYN-ACK, to add MP_CAPABLE to the final ACK of the three-way handshake. Use the .sk_rx_dst_set() handler in the subflow proto to capture when the responding SYN-ACK is received and notify the MPTCP connection layer. Co-developed-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com> Co-developed-by: Florian Westphal <fw@strlen.de> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Peter Krystad <peter.krystad@linux.intel.com> Signed-off-by: Christoph Paasch <cpaasch@apple.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-24mptcp: Add MPTCP socket stubsMat Martineau1-0/+7
Implements the infrastructure for MPTCP sockets. MPTCP sockets open one in-kernel TCP socket per subflow. These subflow sockets are only managed by the MPTCP socket that owns them and are not visible from userspace. This commit allows a userspace program to open an MPTCP socket with: sock = socket(AF_INET, SOCK_STREAM, IPPROTO_MPTCP); The resulting socket is simply a wrapper around a single regular TCP socket, without any of the MPTCP protocol implemented over the wire. Co-developed-by: Florian Westphal <fw@strlen.de> Signed-off-by: Florian Westphal <fw@strlen.de> Co-developed-by: Peter Krystad <peter.krystad@linux.intel.com> Signed-off-by: Peter Krystad <peter.krystad@linux.intel.com> Co-developed-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net> Co-developed-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: Christoph Paasch <cpaasch@apple.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-10tcp: Export TCP functions and ops structMat Martineau1-3/+3
MPTCP will make use of tcp_send_mss() and tcp_push() when sending data to specific TCP subflows. tcp_request_sock_ipvX_ops and ipvX_specific will be referenced during TCP subflow creation. Co-developed-by: Peter Krystad <peter.krystad@linux.intel.com> Signed-off-by: Peter Krystad <peter.krystad@linux.intel.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-03net: Add device index to tcp_md5sigDavid Ahern1-1/+19
Add support for userspace to specify a device index to limit the scope of an entry via the TCP_MD5SIG_EXT setsockopt. The existing __tcpm_pad is renamed to tcpm_ifindex and the new field is only checked if the new TCP_MD5SIG_FLAG_IFINDEX is set in tcpm_flags. For now, the device index must point to an L3 master device (e.g., VRF). The API and error handling are setup to allow the constraint to be relaxed in the future to any device index. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-03tcp: Add l3index to tcp_md5sig_key and md5 functionsDavid Ahern1-19/+53
Add l3index to tcp_md5sig_key to represent the L3 domain of a key, and add l3index to tcp_md5_do_add and tcp_md5_do_del to fill in the key. With the key now based on an l3index, add the new parameter to the lookup functions and consider the l3index when looking for a match. The l3index comes from the skb when processing ingress packets leveraging the helpers created for socket lookups, tcp_v4_sdif and inet_iif (and the v6 variants). When the sdif index is set it means the packet ingressed a device that is part of an L3 domain and inet_iif points to the VRF device. For egress, the L3 domain is determined from the socket binding and sk_bound_dev_if. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-01-03ipv6/tcp: Pass dif and sdif to tcp_v6_inbound_md5_hashDavid Ahern1-6/+9
The original ingress device index is saved to the cb space of the skb and the cb is moved during tcp processing. Since tcp_v6_inbound_md5_hash can be called before and after the cb move, pass dif and sdif to it so the caller can save both prior to the cb move. Both are used by a later patch. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-04net: ipv6: add net argument to ip6_dst_lookup_flowSabrina Dubroca1-2/+2
This will be used in the conversion of ipv6_stub to ip6_dst_lookup_flow, as some modules currently pass a net argument without a socket to ip6_dst_lookup. This is equivalent to commit 343d60aada5a ("ipv6: change ipv6_stub_impl.ipv6_dst_lookup to take net argument"). Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-11-07net: annotate lockless accesses to sk->sk_ack_backlogEric Dumazet1-1/+1
