summaryrefslogtreecommitdiff
path: root/net/ipv4/Makefile
AgeCommit message (Collapse)AuthorFilesLines
2024-01-04bpfilter: remove bpfilterQuentin Deslandes1-2/+0
bpfilter was supposed to convert iptables filtering rules into BPF programs on the fly, from the kernel, through a usermode helper. The base code for the UMH was introduced in 2018, and couple of attempts (2, 3) tried to introduce the BPF program generate features but were abandoned. bpfilter now sits in a kernel tree unused and unusable, occasionally causing confusion amongst Linux users (4, 5). As bpfilter is now developed in a dedicated repository on GitHub (6), it was suggested a couple of times this year (LSFMM/BPF 2023, LPC 2023) to remove the deprecated kernel part of the project. This is the purpose of this patch. [1]: https://lore.kernel.org/lkml/20180522022230.2492505-1-ast@kernel.org/ [2]: https://lore.kernel.org/bpf/20210829183608.2297877-1-me@ubique.spb.ru/#t [3]: https://lore.kernel.org/lkml/20221224000402.476079-1-qde@naccy.de/ [4]: https://dxuuu.xyz/bpfilter.html [5]: https://github.com/linuxkit/linuxkit/pull/3904 [6]: https://github.com/facebook/bpfilter Signed-off-by: Quentin Deslandes <qde@naccy.de> Link: https://lore.kernel.org/r/20231226130745.465988-1-qde@naccy.de Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-27net/tcp: Introduce TCP_AO setsockopt()sDmitry Safonov1-0/+1
Add 3 setsockopt()s: 1. TCP_AO_ADD_KEY to add a new Master Key Tuple (MKT) on a socket 2. TCP_AO_DEL_KEY to delete present MKT from a socket 3. TCP_AO_INFO to change flags, Current_key/RNext_key on a TCP-AO sk Userspace has to introduce keys on every socket it wants to use TCP-AO option on, similarly to TCP_MD5SIG/TCP_MD5SIG_EXT. RFC5925 prohibits definition of MKTs that would match the same peer, so do sanity checks on the data provided by userspace. Be as conservative as possible, including refusal of defining MKT on an established connection with no AO, removing the key in-use and etc. (1) and (2) are to be used by userspace key manager to add/remove keys. (3) main purpose is to set RNext_key, which (as prescribed by RFC5925) is the KeyID that will be requested in TCP-AO header from the peer to sign their segments with. At this moment the life of ao_info ends in tcp_v4_destroy_sock(). Co-developed-by: Francesco Ruggeri <fruggeri@arista.com> Signed-off-by: Francesco Ruggeri <fruggeri@arista.com> Co-developed-by: Salam Noureddine <noureddine@arista.com> Signed-off-by: Salam Noureddine <noureddine@arista.com> Signed-off-by: Dmitry Safonov <dima@arista.com> Acked-by: David Ahern <dsahern@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-10-27net/tcp: Prepare tcp_md5sig_pool for TCP-AODmitry Safonov1-0/+1
TCP-AO, similarly to TCP-MD5, needs to allocate tfms on a slow-path, which is setsockopt() and use crypto ahash requests on fast paths, which are RX/TX softirqs. Also, it needs a temporary/scratch buffer for preparing the hash. Rework tcp_md5sig_pool in order to support other hashing algorithms than MD5. It will make it possible to share pre-allocated crypto_ahash descriptors and scratch area between all TCP hash users. Internally tcp_sigpool calls crypto_clone_ahash() API over pre-allocated crypto ahash tfm. Kudos to Herbert, who provided this new crypto API. I was a little concerned over GFP_ATOMIC allocations of ahash and crypto_request in RX/TX (see tcp_sigpool_start()), so I benchmarked both "backends" with different algorithms, using patched version of iperf3[2]. On my laptop with i7-7600U @ 2.80GHz: clone-tfm per-CPU-requests TCP-MD5 2.25 Gbits/sec 2.30 Gbits/sec TCP-AO(hmac(sha1)) 2.53 Gbits/sec 2.54 Gbits/sec TCP-AO(hmac(sha512)) 1.67 Gbits/sec 1.64 Gbits/sec TCP-AO(hmac(sha384)) 1.77 Gbits/sec 1.80 Gbits/sec TCP-AO(hmac(sha224)) 1.29 Gbits/sec 1.30 Gbits/sec TCP-AO(hmac(sha3-512)) 481 Mbits/sec 480 Mbits/sec TCP-AO(hmac(md5)) 2.07 Gbits/sec 2.12 Gbits/sec TCP-AO(hmac(rmd160)) 1.01 Gbits/sec 995 Mbits/sec TCP-AO(cmac(aes128)) [not supporetd yet] 2.11 Gbits/sec So, it seems that my concerns don't have strong grounds and per-CPU crypto_request allocation can be dropped/removed from tcp_sigpool once ciphers get crypto_clone_ahash() support. [1]: https://lore.kernel.org/all/ZDefxOq6Ax0JeTRH@gondor.apana.org.au/T/#u [2]: https://github.com/0x7f454c46/iperf/tree/tcp-md5-ao Signed-off-by: Dmitry Safonov <dima@arista.com> Reviewed-by: Steen Hegelund <Steen.Hegelund@microchip.com> Acked-by: David Ahern <dsahern@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2023-04-13bpf,fou: Add bpf_skb_{set,get}_fou_encap kfuncsChristian Ehrig1-1/+1
