summaryrefslogtreecommitdiff
path: root/net/ipv4/tcp.c
AgeCommit message (Collapse)AuthorFilesLines
2023-07-27tcp: annotate data-races around fastopenq.max_qlenEric Dumazet1-1/+1
[ Upstream commit 70f360dd7042cb843635ece9d28335a4addff9eb ] This field can be read locklessly. Fixes: 1536e2857bd3 ("tcp: Add a TCP_FASTOPEN socket option to get a max backlog on its listner") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230719212857.3943972-12-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27tcp: annotate data-races around icsk->icsk_user_timeoutEric Dumazet1-3/+3
[ Upstream commit 26023e91e12c68669db416b97234328a03d8e499 ] This field can be read locklessly from do_tcp_getsockopt() Fixes: dca43c75e7e5 ("tcp: Add TCP_USER_TIMEOUT socket option.") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230719212857.3943972-11-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27tcp: annotate data-races around tp->notsent_lowatEric Dumazet1-2/+2
[ Upstream commit 1aeb87bc1440c5447a7fa2d6e3c2cca52cbd206b ] tp->notsent_lowat can be read locklessly from do_tcp_getsockopt() and tcp_poll(). Fixes: c9bee3b7fdec ("tcp: TCP_NOTSENT_LOWAT socket option") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230719212857.3943972-10-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27tcp: annotate data-races around rskq_defer_acceptEric Dumazet1-5/+6
[ Upstream commit ae488c74422fb1dcd807c0201804b3b5e8a322a3 ] do_tcp_getsockopt() reads rskq_defer_accept while another cpu might change its value. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230719212857.3943972-9-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27tcp: annotate data-races around tp->linger2Eric Dumazet1-4/+4
[ Upstream commit 9df5335ca974e688389c875546e5819778a80d59 ] do_tcp_getsockopt() reads tp->linger2 while another cpu might change its value. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230719212857.3943972-8-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27tcp: annotate data-races around icsk->icsk_syn_retriesEric Dumazet1-3/+3
[ Upstream commit 3a037f0f3c4bfe44518f2fbb478aa2f99a9cd8bb ] do_tcp_getsockopt() and reqsk_timer_handler() read icsk->icsk_syn_retries while another cpu might change its value. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230719212857.3943972-7-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27tcp: Fix data-races around sysctl_tcp_syn(ack)?_retries.Kuniyuki Iwashima1-1/+2
[ Upstream commit 20a3b1c0f603e8c55c3396abd12dfcfb523e4d3c ] While reading sysctl_tcp_syn(ack)?_retries, they can be changed concurrently. Thus, we need to add READ_ONCE() to their readers. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Signed-off-by: David S. Miller <davem@davemloft.net> Stable-dep-of: 3a037f0f3c4b ("tcp: annotate data-races around icsk->icsk_syn_retries") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27tcp: annotate data-races around tp->keepalive_probesEric Dumazet1-2/+3
[ Upstream commit 6e5e1de616bf5f3df1769abc9292191dfad9110a ] do_tcp_getsockopt() reads tp->keepalive_probes while another cpu might change its value. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230719212857.3943972-6-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27tcp: annotate data-races around tp->keepalive_intvlEric Dumazet1-2/+2
[ Upstream commit 5ecf9d4f52ff2f1d4d44c9b68bc75688e82f13b4 ] do_tcp_getsockopt() reads tp->keepalive_intvl while another cpu might change its value. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230719212857.3943972-5-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27tcp: annotate data-races around tp->keepalive_timeEric Dumazet1-1/+2
[ Upstream commit 4164245c76ff906c9086758e1c3f87082a7f5ef5 ] do_tcp_getsockopt() reads tp->keepalive_time while another cpu might change its value. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230719212857.3943972-4-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27tcp: annotate data-races around tp->tcp_tx_delayEric Dumazet1-2/+2
[ Upstream commit 348b81b68b13ebd489a3e6a46aa1c384c731c919 ] do_tcp_getsockopt() reads tp->tcp_tx_delay while another cpu might change its value. Fixes: a842fe1425cb ("tcp: add optional per socket transmit delay") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230719212857.3943972-2-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27bpf: Remove extra lock_sock for TCP_ZEROCOPY_RECEIVEStanislav Fomichev1-0/+14
[ Upstream commit 9cacf81f8161111db25f98e78a7a0e32ae142b3f ] Add custom implementation of getsockopt hook for TCP_ZEROCOPY_RECEIVE. We skip generic hooks for TCP_ZEROCOPY_RECEIVE and have a custom call in do_tcp_getsockopt using the on-stack data. This removes 3% overhead for locking/unlocking the socket. Without this patch: 3.38% 0.07% tcp_mmap [kernel.kallsyms] [k] __cgroup_bpf_run_filter_getsockopt | --3.30%--__cgroup_bpf_run_filter_getsockopt | --0.81%--__kmalloc With the patch applied: 0.52% 0.12% tcp_mmap [kernel.kallsyms] [k] __cgroup_bpf_run_filter_getsockopt_kern Note, exporting uapi/tcp.h requires removing netinet/tcp.h from test_progs.h because those headers have confliciting definitions. Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210115163501.805133-2-sdf@google.com Stable-dep-of: 2598619e012c ("sctp: add bpf_bypass_getsockopt proto callback") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-09tcp: Return user_mss for TCP_MAXSEG in CLOSE/LISTEN state if user_mss setCambda Zhu1-1/+2
[ Upstream commit 34dfde4ad87b84d21278a7e19d92b5b2c68e6c4d ] This patch replaces the tp->mss_cache check in getting TCP_MAXSEG with tp->rx_opt.user_mss check for CLOSE/LISTEN sock. Since tp->mss_cache is initialized with TCP_MSS_DEFAULT, checking if it's zero is probably a bug. With this change, getting TCP_MAXSEG before connecting will return default MSS normally, and return user_mss if user_mss is set. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Reported-by: Jack Yang <mingliang@linux.alibaba.com> Suggested-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/netdev/CANn89i+3kL9pYtkxkwxwNMzvC_w3LNUum_2=3u+UyLBmGmifHA@mail.gmail.com/#t Signed-off-by: Cambda Zhu <cambda@linux.alibaba.com> Link: https://lore.kernel.org/netdev/14D45862-36EA-4076-974C-EA67513C92F6@linux.alibaba.com/ Reviewed-by: Jason Xing <kerneljasonxing@gmail.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20230527040317.68247-1-cambda@linux.alibaba.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-09tcp: deny tcp_disconnect() when threads are waitingEric Dumazet1-0/+6