sk->sk_ack_backlog can be read without any lock being held. We need to use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing and/or potential KCSAN warnings. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-13tcp: annotate tp->write_seq lockless readsEric Dumazet1-6/+7
There are few places where we fetch tp->write_seq while this field can change from IRQ or other cpu. We need to add READ_ONCE() annotations, and also make sure write sides use corresponding WRITE_ONCE() to avoid store-tearing. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-13tcp: annotate tp->copied_seq lockless readsEric Dumazet1-1/+1
There are few places where we fetch tp->copied_seq while this field can change from IRQ or other cpu. We need to add READ_ONCE() annotations, and also make sure write sides use corresponding WRITE_ONCE() to avoid store-tearing. Note that tcp_inq_hint() was already using READ_ONCE(tp->copied_seq) Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-13tcp: annotate tp->rcv_nxt lockless readsEric Dumazet1-1/+2
There are few places where we fetch tp->rcv_nxt while this field can change from IRQ or other cpu. We need to add READ_ONCE() annotations, and also make sure write sides use corresponding WRITE_ONCE() to avoid store-tearing. Note that tcp_inq_hint() was already using READ_ONCE(tp->rcv_nxt) syzbot reported : BUG: KCSAN: data-race in tcp_poll / tcp_queue_rcv write to 0xffff888120425770 of 4 bytes by interrupt on cpu 0: tcp_rcv_nxt_update net/ipv4/tcp_input.c:3365 [inline] tcp_queue_rcv+0x180/0x380 net/ipv4/tcp_input.c:4638 tcp_rcv_established+0xbf1/0xf50 net/ipv4/tcp_input.c:5616 tcp_v4_do_rcv+0x381/0x4e0 net/ipv4/tcp_ipv4.c:1542 tcp_v4_rcv+0x1a03/0x1bf0 net/ipv4/tcp_ipv4.c:1923 ip_protocol_deliver_rcu+0x51/0x470 net/ipv4/ip_input.c:204 ip_local_deliver_finish+0x110/0x140 net/ipv4/ip_input.c:231 NF_HOOK include/linux/netfilter.h:305 [inline] NF_HOOK include/linux/netfilter.h:299 [inline] ip_local_deliver+0x133/0x210 net/ipv4/ip_input.c:252 dst_input include/net/dst.h:442 [inline] ip_rcv_finish+0x121/0x160 net/ipv4/ip_input.c:413 NF_HOOK include/linux/netfilter.h:305 [inline] NF_HOOK include/linux/netfilter.h:299 [inline] ip_rcv+0x18f/0x1a0 net/ipv4/ip_input.c:523 __netif_receive_skb_one_core+0xa7/0xe0 net/core/dev.c:5004 __netif_receive_skb+0x37/0xf0 net/core/dev.c:5118 netif_receive_skb_internal+0x59/0x190 net/core/dev.c:5208 napi_skb_finish net/core/dev.c:5671 [inline] napi_gro_receive+0x28f/0x330 net/core/dev.c:5704 receive_buf+0x284/0x30b0 drivers/net/virtio_net.c:1061 read to 0xffff888120425770 of 4 bytes by task 7254 on cpu 1: tcp_stream_is_readable net/ipv4/tcp.c:480 [inline] tcp_poll+0x204/0x6b0 net/ipv4/tcp.c:554 sock_poll+0xed/0x250 net/socket.c:1256 vfs_poll include/linux/poll.h:90 [inline] ep_item_poll.isra.0+0x90/0x190 fs/eventpoll.c:892 ep_send_events_proc+0x113/0x5c0 fs/eventpoll.c:1749 ep_scan_ready_list.constprop.0+0x189/0x500 fs/eventpoll.c:704 ep_send_events fs/eventpoll.c:1793 [inline] ep_poll+0xe3/0x900 fs/eventpoll.c:1930 do_epoll_wait+0x162/0x180 fs/eventpoll.c:2294 __do_sys_epoll_pwait fs/eventpoll.c:2325 [inline] __se_sys_epoll_pwait fs/eventpoll.c:2311 [inline] __x64_sys_epoll_pwait+0xcd/0x170 fs/eventpoll.c:2311 do_syscall_64+0xcf/0x2f0 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 7254 Comm: syz-fuzzer Not tainted 5.3.0+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-10-13tcp: add rcu protection around tp->fastopen_rskEric Dumazet1-1/+1
Both tcp_v4_err() and tcp_v6_err() do the following operations while they do not own the socket lock : fastopen = tp->fastopen_rsk; snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; The problem is that without appropriate barrier, the compiler might reload tp->fastopen_rsk and trigger a NULL deref. request sockets are protected by RCU, we can simply add the missing annotations and barriers to solve the issue. Fixes: 168a8f58059a ("tcp: TCP Fast Open Server - main code path") Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-27tcp: honor SO_PRIORITY in TIME_WAIT stateEric Dumazet1-2/+4