Add two new kfuncs that allow a BPF tc-hook, installed on an ipip device in collect-metadata mode, to control FOU encap parameters on a per-packet level. The set of kfuncs is registered with the fou module. The bpf_skb_set_fou_encap kfunc is supposed to be used in tandem and after a successful call to the bpf_skb_set_tunnel_key bpf-helper. UDP source and destination ports can be controlled by passing a struct bpf_fou_encap. A source port of zero will auto-assign a source port. enum bpf_fou_encap_type is used to specify if the egress path should FOU or GUE encap the packet. On the ingress path bpf_skb_get_fou_encap can be used to read UDP source and destination ports from the receiver's point of view and allows for packet multiplexing across different destination ports within a single BPF program and ipip device. Signed-off-by: Christian Ehrig <cehrig@cloudflare.com> Link: https://lore.kernel.org/r/e17c94a646b63e78ce0dbf3f04b2c33dc948a32d.1680874078.git.cehrig@cloudflare.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-24net: fou: use policy and operation tables generated from the specJakub Kicinski1-1/+1
Generate and plug in the spec-based tables. A little bit of renaming is needed in the FOU code. Acked-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-01-24net: fou: rename the source for linkingJakub Kicinski1-0/+1
We'll need to link two objects together to form the fou module. This means the source can't be called fou, the build system expects fou.o to be the combined object. Acked-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2022-10-28tcp: add PLB functionality for TCPMubashir Adnan Qureshi1-1/+1
Congestion control algorithms track PLB state and cause the connection to trigger a path change when either of the 2 conditions is satisfied: - No packets are in flight and (# consecutive congested rounds >= sysctl_tcp_plb_idle_rehash_rounds) - (# consecutive congested rounds >= sysctl_tcp_plb_rehash_rounds) A round (RTT) is marked as congested when congestion signal (ECN ce_ratio) over an RTT is greater than sysctl_tcp_plb_cong_thresh. In the event of RTO, PLB (via tcp_write_timeout()) triggers a path change and disables congestion-triggered path changes for random time between (sysctl_tcp_plb_suspend_rto_sec, 2*sysctl_tcp_plb_suspend_rto_sec) to avoid hopping onto the "connectivity blackhole". RTO-triggered path changes can still happen during this cool-off period. Signed-off-by: Mubashir Adnan Qureshi <mubashirq@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Reviewed-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-02-26bpf: Clean up sockmap related KconfigsCong Wang1-1/+1
As suggested by John, clean up sockmap related Kconfigs: Reduce the scope of CONFIG_BPF_STREAM_PARSER down to TCP stream parser, to reflect its name. Make the rest sockmap code simply depend on CONFIG_BPF_SYSCALL and CONFIG_INET, the latter is still needed at this point because of TCP/UDP proto update. And leave CONFIG_NET_SOCK_MSG untouched, as it is used by non-sockmap cases. Signed-off-by: Cong Wang <cong.wang@bytedance.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Lorenz Bauer <lmb@cloudflare.com> Acked-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Jakub Sitnicki <jakub@cloudflare.com> Link: https://lore.kernel.org/bpf/20210223184934.6054-2-xiyou.wangcong@gmail.com
2020-07-10udp_tunnel: add central NIC RX port offload infrastructureJakub Kicinski1-1/+2
Cater to devices which: (a) may want to sleep in the callbacks; (b) only have IPv4 support; (c) need all the programming to happen while the netdev is up. Drivers attach UDP tunnel offload info struct to their netdevs, where they declare how many UDP ports of various tunnel types they support. Core takes care of tracking which ports to offload. Use a fixed-size array since this matches what almost all drivers do, and avoids a complexity and uncertainty around memory allocations in an atomic context. Make sure that tunnel drivers don't try to replay the ports when new NIC netdev is registered. Automatic replays would mess up reference counting, and will be removed completely once all drivers are converted. v4: - use a #define NULL to avoid build issues with CONFIG_INET=n. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-10bpf: Add sockmap hooks for UDP socketsLorenz Bauer1-0/+1