[ Upstream commit 4faeee0cf8a5d88d63cdbc3bab124fb0e6aed08c ] Historically connect(AF_UNSPEC) has been abused by syzkaller and other fuzzers to trigger various bugs. A recent one triggers a divide-by-zero [1], and Paolo Abeni was able to diagnose the issue. tcp_recvmsg_locked() has tests about sk_state being not TCP_LISTEN and TCP REPAIR mode being not used. Then later if socket lock is released in sk_wait_data(), another thread can call connect(AF_UNSPEC), then make this socket a TCP listener. When recvmsg() is resumed, it can eventually call tcp_cleanup_rbuf() and attempt a divide by 0 in tcp_rcv_space_adjust() [1] This patch adds a new socket field, counting number of threads blocked in sk_wait_event() and inet_wait_for_connect(). If this counter is not zero, tcp_disconnect() returns an error. This patch adds code in blocking socket system calls, thus should not hurt performance of non blocking ones. Note that we probably could revert commit 499350a5a6e7 ("tcp: initialize rcv_mss to TCP_MIN_MSS instead of 0") to restore original tcpi_rcv_mss meaning (was 0 if no payload was ever received on a socket) [1] divide error: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 13832 Comm: syz-executor.5 Not tainted 6.3.0-rc4-syzkaller-00224-g00c7b5f4ddc5 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023 RIP: 0010:tcp_rcv_space_adjust+0x36e/0x9d0 net/ipv4/tcp_input.c:740 Code: 00 00 00 00 fc ff df 4c 89 64 24 48 8b 44 24 04 44 89 f9 41 81 c7 80 03 00 00 c1 e1 04 44 29 f0 48 63 c9 48 01 e9 48 0f af c1 <49> f7 f6 48 8d 04 41 48 89 44 24 40 48 8b 44 24 30 48 c1 e8 03 48 RSP: 0018:ffffc900033af660 EFLAGS: 00010206 RAX: 4a66b76cbade2c48 RBX: ffff888076640cc0 RCX: 00000000c334e4ac RDX: 0000000000000000 RSI: dffffc0000000000 RDI: 0000000000000001 RBP: 00000000c324e86c R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: ffff8880766417f8 R13: ffff888028fbb980 R14: 0000000000000000 R15: 0000000000010344 FS: 00007f5bffbfe700(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000001b32f25000 CR3: 000000007ced0000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> tcp_recvmsg_locked+0x100e/0x22e0 net/ipv4/tcp.c:2616 tcp_recvmsg+0x117/0x620 net/ipv4/tcp.c:2681 inet6_recvmsg+0x114/0x640 net/ipv6/af_inet6.c:670 sock_recvmsg_nosec net/socket.c:1017 [inline] sock_recvmsg+0xe2/0x160 net/socket.c:1038 ____sys_recvmsg+0x210/0x5a0 net/socket.c:2720 ___sys_recvmsg+0xf2/0x180 net/socket.c:2762 do_recvmmsg+0x25e/0x6e0 net/socket.c:2856 __sys_recvmmsg net/socket.c:2935 [inline] __do_sys_recvmmsg net/socket.c:2958 [inline] __se_sys_recvmmsg net/socket.c:2951 [inline] __x64_sys_recvmmsg+0x20f/0x260 net/socket.c:2951 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f5c0108c0f9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 f1 19 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f5bffbfe168 EFLAGS: 00000246 ORIG_RAX: 000000000000012b RAX: ffffffffffffffda RBX: 00007f5c011ac050 RCX: 00007f5c0108c0f9 RDX: 0000000000000001 RSI: 0000000020000bc0 RDI: 0000000000000003 RBP: 00007f5c010e7b39 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000122 R11: 0000000000000246 R12: 0000000000000000 R13: 00007f5c012cfb1f R14: 00007f5bffbfe300 R15: 0000000000022000 </TASK> Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Reported-by: syzbot <syzkaller@googlegroups.com> Reported-by: Paolo Abeni <pabeni@redhat.com> Diagnosed-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Tested-by: Paolo Abeni <pabeni@redhat.com> Link: https://lore.kernel.org/r/20230526163458.2880232-1-edumazet@google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-30tcp: add annotations around sk->sk_shutdown accessesEric Dumazet1-6/+8
[ Upstream commit e14cadfd80d76f01bfaa1a8d745b1db19b57d6be ] Now sk->sk_shutdown is no longer a bitfield, we can add standard READ_ONCE()/WRITE_ONCE() annotations to silence KCSAN reports like the following: BUG: KCSAN: data-race in tcp_disconnect / tcp_poll write to 0xffff88814588582c of 1 bytes by task 3404 on cpu 1: tcp_disconnect+0x4d6/0xdb0 net/ipv4/tcp.c:3121 __inet_stream_connect+0x5dd/0x6e0 net/ipv4/af_inet.c:715 inet_stream_connect+0x48/0x70 net/ipv4/af_inet.c:727 __sys_connect_file net/socket.c:2001 [inline] __sys_connect+0x19b/0x1b0 net/socket.c:2018 __do_sys_connect net/socket.c:2028 [inline] __se_sys_connect net/socket.c:2025 [inline] __x64_sys_connect+0x41/0x50 net/socket.c:2025 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd read to 0xffff88814588582c of 1 bytes by task 3374 on cpu 0: tcp_poll+0x2e6/0x7d0 net/ipv4/tcp.c:562 sock_poll+0x253/0x270 net/socket.c:1383 vfs_poll include/linux/poll.h:88 [inline] io_poll_check_events io_uring/poll.c:281 [inline] io_poll_task_func+0x15a/0x820 io_uring/poll.c:333 handle_tw_list io_uring/io_uring.c:1184 [inline] tctx_task_work+0x1fe/0x4d0 io_uring/io_uring.c:1246 task_work_run+0x123/0x160 kernel/task_work.c:179 get_signal+0xe64/0xff0 kernel/signal.c:2635 arch_do_signal_or_restart+0x89/0x2a0 arch/x86/kernel/signal.c:306 exit_to_user_mode_loop+0x6f/0xe0 kernel/entry/common.c:168 exit_to_user_mode_prepare+0x6c/0xb0 kernel/entry/common.c:204 __syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline] syscall_exit_to_user_mode+0x26/0x140 kernel/entry/common.c:297 do_syscall_64+0x4d/0xc0 arch/x86/entry/common.c:86 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x03 -> 0x00 Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-30tcp: factor out __tcp_close() helperPaolo Abeni1-2/+7
[ Upstream commit 77c3c95637526f1e4330cc9a4b2065f668c2c4fe ] unlocked version of protocol level close, will be used by MPTCP to allow decouple orphaning and subflow level close. Signed-off-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Stable-dep-of: e14cadfd80d7 ("tcp: add annotations around sk->sk_shutdown accesses") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01tcp: fix rate_app_limited to default to 1David Morley1-0/+2
[ Upstream commit 300b655db1b5152d6101bcb6801d50899b20c2d6 ] The initial default value of 0 for tp->rate_app_limited was incorrect, since a flow is indeed application-limited until it first sends data. Fixing the default to be 1 is generally correct but also specifically will help user-space applications avoid using the initial tcpi_delivery_rate value of 0 that persists until the connection has some non-zero bandwidth sample. Fixes: eb8329e0a04d ("tcp: export data delivery rate") Suggested-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David Morley <morleyd@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Tested-by: David Morley <morleyd@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-16tcp: prohibit TCP_REPAIR_OPTIONS if data was already sentLu Wei1-1/+1