ctl packets sent on behalf of TIME_WAIT sockets currently have a zero skb->priority, which can cause various problems. In this patch we : - add a tw_priority field in struct inet_timewait_sock. - populate it from sk->sk_priority when a TIME_WAIT is created. - For IPv4, change ip_send_unicast_reply() and its two callers to propagate tw_priority correctly. ip_send_unicast_reply() no longer changes sk->sk_priority. - For IPv6, make sure TIME_WAIT sockets pass their tw_priority field to tcp_v6_send_response() and tcp_v6_send_ack(). Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-27ipv6: tcp: provide sk->sk_priority to ctl packetsEric Dumazet1-7/+9
We can populate skb->priority for some ctl packets instead of always using zero. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-09-27ipv6: add priority parameter to ip6_xmit()Eric Dumazet1-2/+4
Currently, ip6_xmit() sets skb->priority based on sk->sk_priority This is not desirable for TCP since TCP shares the same ctl socket for a given netns. We want to be able to send RST or ACK packets with a non zero skb->priority. This patch has no functional change. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-07-31tcp: add skb-less helpers to retrieve SYN cookiePetar Penkov1-0/+15
This patch allows generation of a SYN cookie before an SKB has been allocated, as is the case at XDP. Signed-off-by: Petar Penkov <ppenkov@google.com> Reviewed-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-07-12ipv6: tcp: fix flowlabels reflection for RST packetsEric Dumazet1-1/+6
In 323a53c41292 ("ipv6: tcp: enable flowlabel reflection in some RST packets") and 50a8accf1062 ("ipv6: tcp: send consistent flowlabel in TIME_WAIT state") we took care of IPv6 flowlabel reflections for two cases. This patch takes care of the remaining case, when the RST packet is sent on behalf of a 'full' socket. In Marek use case, this was a socket in TCP_CLOSE state. Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Marek Majkowski <marek@cloudflare.com> Tested-by: Marek Majkowski <marek@cloudflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-07-09ipv6: elide flowlabel check if no exclusive leases existWillem de Bruijn1-1/+1
Processes can request ipv6 flowlabels with cmsg IPV6_FLOWINFO. If not set, by default an autogenerated flowlabel is selected. Explicit flowlabels require a control operation per label plus a datapath check on every connection (every datagram if unconnected). This is particularly expensive on unconnected sockets multiplexing many flows, such as QUIC. In the common case, where no lease is exclusive, the check can be safely elided, as both lease request and check trivially succeed. Indeed, autoflowlabel does the same even with exclusive leases. Elide the check if no process has requested an exclusive lease. fl6_sock_lookup previously returns either a reference to a lease or NULL to denote failure. Modify to return a real error and update all callers. On return NULL, they can use the label and will elide the atomic_dec in fl6_sock_release. This is an optimization. Robust applications still have to revert to requesting leases if the fast path fails due to an exclusive lease. Changes RFC->v1: - use static_key_false_deferred to rate limit jump label operations - call static_key_deferred_flush to stop timers on exit - move decrement out of RCU context - defer optimization also if opt data is associated with a lease - updated all fp6_sock_lookup callers, not just udp Signed-off-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-07-01ipv6: icmp: allow flowlabel reflection in echo repliesEric Dumazet1-1/+1
Extend flowlabel_reflect bitmask to allow conditional reflection of incoming flowlabels in echo replies. Note this has precedence against auto flowlabels. Add flowlabel_reflect enum to replace hard coded values. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>