Add basic psock hooks for UDP sockets. This allows adding and removing sockets, as well as automatic removal on unhash and close. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20200309111243.6982-8-lmb@cloudflare.com
2020-01-09bpf: tcp: Support tcp_congestion_ops in bpfMartin KaFai Lau1-0/+4
This patch makes "struct tcp_congestion_ops" to be the first user of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops in bpf. The BPF implemented tcp_congestion_ops can be used like regular kernel tcp-cc through sysctl and setsockopt. e.g. [root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic net.ipv4.tcp_congestion_control = bpf_cubic There has been attempt to move the TCP CC to the user space (e.g. CCP in TCP). The common arguments are faster turn around, get away from long-tail kernel versions in production...etc, which are legit points. BPF has been the continuous effort to join both kernel and userspace upsides together (e.g. XDP to gain the performance advantage without bypassing the kernel). The recent BPF advancements (in particular BTF-aware verifier, BPF trampoline, BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc) possible in BPF. It allows a faster turnaround for testing algorithm in the production while leveraging the existing (and continue growing) BPF feature/framework instead of building one specifically for userspace TCP CC. This patch allows write access to a few fields in tcp-sock (in bpf_tcp_ca_btf_struct_access()). The optional "get_info" is unsupported now. It can be added later. One possible way is to output the info with a btf-id to describe the content. Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andriin@fb.com> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
2019-05-29net: Initial nexthop codeDavid Ahern1-1/+1
Barebones start point for nexthops. Implementation for RTM commands, notifications, management of rbtree for holding nexthops by id, and kernel side data structures for nexthops and nexthop config. Nexthops are maintained in an rbtree sorted by id. Similar to routes, nexthops are configured per namespace using netns_nexthop struct added to struct net. Nexthop notifications are sent when a nexthop is added or deleted, but NOT if the delete is due to a device event or network namespace teardown (which also involves device events). Applications are expected to use the device down event to flush nexthops and any routes used by the nexthops. Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2019-04-08xfrm: make xfrm modes builtinFlorian Westphal1-3/+0
after previous changes, xfrm_mode contains no function pointers anymore and all modules defining such struct contain no code except an init/exit functions to register the xfrm_mode struct with the xfrm core. Just place the xfrm modes core and remove the modules, the run-time xfrm_mode register/unregister functionality is removed. Before: text data bss dec filename 7523 200 2364 10087 net/xfrm/xfrm_input.o 40003 628 440 41071 net/xfrm/xfrm_state.o 15730338 6937080 4046908 26714326 vmlinux 7389 200 2364 9953 net/xfrm/xfrm_input.o 40574 656 440 41670 net/xfrm/xfrm_state.o 15730084 6937068 4046908 26714060 vmlinux The xfrm*_mode_{transport,tunnel,beet} modules are gone. v2: replace CONFIG_INET6_XFRM_MODE_* IS_ENABLED guards with CONFIG_IPV6 ones rather than removing them. Signed-off-by: Florian Westphal <fw@strlen.de> Reviewed-by: Sabrina Dubroca <sd@queasysnail.net> Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2018-10-15bpf, sockmap: convert to generic sk_msg interfaceDaniel Borkmann1-0/+1