[ Upstream commit 0c175da7b0378445f5ef53904247cfbfb87e0b78 ] If setsockopt with option name of TCP_REPAIR_OPTIONS and opt_code of TCPOPT_SACK_PERM is called to enable sack after data is sent and dupacks are received , it will trigger a warning in function tcp_verify_left_out() as follows: ============================================ WARNING: CPU: 8 PID: 0 at net/ipv4/tcp_input.c:2132 tcp_timeout_mark_lost+0x154/0x160 tcp_enter_loss+0x2b/0x290 tcp_retransmit_timer+0x50b/0x640 tcp_write_timer_handler+0x1c8/0x340 tcp_write_timer+0xe5/0x140 call_timer_fn+0x3a/0x1b0 __run_timers.part.0+0x1bf/0x2d0 run_timer_softirq+0x43/0xb0 __do_softirq+0xfd/0x373 __irq_exit_rcu+0xf6/0x140 The warning is caused in the following steps: 1. a socket named socketA is created 2. socketA enters repair mode without build a connection 3. socketA calls connect() and its state is changed to TCP_ESTABLISHED directly 4. socketA leaves repair mode 5. socketA calls sendmsg() to send data, packets_out and sack_outs(dup ack receives) increase 6. socketA enters repair mode again 7. socketA calls setsockopt with TCPOPT_SACK_PERM to enable sack 8. retransmit timer expires, it calls tcp_timeout_mark_lost(), lost_out increases 9. sack_outs + lost_out > packets_out triggers since lost_out and sack_outs increase repeatly In function tcp_timeout_mark_lost(), tp->sacked_out will be cleared if Step7 not happen and the warning will not be triggered. As suggested by Denis and Eric, TCP_REPAIR_OPTIONS should be prohibited if data was already sent. socket-tcp tests in CRIU has been tested as follows: $ sudo ./test/zdtm.py run -t zdtm/static/socket-tcp* --keep-going \ --ignore-taint socket-tcp* represent all socket-tcp tests in test/zdtm/static/. Fixes: b139ba4e90dc ("tcp: Repair connection-time negotiated parameters") Signed-off-by: Lu Wei <luwei32@huawei.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26inet: fully convert sk->sk_rx_dst to RCU rulesEric Dumazet1-2/+1
commit 8f905c0e7354ef261360fb7535ea079b1082c105 upstream. syzbot reported various issues around early demux, one being included in this changelog [1] sk->sk_rx_dst is using RCU protection without clearly documenting it. And following sequences in tcp_v4_do_rcv()/tcp_v6_do_rcv() are not following standard RCU rules. [a] dst_release(dst); [b] sk->sk_rx_dst = NULL; They look wrong because a delete operation of RCU protected pointer is supposed to clear the pointer before the call_rcu()/synchronize_rcu() guarding actual memory freeing. In some cases indeed, dst could be freed before [b] is done. We could cheat by clearing sk_rx_dst before calling dst_release(), but this seems the right time to stick to standard RCU annotations and debugging facilities. [1] BUG: KASAN: use-after-free in dst_check include/net/dst.h:470 [inline] BUG: KASAN: use-after-free in tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 Read of size 2 at addr ffff88807f1cb73a by task syz-executor.5/9204 CPU: 0 PID: 9204 Comm: syz-executor.5 Not tainted 5.16.0-rc5-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description.constprop.0.cold+0x8d/0x320 mm/kasan/report.c:247 __kasan_report mm/kasan/report.c:433 [inline] kasan_report.cold+0x83/0xdf mm/kasan/report.c:450 dst_check include/net/dst.h:470 [inline] tcp_v4_early_demux+0x95b/0x960 net/ipv4/tcp_ipv4.c:1792 ip_rcv_finish_core.constprop.0+0x15de/0x1e80 net/ipv4/ip_input.c:340 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 invoke_softirq kernel/softirq.c:432 [inline] __irq_exit_rcu+0x123/0x180 kernel/softirq.c:637 irq_exit_rcu+0x5/0x20 kernel/softirq.c:649 common_interrupt+0x52/0xc0 arch/x86/kernel/irq.c:240 asm_common_interrupt+0x1e/0x40 arch/x86/include/asm/idtentry.h:629 RIP: 0033:0x7f5e972bfd57 Code: 39 d1 73 14 0f 1f 80 00 00 00 00 48 8b 50 f8 48 83 e8 08 48 39 ca 77 f3 48 39 c3 73 3e 48 89 13 48 8b 50 f8 48 89 38 49 8b 0e <48> 8b 3e 48 83 c3 08 48 83 c6 08 eb bc 48 39 d1 72 9e 48 39 d0 73 RSP: 002b:00007fff8a413210 EFLAGS: 00000283 RAX: 00007f5e97108990 RBX: 00007f5e97108338 RCX: ffffffff81d3aa45 RDX: ffffffff81d3aa45 RSI: 00007f5e97108340 RDI: ffffffff81d3aa45 RBP: 00007f5e97107eb8 R08: 00007f5e97108d88 R09: 0000000093c2e8d9 R10: 0000000000000000 R11: 0000000000000000 R12: 00007f5e97107eb0 R13: 00007f5e97108338 R14: 00007f5e97107ea8 R15: 0000000000000019 </TASK> Allocated by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:46 [inline] set_alloc_info mm/kasan/common.c:434 [inline] __kasan_slab_alloc+0x90/0xc0 mm/kasan/common.c:467 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x202/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 ip_route_input_slow+0x1817/0x3a20 net/ipv4/route.c:2340 ip_route_input_rcu net/ipv4/route.c:2470 [inline] ip_route_input_noref+0x116/0x2a0 net/ipv4/route.c:2415 ip_rcv_finish_core.constprop.0+0x288/0x1e80 net/ipv4/ip_input.c:354 ip_list_rcv_finish.constprop.0+0x1b2/0x6e0 net/ipv4/ip_input.c:583 ip_sublist_rcv net/ipv4/ip_input.c:609 [inline] ip_list_rcv+0x34e/0x490 net/ipv4/ip_input.c:644 __netif_receive_skb_list_ptype net/core/dev.c:5508 [inline] __netif_receive_skb_list_core+0x549/0x8e0 net/core/dev.c:5556 __netif_receive_skb_list net/core/dev.c:5608 [inline] netif_receive_skb_list_internal+0x75e/0xd80 net/core/dev.c:5699 gro_normal_list net/core/dev.c:5853 [inline] gro_normal_list net/core/dev.c:5849 [inline] napi_complete_done+0x1f1/0x880 net/core/dev.c:6590 virtqueue_napi_complete drivers/net/virtio_net.c:339 [inline] virtnet_poll+0xca2/0x11b0 drivers/net/virtio_net.c:1557 __napi_poll+0xaf/0x440 net/core/dev.c:7023 napi_poll net/core/dev.c:7090 [inline] net_rx_action+0x801/0xb40 net/core/dev.c:7177 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Freed by task 13: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 kasan_set_track+0x21/0x30 mm/kasan/common.c:46 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370 ____kasan_slab_free mm/kasan/common.c:366 [inline] ____kasan_slab_free mm/kasan/common.c:328 [inline] __kasan_slab_free+0xff/0x130 mm/kasan/common.c:374 kasan_slab_free include/linux/kasan.h:235 [inline] slab_free_hook mm/slub.c:1723 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1749 slab_free mm/slub.c:3513 [inline] kmem_cache_free+0xbd/0x5d0 mm/slub.c:3530 dst_destroy+0x2d6/0x3f0 net/core/dst.c:127 rcu_do_batch kernel/rcu/tree.c:2506 [inline] rcu_core+0x7ab/0x1470 kernel/rcu/tree.c:2741 __do_softirq+0x29b/0x9c2 kernel/softirq.c:558 Last potentially related work creation: kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38 __kasan_record_aux_stack+0xf5/0x120 mm/kasan/generic.c:348 __call_rcu kernel/rcu/tree.c:2985 [inline] call_rcu+0xb1/0x740 kernel/rcu/tree.c:3065 dst_release net/core/dst.c:177 [inline] dst_release+0x79/0xe0 net/core/dst.c:167 tcp_v4_do_rcv+0x612/0x8d0 net/ipv4/tcp_ipv4.c:1712 sk_backlog_rcv include/net/sock.h:1030 [inline] __release_sock+0x134/0x3b0 net/core/sock.c:2768 release_sock+0x54/0x1b0 net/core/sock.c:3300 tcp_sendmsg+0x36/0x40 net/ipv4/tcp.c:1441 inet_sendmsg+0x99/0xe0 net/ipv4/af_inet.c:819 sock_sendmsg_nosec net/socket.c:704 [inline] sock_sendmsg+0xcf/0x120 net/socket.c:724 sock_write_iter+0x289/0x3c0 net/socket.c:1057 call_write_iter include/linux/fs.h:2162 [inline] new_sync_write+0x429/0x660 fs/read_write.c:503 vfs_write+0x7cd/0xae0 fs/read_write.c:590 ksys_write+0x1ee/0x250 fs/read_write.c:643 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae The buggy address belongs to the object at ffff88807f1cb700 which belongs to the cache ip_dst_cache of size 176 The buggy address is located 58 bytes inside of 176-byte region [ffff88807f1cb700, ffff88807f1cb7b0) The buggy address belongs to the page: page:ffffea0001fc72c0 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x7f1cb flags: 0xfff00000000200(slab|node=0|zone=1|lastcpupid=0x7ff) raw: 00fff00000000200 dead000000000100 dead000000000122 ffff8881413bb780 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112a20(GFP_ATOMIC|__GFP_NOWARN|__GFP_NORETRY|__GFP_HARDWALL), pid 5, ts 108466983062, free_ts 108048976062 prep_new_page mm/page_alloc.c:2418 [inline] get_page_from_freelist+0xa72/0x2f50 mm/page_alloc.c:4149 __alloc_pages+0x1b2/0x500 mm/page_alloc.c:5369 alloc_pages+0x1a7/0x300 mm/mempolicy.c:2191 alloc_slab_page mm/slub.c:1793 [inline] allocate_slab mm/slub.c:1930 [inline] new_slab+0x32d/0x4a0 mm/slub.c:1993 ___slab_alloc+0x918/0xfe0 mm/slub.c:3022 __slab_alloc.constprop.0+0x4d/0xa0 mm/slub.c:3109 slab_alloc_node mm/slub.c:3200 [inline] slab_alloc mm/slub.c:3242 [inline] kmem_cache_alloc+0x35c/0x3a0 mm/slub.c:3247 dst_alloc+0x146/0x1f0 net/core/dst.c:92 rt_dst_alloc+0x73/0x430 net/ipv4/route.c:1613 __mkroute_output net/ipv4/route.c:2564 [inline] ip_route_output_key_hash_rcu+0x921/0x2d00 net/ipv4/route.c:2791 ip_route_output_key_hash+0x18b/0x300 net/ipv4/route.c:2619 __ip_route_output_key include/net/route.h:126 [inline] ip_route_output_flow+0x23/0x150 net/ipv4/route.c:2850 ip_route_output_key include/net/route.h:142 [inline] geneve_get_v4_rt+0x3a6/0x830 drivers/net/geneve.c:809 geneve_xmit_skb drivers/net/geneve.c:899 [inline] geneve_xmit+0xc4a/0x3540 drivers/net/geneve.c:1082 __netdev_start_xmit include/linux/netdevice.h:4994 [inline] netdev_start_xmit include/linux/netdevice.h:5008 [inline] xmit_one net/core/dev.c:3590 [inline] dev_hard_start_xmit+0x1eb/0x920 net/core/dev.c:3606 __dev_queue_xmit+0x299a/0x3650 net/core/dev.c:4229 page last free stack trace: reset_page_owner include/linux/page_owner.h:24 [inline] free_pages_prepare mm/page_alloc.c:1338 [inline] free_pcp_prepare+0x374/0x870 mm/page_alloc.c:1389 free_unref_page_prepare mm/page_alloc.c:3309 [inline] free_unref_page+0x19/0x690 mm/page_alloc.c:3388 qlink_free mm/kasan/quarantine.c:146 [inline] qlist_free_all+0x5a/0xc0 mm/kasan/quarantine.c:165 kasan_quarantine_reduce+0x180/0x200 mm/kasan/quarantine.c:272 __kasan_slab_alloc+0xa2/0xc0 mm/kasan/common.c:444 kasan_slab_alloc include/linux/kasan.h:259 [inline] slab_post_alloc_hook mm/slab.h:519 [inline] slab_alloc_node mm/slub.c:3234 [inline] kmem_cache_alloc_node+0x255/0x3f0 mm/slub.c:3270 __alloc_skb+0x215/0x340 net/core/skbuff.c:414 alloc_skb include/linux/skbuff.h:1126 [inline] alloc_skb_with_frags+0x93/0x620 net/core/skbuff.c:6078 sock_alloc_send_pskb+0x783/0x910 net/core/sock.c:2575 mld_newpack+0x1df/0x770 net/ipv6/mcast.c:1754 add_grhead+0x265/0x330 net/ipv6/mcast.c:1857 add_grec+0x1053/0x14e0 net/ipv6/mcast.c:1995 mld_send_initial_cr.part.0+0xf6/0x230 net/ipv6/mcast.c:2242 mld_send_initial_cr net/ipv6/mcast.c:1232 [inline] mld_dad_work+0x1d3/0x690 net/ipv6/mcast.c:2268 process_one_work+0x9b2/0x1690 kernel/workqueue.c:2298 worker_thread+0x658/0x11f0 kernel/workqueue.c:2445 Memory state around the buggy address: ffff88807f1cb600: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88807f1cb680: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc >ffff88807f1cb700: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88807f1cb780: fb fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc ffff88807f1cb800: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Fixes: 41063e9dd119 ("ipv4: Early TCP socket demux.") Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20211220143330.680945-1-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> [cmllamas: fixed trivial merge conflict] Signed-off-by: Carlos Llamas <cmllamas@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26tcp: annotate data-race around tcp_md5sig_pool_populatedEric Dumazet1-4/+10
[ Upstream commit aacd467c0a576e5e44d2de4205855dc0fe43f6fb ] tcp_md5sig_pool_populated can be read while another thread changes its value. The race has no consequence because allocations are protected with tcp_md5sig_mutex. This patch adds READ_ONCE() and WRITE_ONCE() to document the race and silence KCSAN. Reported-by: Abhishek Shah <abhishek.shah@columbia.edu> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26tcp: fix tcp_cwnd_validate() to not forget is_cwnd_limitedNeal Cardwell1-0/+2
[ Upstream commit f4ce91ce12a7c6ead19b128ffa8cff6e3ded2a14 ] This commit fixes a bug in the tracking of max_packets_out and is_cwnd_limited. This bug can cause the connection to fail to remember that is_cwnd_limited is true, causing the connection to fail to grow cwnd when it should, causing throughput to be lower than it should be. The following event sequence is an example that triggers the bug: (a) The connection is cwnd_limited, but packets_out is not at its peak due to TSO deferral deciding not to send another skb yet. In such cases the connection can advance max_packets_seq and set tp->is_cwnd_limited to true and max_packets_out to a small number. (b) Then later in the round trip the connection is pacing-limited (not cwnd-limited), and packets_out is larger. In such cases the connection would raise max_packets_out to a bigger number but (unexpectedly) flip tp->is_cwnd_limited from true to false. This commit fixes that bug. One straightforward fix would be to separately track (a) the next window after max_packets_out reaches a maximum, and (b) the next window after tp->is_cwnd_limited is set to true. But this would require consuming an extra u32 sequence number. Instead, to save space we track only the most important information. Specifically, we track the strongest available signal of the degree to which the cwnd is fully utilized: (1) If the