Add a generic sk_msg layer, and convert current sockmap and later kTLS over to make use of it. While sk_buff handles network packet representation from netdevice up to socket, sk_msg handles data representation from application to socket layer. This means that sk_msg framework spans across ULP users in the kernel, and enables features such as introspection or filtering of data with the help of BPF programs that operate on this data structure. Latter becomes in particular useful for kTLS where data encryption is deferred into the kernel, and as such enabling the kernel to perform L7 introspection and policy based on BPF for TLS connections where the record is being encrypted after BPF has run and came to a verdict. In order to get there, first step is to transform open coding of scatter-gather list handling into a common core framework that subsystems can use. The code itself has been split and refactored into three bigger pieces: i) the generic sk_msg API which deals with managing the scatter gather ring, providing helpers for walking and mangling, transferring application data from user space into it, and preparing it for BPF pre/post-processing, ii) the plain sock map itself where sockets can be attached to or detached from; these bits are independent of i) which can now be used also without sock map, and iii) the integration with plain TCP as one protocol to be used for processing L7 application data (later this could e.g. also be extended to other protocols like UDP). The semantics are the same with the old sock map code and therefore no change of user facing behavior or APIs. While pursuing this work it also helped finding a number of bugs in the old sockmap code that we've fixed already in earlier commits. The test_sockmap kselftest suite passes through fine as well. Joint work with John. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-07-25net: remove blank lines at end of fileStephen Hemminger1-1/+1
Several files have extra line at end of file. Signed-off-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-23ipv4: support sport, dport and ip_proto in RTM_GETROUTERoopa Prabhu1-1/+1
This is a followup to fib rules sport, dport and ipproto match support. Only supports tcp, udp and icmp for ipproto. Used by fib rule self tests. Signed-off-by: Roopa Prabhu <roopa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-23net: add skeleton of bpfilter kernel moduleAlexei Starovoitov1-0/+2
bpfilter.ko consists of bpfilter_kern.c (normal kernel module code) and user mode helper code that is embedded into bpfilter.ko The steps to build bpfilter.ko are the following: - main.c is compiled by HOSTCC into the bpfilter_umh elf executable file - with quite a bit of objcopy and Makefile magic the bpfilter_umh elf file is converted into bpfilter_umh.o object file with _binary_net_bpfilter_bpfilter_umh_start and _end symbols Example: $ nm ./bld_x64/net/bpfilter/bpfilter_umh.o 0000000000004cf8 T _binary_net_bpfilter_bpfilter_umh_end 0000000000004cf8 A _binary_net_bpfilter_bpfilter_umh_size 0000000000000000 T _binary_net_bpfilter_bpfilter_umh_start - bpfilter_umh.o and bpfilter_kern.o are linked together into bpfilter.ko bpfilter_kern.c is a normal kernel module code that calls the fork_usermode_blob() helper to execute part of its own data as a user mode process. Notice that _binary_net_bpfilter_bpfilter_umh_start - end is placed into .init.rodata section, so it's freed as soon as __init function of bpfilter.ko is finished. As part of __init the bpfilter.ko does first request/reply action via two unix pipe provided by fork_usermode_blob() helper to make sure that umh is healthy. If not it will kill it via pid. Later bpfilter_process_sockopt() will be called from bpfilter hooks in get/setsockopt() to pass iptable commands into umh via bpfilter.ko If admin does 'rmmod bpfilter' the __exit code bpfilter.ko will kill umh as well. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-18net: Move fib_convert_metrics to metrics fileDavid Ahern1-1/+2
Move logic of fib_convert_metrics into ip_metrics_convert. This allows the code that converts netlink attributes into metrics struct to be re-used in a later patch by IPv6. This is mostly a code move with the following changes to variable names: - fi->fib_net becomes net - fc_mx and fc_mx_len are passed as inputs pulled from fib_config - metrics array is passed as an input from fi->fib_metrics->metrics Signed-off-by: David Ahern <dsahern@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-03-01ipmr,ipmr6: Define a uniform vif_deviceYuval Mintz1-0/+1