connection is cwnd-limited then we remember that fact for the current window. (2) If the connection not cwnd-limited then we track the maximum number of outstanding packets in the current window. In particular, note that the new logic cannot trigger the buggy (a)/(b) sequence above because with the new logic a condition where tp->packets_out > tp->max_packets_out can only trigger an update of tp->is_cwnd_limited if tp->is_cwnd_limited is false. This first showed up in a testing of a BBRv2 dev branch, but this buggy behavior highlighted a general issue with the tcp_cwnd_validate() logic that can cause cwnd to fail to increase at the proper rate for any TCP congestion control, including Reno or CUBIC. Fixes: ca8a22634381 ("tcp: make cwnd-limited checks measurement-based, and gentler") Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Kevin(Yudong) Yang <yyd@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-31net: Fix data-races around sysctl_[rw]mem(_offset)?.Kuniyuki Iwashima1-3/+3
[ Upstream commit 02739545951ad4c1215160db7fbf9b7a918d3c0b ] While reading these sysctl variables, they can be changed concurrently. Thus, we need to add READ_ONCE() to their readers. - .sysctl_rmem - .sysctl_rwmem - .sysctl_rmem_offset - .sysctl_wmem_offset - sysctl_tcp_rmem[1, 2] - sysctl_tcp_wmem[1, 2] - sysctl_decnet_rmem[1] - sysctl_decnet_wmem[1] - sysctl_tipc_rmem[1] Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-03tcp: Fix a data-race around sysctl_tcp_autocorking.Kuniyuki Iwashima1-1/+1
[ Upstream commit 85225e6f0a76e6745bc841c9f25169c509b573d8 ] While reading sysctl_tcp_autocorking, it can be changed concurrently. Thus, we need to add READ_ONCE() to its reader. Fixes: f54b311142a9 ("tcp: auto corking") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-29tcp: Fix data-races around sysctl_tcp_fastopen.Kuniyuki Iwashima1-2/+4
[ Upstream commit 5a54213318c43f4009ae158347aa6016e3b9b55a ] While reading sysctl_tcp_fastopen, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. Fixes: 2100c8d2d9db ("net-tcp: Fast Open base") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-29tcp: Fix data-races around some timeout sysctl knobs.Kuniyuki Iwashima1-1/+1
[ Upstream commit 39e24435a776e9de5c6dd188836cf2523547804b ] While reading these sysctl knobs, they can be changed concurrently. Thus, we need to add READ_ONCE() to their readers. - tcp_retries1 - tcp_retries2 - tcp_orphan_retries - tcp_fin_timeout Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-29tcp: Fix data-races around sysctl_tcp_reordering.Kuniyuki Iwashima1-1/+1
[ Upstream commit 46778cd16e6a5ad1b2e3a91f6c057c907379418e ] While reading sysctl_tcp_reordering, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-21tcp: Fix a data-race around sysctl_tcp_max_orphans.Kuniyuki Iwashima1-1/+2
[ Upstream commit 47e6ab24e8c6e3ca10ceb5835413f401f90de4bf ] While reading sysctl_tcp_max_orphans, it can be changed concurrently. So, we need to add READ_ONCE() to avoid a data-race. Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2") Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-03-19tcp: make tcp_read_sock() more robustEric Dumazet1-4/+6
[ Upstream commit e3d5ea2c011ecb16fb94c56a659364e6b30fac94 ] If recv_actor() returns an incorrect value, tcp_read_sock() might loop forever. Instead, issue a one time warning and make sure to make progress. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Jakub Sitnicki <jakub@cloudflare.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/r/20220302161723.3910001-2-eric.dumazet@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-12-01tcp: correctly handle increased zerocopy args struct sizeArjun Roy1-2/+2
[ Upstream commit e0fecb289ad3fd2245cdc50bf450b97fcca39884 ] A prior patch increased the size of struct tcp_zerocopy_receive but did not update do_tcp_getsockopt() handling to properly account for this. This patch simply reintroduces content erroneously cut from the referenced prior patch that handles the new struct size. Fixes: 18fb76ed5386 ("net-zerocopy: Copy straggler unaligned data for TCP Rx. zerocopy.") Signed-off-by: Arjun Roy <arjunroy@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-26tcp: Fix uninitialized access in skb frags array for Rx 0cp.Arjun Roy1-0/+3
[ Upstream commit 70701b83e208767f2720d8cd3e6a62cddafb3a30 ] TCP Receive zerocopy iterates through the SKB queue via tcp_recv_skb(), acquiring a pointer to an SKB and an offset within that SKB to read from. From there, it iterates the SKB frags array to determine which offset to start remapping pages from. However, this is built on the assumption that the offset read so far within the SKB is smaller than the SKB length. If this assumption is violated, we can attempt to read an invalid frags array element, which would cause a fault. tcp_recv_skb() can cause such an SKB to be returned when the TCP FIN flag is set. Therefore, we must guard against this occurrence inside skb_advance_frag(). One way that we can reproduce this error follows: 1) In a receiver program, call getsockopt(TCP_ZEROCOPY_RECEIVE) with: char some_array[32 * 1024]; struct tcp_zerocopy_receive zc = { .copybuf_address = (__u64) &some_array[0], .copybuf_len = 32 * 1024, }; 2) In a sender program, after a TCP handshake, send the following sequence of packets: i) Seq = [X, X+4000] ii) Seq = [X+4000, X+5000] iii) Seq = [X+4000, X+5000], Flags = FIN | URG, urgptr=1000 (This can happen without URG, if we have a signal pending, but URG is a convenient way to reproduce the behaviour). In this case, the following event sequence will occur on the receiver: tcp_zerocopy_receive(): -> receive_fallback_to_copy() // copybuf_len >= inq -> tcp_recvmsg_locked() // reads 5000 bytes, then breaks due to URG -> tcp_recv_skb() // yields skb with skb->len == offset -> tcp_zerocopy_set_hint_for_skb() -> skb_advance_to_frag() // will returns a frags ptr. >= nr_frags -> find_next_mappable_frag() // will dereference this bad frags ptr. With this patch, skb_advance_to_frag() will no longer return an invalid frags pointer, and will return NULL instead, fixing the issue. Signed-off-by: Arjun Roy <arjunroy@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Fixes: 05255b823a61 ("tcp: add TCP_ZEROCOPY_RECEIVE support for zerocopy receive") Link: https://lore.kernel.org/r/20211111235215.2605384-1-arjunroy.kdev@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-26net-zerocopy: Refactor skb frag fast-forward op.Arjun Roy1-9/+26
[ Upstream commit 7fba5309efe24e4f0284ef4b8663cdf401035e72 ] Refactor skb frag fast-forwarding for tcp receive zerocopy. This is part of a patch set that introduces short-circuited hybrid copies for small receive operations, which results in roughly 33% fewer syscalls for small RPC scenarios. skb_advance_to_frag(), given a skb and an offset into the skb, iterates from the first frag for the skb until we're at the frag specified by the offset. Assuming the offset provided refers to how many bytes in the skb are already read, the returned frag points to the next frag we may read from, while offset_frag is set to the number of bytes from this frag that we have already read. If frag is not null and offset_frag is equal to 0, then we may be able to map this frag's page into the process address space with vm_insert_page(). However, if offset_frag is not equal to 0, then we cannot do so. Signed-off-by: Arjun Roy <arjunroy@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-26net-zerocopy: Copy straggler unaligned data for TCP Rx. zerocopy.Arjun Roy1-16/+68
[ Upstream commit 18fb76ed53865c1b5d5f0157b1b825704590beb5 ] When TCP receive zerocopy does not successfully map the entire requested space, it outputs a 'hint' that the caller should recvmsg(). Augment zerocopy to accept a user buffer that it tries to copy this hint into - if it is possible to copy the entire hint, it will do so. This elides a recvmsg() call for received traffic that isn't exactly page-aligned in size. This was tested with RPC-style traffic of arbitrary sizes. Normally, each received message required at least one getsockopt() call, and one recvmsg() call for the remaining unaligned data. With this change, almost all of the recvmsg() calls are eliminated, leading to a savings of about 25%-50% in number of system calls for RPC-style workloads. Signed-off-by: Arjun Roy <arjunroy@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18tcp: don't free a FIN sk_buff in tcp_remove_empty_skb()Jon Maxwell1-1/+1
[ Upstream commit cf12e6f9124629b18a6182deefc0315f0a73a199 ] v1: Implement a more general statement as recommended by Eric Dumazet. The sequence number will be advanced, so this check will fix the FIN case and other cases. A customer reported sockets stuck in the CLOSING state. A Vmcore revealed that the write_queue was not empty as determined by tcp_write_queue_empty() but the sk_buff containing the FIN flag had been freed and the socket was zombied in that state. Corresponding pcaps show no FIN from the Linux kernel on the wire. Some instrumentation was added to the kernel and it was found that there is a timing window where tcp_sendmsg() can run after tcp_send_fin(). tcp_sendmsg() will hit an error, for example: 1269 ▹ if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))↩ 1270 ▹ ▹ goto do_error;↩ tcp_remove_empty_skb() will then free the FIN sk_buff as "skb->len == 0". The TCP socket is now wedged in the FIN-WAIT-1 state because the FIN is never sent. If the other side sends a FIN packet the socket will transition to CLOSING and remain that way until the system is rebooted. Fix this by checking for the FIN flag in the sk_buff and don't free it if that is the case. Testing confirmed that fixed the issue. Fixes: fdfc5c8594c2 ("tcp: remove empty skb from write queue in error cases") Signed-off-by: Jon Maxwell <jmaxwell37@gmail.com> Reported-by: Monir Zouaoui <Monir.Zouaoui@mail.schwarz> Reported-by: Simon Stier <simon.stier@mail.schwarz> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18tcp: switch orphan_count to bare per-cpu countersEric Dumazet1-5/+33
[ Upstream commit 19757cebf0c5016a1f36f7fe9810a9f0b33c0832 ] Use of percpu_counter structure to track count of orphaned sockets is causing problems on modern hosts with 256 cpus or more. Stefan Bach reported a serious spinlock contention in real workloads, that I was able to reproduce with a netfilter rule dropping incoming FIN packets. 53.56% server [kernel.kallsyms] [k] queued_spin_lock_slowpath | ---queued_spin_lock_slowpath | --53.51%--_raw_spin_lock_irqsave | --53.51%--__percpu_counter_sum tcp_check_oom | |--39.03%--__tcp_close | tcp_close | inet_release | inet6_release | sock_close | __fput | ____fput | task_work_run | exit_to_usermode_loop | do_syscall_64 | entry_SYSCALL_64_after_hwframe | __GI___libc_close | --14.48%--tcp_out_of_resources tcp_write_timeout tcp_retransmit_timer tcp_write_timer_handler tcp_write_timer call_timer_fn expire_timers __run_timers run_timer_softirq __softirqentry_text_start As explained in commit cf86a086a180 ("net/dst: use a smaller percpu_counter batch for dst entries accounting"), default batch size is too big for the default value of tcp_max_orphans (262144). But even if we reduce batch sizes, there would still be cases where the estimated count of orphans is beyond the limit, and where tcp_too_many_orphans() has to call the expensive percpu_counter_sum_positive(). One solution is to use plain per-cpu counters, and have a timer to periodically refresh this cache. Updating this cache every 100ms seems about right, tcp pressure state is not radically changing over shorter periods. percpu_counter was nice 15 years ago while hosts had less than 16 cpus, not anymore by current standards. v2: Fix the build issue for CONFIG_CRYPTO_DEV_CHELSIO_TLS=m, reported by kernel test robot <lkp@intel.com> Remove unused socket argument from tcp_too_many_orphans() Fixes: dd24c00191d5 ("net: Use a percpu_counter for orphan_count") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: Stefan Bach <sfb@google.com> Cc: Neal Cardwell <ncardwell@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-25tcp: call sk_wmem_schedule before sk_mem_charge in zerocopy pathTalal Ahmad1-0/+3
commit 358ed624207012f03318235017ac6fb41f8af592 upstream. sk_wmem_schedule makes sure that sk_forward_alloc has enough bytes for charging that is going to be done by sk_mem_charge. In the transmit zerocopy path, there is sk_mem_charge but there was no call to sk_wmem_schedule. This change adds that call. Without this call to sk_wmem_schedule, sk_forward_alloc can go negetive which is a bug because sk_forward_alloc is a per-socket space that has been forward charged so this can't be negative. Fixes: f214f915e7db ("tcp: enable MSG_ZEROCOPY") Signed-off-by: Talal Ahmad <talalahmad@google.com> Reviewed-by: Willem de Bruijn <willemb@google.com> Reviewed-by: Wei Wang <weiwan@google.com> Reviewed-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-17tcp: add sanity tests to TCP_QUEUE_SEQEric Dumazet1-8/+15