The two implementations have almost identical structures - vif_device and mif_device. As a step toward uniforming the mr_tables, eliminate the mif_device and relocate the vif_device definition into a new common header file. Also, introduce a common initializing function for setting most of the vif_device fields in a new common source file. This requires modifying the ipv{4,6] Kconfig and ipv4 makefile as we're introducing a new common config option - CONFIG_IP_MROUTE_COMMON. Signed-off-by: Yuval Mintz <yuvalm@mellanox.com> Acked-by: Nikolay Aleksandrov <nikolay@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-02net: tcp: Remove TCP probe moduleMasami Hiramatsu1-1/+0
Remove TCP probe module since jprobe has been deprecated. That function is now replaced by tcp/tcp_probe trace-event. You can use it via ftrace or perftools. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-15tcp: ULP infrastructureDave Watson1-1/+1
Add the infrustructure for attaching Upper Layer Protocols (ULPs) over TCP sockets. Based on a similar infrastructure in tcp_cong. The idea is that any ULP can add its own logic by changing the TCP proto_ops structure to its own methods. Example usage: setsockopt(sock, SOL_TCP, TCP_ULP, "tls", sizeof("tls")); modules will call: tcp_register_ulp(&tcp_tls_ulp_ops); to register/unregister their ulp, with an init function and name. A list of registered ulps will be returned by tcp_get_available_ulp, which is hooked up to /proc. Example: $ cat /proc/sys/net/ipv4/tcp_available_ulp tls There is currently no functionality to remove or chain ULPs, but it should be possible to add these in the future if needed. Signed-off-by: Boris Pismenny <borisp@mellanox.com> Signed-off-by: Dave Watson <davejwatson@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-10ipv4: fib: Move FIB notification code to a separate fileIdo Schimmel1-1/+1
Most of the code concerned with the FIB notification chain currently resides in fib_trie.c, but this isn't really appropriate, as the FIB notification chain is also used for FIB rules. Therefore, it makes sense to move the common FIB notification code to a separate file and have it export the relevant functions, which can be invoked by its different users (e.g., fib_trie.c, fib_rules.c). Signed-off-by: Ido Schimmel <idosch@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Acked-by: David Ahern <dsa@cumulusnetworks.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-02-15esp: Add a software GRO codepathSteffen Klassert1-0/+1
This patch adds GRO ifrastructure and callbacks for ESP on ipv4 and ipv6. In case the GRO layer detects an ESP packet, the esp{4,6}_gro_receive() function does a xfrm state lookup and calls the xfrm input layer if it finds a matching state. The packet will be decapsulated and reinjected it into layer 2. Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2016-10-24net: ip, diag -- Add diag interface for raw socketsCyrill Gorcunov1-0/+1
In criu we are actively using diag interface to collect sockets present in the system when dumping applications. And while for unix, tcp, udp[lite], packet, netlink it works as expected, the raw sockets do not have. Thus add it. v2: - add missing sock_put calls in raw_diag_dump_one (by eric.dumazet@) - implement @destroy for diag requests (by dsa@) v3: - add export of raw_abort for IPv6 (by dsa@) - pass net-admin flag into inet_sk_diag_fill due to changes in net-next branch (by dsa@) v4: - use @pad in struct inet_diag_req_v2 for raw socket protocol specification: raw module carries sockets which may have custom protocol passed from socket() syscall and sole @sdiag_protocol is not enough to match underlied ones - start reporting protocol specifed in socket() call when sockets are raw ones for the same reason: user space tools like ss may parse this attribute and use it for socket matching v5 (by eric.dumazet@): - use sock_hold in raw_sock_get instead of atomic_inc, we're holding (raw_v4_hashinfo|raw_v6_hashinfo)->lock when looking up so counter won't be zero here. v6: - use sdiag_raw_protocol() helper which will access @pad structure used for raw sockets protocol specification: we can't simply rename this member without breaking uapi v7: - sine sdiag_raw_protocol() helper is not suitable for uapi lets rather make an alias structure with proper names. __check_inet_diag_req_raw helper will catch if any of structure unintentionally changed. CC: David S. Miller <davem@davemloft.net> CC: Eric Dumazet <eric.dumazet@gmail.com> CC: David Ahern <dsa@cumulusnetworks.com> CC: Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> CC: James Morris <jmorris@namei.org> CC: Hideaki YOSHIFUJI <yoshfuji@linux-ipv6.org> CC: Patrick McHardy <kaber@trash.net> CC: Andrey Vagin <avagin@openvz.org> CC: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21tcp_bbr: add BBR congestion controlNeal Cardwell1-0/+1