commit 8811f4a9836e31c14ecdf79d9f3cb7c5d463265d upstream. Qingyu Li reported a syzkaller bug where the repro changes RCV SEQ _after_ restoring data in the receive queue. mprotect(0x4aa000, 12288, PROT_READ) = 0 mmap(0x1ffff000, 4096, PROT_NONE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x1ffff000 mmap(0x20000000, 16777216, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000 mmap(0x21000000, 4096, PROT_NONE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x21000000 socket(AF_INET6, SOCK_STREAM, IPPROTO_IP) = 3 setsockopt(3, SOL_TCP, TCP_REPAIR, [1], 4) = 0 connect(3, {sa_family=AF_INET6, sin6_port=htons(0), sin6_flowinfo=htonl(0), inet_pton(AF_INET6, "::1", &sin6_addr), sin6_scope_id=0}, 28) = 0 setsockopt(3, SOL_TCP, TCP_REPAIR_QUEUE, [1], 4) = 0 sendmsg(3, {msg_name=NULL, msg_namelen=0, msg_iov=[{iov_base="0x0000000000000003\0\0", iov_len=20}], msg_iovlen=1, msg_controllen=0, msg_flags=0}, 0) = 20 setsockopt(3, SOL_TCP, TCP_REPAIR, [0], 4) = 0 setsockopt(3, SOL_TCP, TCP_QUEUE_SEQ, [128], 4) = 0 recvfrom(3, NULL, 20, 0, NULL, NULL) = -1 ECONNRESET (Connection reset by peer) syslog shows: [ 111.205099] TCP recvmsg seq # bug 2: copied 80, seq 0, rcvnxt 80, fl 0 [ 111.207894] WARNING: CPU: 1 PID: 356 at net/ipv4/tcp.c:2343 tcp_recvmsg_locked+0x90e/0x29a0 This should not be allowed. TCP_QUEUE_SEQ should only be used when queues are empty. This patch fixes this case, and the tx path as well. Fixes: ee9952831cfd ("tcp: Initial repair mode") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Pavel Emelyanov <xemul@parallels.com> Link: https://bugzilla.kernel.org/show_bug.cgi?id=212005 Reported-by: Qingyu Li <ieatmuttonchuan@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-17tcp: Fix sign comparison bug in getsockopt(TCP_ZEROCOPY_RECEIVE)Arjun Roy1-1/+2
commit 2107d45f17bedd7dbf4178462da0ac223835a2a7 upstream. getsockopt(TCP_ZEROCOPY_RECEIVE) has a bug where we read a user-provided "len" field of type signed int, and then compare the value to the result of an "offsetofend" operation, which is unsigned. Negative values provided by the user will be promoted to large positive numbers; thus checking that len < offsetofend() will return false when the intention was that it return true. Note that while len is originally checked for negative values earlier on in do_tcp_getsockopt(), subsequent calls to get_user() re-read the value from userspace which may have changed in the meantime. Therefore, re-add the check for negative values after the call to get_user in the handler code for TCP_ZEROCOPY_RECEIVE. Fixes: c8856c051454 ("tcp-zerocopy: Return inq along with tcp receive zerocopy.") Reported-by: kernel test robot <lkp@intel.com> Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Arjun Roy <arjunroy@google.com> Link: https://lore.kernel.org/r/20210225232628.4033281-1-arjunroy.kdev@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-27tcp: fix TCP_USER_TIMEOUT with zero windowEnke Chen1-0/+1
commit 9d9b1ee0b2d1c9e02b2338c4a4b0a062d2d3edac upstream. The TCP session does not terminate with TCP_USER_TIMEOUT when data remain untransmitted due to zero window. The number of unanswered zero-window probes (tcp_probes_out) is reset to zero with incoming acks irrespective of the window size, as described in tcp_probe_timer(): RFC 1122 4.2.2.17 requires the sender to stay open indefinitely as long as the receiver continues to respond probes. We support this by default and reset icsk_probes_out with incoming ACKs. This counter, however, is the wrong one to be used in calculating the duration that the window remains closed and data remain untransmitted. Thanks to Jonathan Maxwell <jmaxwell37@gmail.com> for diagnosing the actual issue. In this patch a new timestamp is introduced for the socket in order to track the elapsed time for the zero-window probes that have not been answered with any non-zero window ack. Fixes: 9721e709fa68 ("tcp: simplify window probe aborting on USER_TIMEOUT") Reported-by: William McCall <william.mccall@gmail.com> Co-developed-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Enke Chen <enchen@paloaltonetworks.com> Reviewed-by: Yuchung Cheng <ycheng@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20210115223058.GA39267@localhost.localdomain Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-24tcp: Prevent low rmem stalls with SO_RCVLOWAT.Arjun Roy1-0/+2
With SO_RCVLOWAT, under memory pressure, it is possible to enter a state where: 1. We have not received enough bytes to satisfy SO_RCVLOWAT. 2. We have not entered buffer pressure (see tcp_rmem_pressure()). 3. But, we do not have enough buffer space to accept more packets. In this case, we advertise 0 rwnd (due to #3) but the application does not drain the receive queue (no wakeup because of #1 and #2) so the flow stalls. Modify the heuristic for SO_RCVLOWAT so that, if we are advertising rwnd<=rcv_mss, force a wakeup to prevent a stall. Without this patch, setting tcp_rmem to 6143 and disabling TCP autotune causes a stalled flow. With this patch, no stall occurs. This is with RPC-style traffic with large messages. Fixes: 03f45c883c6f ("tcp: avoid extra wakeups for SO_RCVLOWAT users") Signed-off-by: Arjun Roy <arjunroy@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/r/20201023184709.217614-1-arjunroy.kdev@gmail.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-06Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/netDavid S. Miller1-1/+2
Rejecting non-native endian BTF overlapped with the addition of support for it. The rest were more simple overlapping changes, except the renesas ravb binding update, which had to follow a file move as well as a YAML conversion. Signed-off-by: David S. Miller <davem@davemloft.net>
2020-10-03tcp: use sendpage_ok() to detect misused .sendpageColy Li1-1/+2
commit a10674bf2406 ("tcp: detecting the misuse of .sendpage for Slab objects") adds the checks for Slab pages, but the pages don't have page_count are still missing from the check. Network layer's sendpage method is not designed to send page_count 0 pages neither, therefore both PageSlab() and page_count() should be both checked for the sending page. This is exactly what sendpage_ok() does. This patch uses sendpage_ok() in do_tcp_sendpages() to detect misused .sendpage, to make the code more robust. Fixes: a10674bf2406 ("tcp: detecting the misuse of .sendpage for Slab objects") Suggested-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Coly Li <colyli@suse.de> Cc: Vasily Averin <vvs@virtuozzo.com> Cc: David S. Miller <davem@davemloft.net> Cc: stable@vger.kernel.org Signed-off-by: David S. Miller <davem@davemloft.net>
2020-10-01inet: remove icsk_ack.blockedEric Dumazet1-4/+2
TCP has been using it to work around the possibility of tcp_delack_timer() finding the socket owned by user. After commit 6f458dfb4092 ("tcp: improve latencies of timer triggered events") we added TCP_DELACK_TIMER_DEFERRED atomic bit for more immediate recovery, so we can get rid of icsk_ack.blocked This frees space that following patch will reuse. Signed-off-by: Eric Dumazet <edumazet@google.com> Acked-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-23Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-nextDavid S. Miller1-1/+2
Alexei Starovoitov says: ==================== pull-request: bpf-next 2020-09-23 The following pull-request contains BPF updates for your *net-next* tree. We've added 95 non-merge commits during the last 22 day(s) which contain a total of 124 files changed, 4211 insertions(+), 2040 deletions(-). The main changes are: 1) Full multi function support in libbpf, from Andrii. 2) Refactoring of function argument checks, from Lorenz. 3) Make bpf_tail_call compatible with functions (subprograms), from Maciej. 4) Program metadata support, from YiFei. 5) bpf iterator optimizations, from Yonghong. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-15tcp: schedule EPOLLOUT after a partial sendmsgSoheil Hassas Yeganeh1-11/+9
For EPOLLET, applications must call sendmsg until they get EAGAIN. Otherwise, there is no guarantee that EPOLLOUT is sent if there was a failure upon memory allocation. As a result on high-speed NICs, userspace observes multiple small sendmsgs after a partial sendmsg until EAGAIN, since TCP can send 1-2 TSOs in between two sendmsg syscalls: // One large partial send due to memory allocation failure. sendmsg(20MB) = 2MB // Many small sends until EAGAIN. sendmsg(18MB) = 64KB sendmsg(17.9MB) = 128KB sendmsg(17.8MB) = 64KB ... sendmsg(...) = EAGAIN // At this point, userspace can assume an EPOLLOUT. To fix this, set the SOCK_NOSPACE on all partial sendmsg scenarios to guarantee that we send EPOLLOUT after partial sendmsg. After this commit userspace can assume that it will receive an EPOLLOUT after the first partial sendmsg. This EPOLLOUT will benefit from sk_stream_write_space() logic delaying the EPOLLOUT until significant space is available in write queue. Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-15tcp: return EPOLLOUT from tcp_poll only when notsent_bytes is half the limitSoheil Hassas Yeganeh1-2/+2
If there was any event available on the TCP socket, tcp_poll() will be called to retrieve all the events. In tcp_poll(), we call sk_stream_is_writeable() which returns true as long as we are at least one byte below notsent_lowat. This will result in quite a few spurious EPLLOUT and frequent tiny sendmsg() calls as a result. Similar to sk_stream_write_space(), use __sk_stream_is_writeable with a wake value of 1, so that we set EPOLLOUT only if half the space is available for write. Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-14mptcp: call tcp_cleanup_rbuf on subflowsPaolo Abeni1-1/+1
That is needed to let the subflows announce promptly when new space is available in the receive buffer. tcp_cleanup_rbuf() is currently a static function, drop the scope modifier and add a declaration in the TCP header. Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-09-11tcp: simplify tcp_set_congestion_control(): Always reinitializeNeal Cardwell1-1/+1
Now that the previous patches ensure that all call sites for tcp_set_congestion_control() want to initialize congestion control, we can simplify tcp_set_congestion_control() by removing the reinit argument and the code to support it. Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Kevin Yang <yyd@google.com> Cc: Lawrence Brakmo <brakmo@fb.com>
2020-09-11tcp: Only init congestion control if not initialized alreadyNeal Cardwell1-0/+1
Change tcp_init_transfer() to only initialize congestion control if it has not been initialized already. With this new approach, we can arrange things so that if the EBPF code sets the congestion control by calling setsockopt(TCP_CONGESTION) then tcp_init_transfer() will not re-initialize the CC module. This is an approach that has the following beneficial properties: (1) This allows CC module customizations made by the EBPF called in tcp_init_transfer() to persist, and not be wiped out by a later call to tcp_init_congestion_control() in tcp_init_transfer(). (2) Does not flip the order of EBPF and CC init, to avoid causing bugs for existing code upstream that depends on the current order. (3) Does not cause 2 initializations for for CC in the case where the EBPF called in tcp_init_transfer() wants to set the CC to a new CC algorithm. (4) Allows follow-on simplifications to the code in net/core/filter.c and net/ipv4/tcp_cong.c, which currently both have some complexity to special-case CC initialization to avoid double CC initialization if EBPF sets the CC. Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yuchung Cheng <ycheng@google.com> Acked-by: Kevin Yang <yyd@google.com> Cc: Lawrence Brakmo <brakmo@fb.com>
2020-08-25tcp: bpf: Optionally store mac header in TCP_SAVE_SYNMartin KaFai Lau1-1/+2
This patch is adapted from Eric's patch in an earlier discussion [1]. The TCP_SAVE_SYN currently only stores the network header and tcp header. This patch allows it to optionally store the mac header also if the setsockopt's optval is 2. It requires one more bit for the "save_syn" bit field in tcp_sock. This patch achieves this by moving the syn_smc bit next to the is_mptcp. The syn_smc is currently used with the TCP experimental option. Since syn_smc is only used when CONFIG_SMC is enabled, this patch also puts the "IS_ENABLED(CONFIG_SMC)" around it like the is_mptcp did with "IS_ENABLED(CONFIG_MPTCP)". The mac_hdrlen is also stored in the "struct saved_syn" to allow a quick offset from the bpf prog if it chooses to start getting from the network header or the tcp header. [1]: https://lore.kernel.org/netdev/CANn89iLJNWh6bkH7DNhy_kmcAexuUCccqERqe7z2QsvPhGrYPQ@mail.gmail.com/ Suggested-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Link: https://lore.kernel.org/bpf/20200820190123.2886935-1-kafai@fb.com
2020-08-25tcp: bpf: Add TCP_BPF_RTO_MIN for bpf_setsockoptMartin KaFai Lau1-0/+2
This patch adds bpf_setsockopt(TCP_BPF_RTO_MIN) to allow bpf prog to set the min rto of a connection. It could be used together with the earlier patch which has added bpf_setsockopt(TCP_BPF_DELACK_MAX). A later selftest patch will communicate the max delay ack in a bpf tcp header option and then the receiving side can use bpf_setsockopt(TCP_BPF_RTO_MIN) to set a shorter rto. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Eric Dumazet <edumazet@google.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20200820190027.2884170-1-kafai@fb.com