This commit implements a new TCP congestion control algorithm: BBR (Bottleneck Bandwidth and RTT). A detailed description of BBR will be published in ACM Queue, Vol. 14 No. 5, September-October 2016, as "BBR: Congestion-Based Congestion Control". BBR has significantly increased throughput and reduced latency for connections on Google's internal backbone networks and google.com and YouTube Web servers. BBR requires only changes on the sender side, not in the network or the receiver side. Thus it can be incrementally deployed on today's Internet, or in datacenters. The Internet has predominantly used loss-based congestion control (largely Reno or CUBIC) since the 1980s, relying on packet loss as the signal to slow down. While this worked well for many years, loss-based congestion control is unfortunately out-dated in today's networks. On today's Internet, loss-based congestion control causes the infamous bufferbloat problem, often causing seconds of needless queuing delay, since it fills the bloated buffers in many last-mile links. On today's high-speed long-haul links using commodity switches with shallow buffers, loss-based congestion control has abysmal throughput because it over-reacts to losses caused by transient traffic bursts. In 1981 Kleinrock and Gale showed that the optimal operating point for a network maximizes delivered bandwidth while minimizing delay and loss, not only for single connections but for the network as a whole. Finding that optimal operating point has been elusive, since any single network measurement is ambiguous: network measurements are the result of both bandwidth and propagation delay, and those two cannot be measured simultaneously. While it is impossible to disambiguate any single bandwidth or RTT measurement, a connection's behavior over time tells a clearer story. BBR uses a measurement strategy designed to resolve this ambiguity. It combines these measurements with a robust servo loop using recent control systems advances to implement a distributed congestion control algorithm that reacts to actual congestion, not packet loss or transient queue delay, and is designed to converge with high probability to a point near the optimal operating point. In a nutshell, BBR creates an explicit model of the network pipe by sequentially probing the bottleneck bandwidth and RTT. On the arrival of each ACK, BBR derives the current delivery rate of the last round trip, and feeds it through a windowed max-filter to estimate the bottleneck bandwidth. Conversely it uses a windowed min-filter to estimate the round trip propagation delay. The max-filtered bandwidth and min-filtered RTT estimates form BBR's model of the network pipe. Using its model, BBR sets control parameters to govern sending behavior. The primary control is the pacing rate: BBR applies a gain multiplier to transmit faster or slower than the observed bottleneck bandwidth. The conventional congestion window (cwnd) is now the secondary control; the cwnd is set to a small multiple of the estimated BDP (bandwidth-delay product) in order to allow full utilization and bandwidth probing while bounding the potential amount of queue at the bottleneck. When a BBR connection starts, it enters STARTUP mode and applies a high gain to perform an exponential search to quickly probe the bottleneck bandwidth (doubling its sending rate each round trip, like slow start). However, instead of continuing until it fills up the buffer (i.e. a loss), or until delay or ACK spacing reaches some threshold (like Hystart), it uses its model of the pipe to estimate when that pipe is full: it estimates the pipe is full when it notices the estimated bandwidth has stopped growing. At that point it exits STARTUP and enters DRAIN mode, where it reduces its pacing rate to drain the queue it estimates it has created. Then BBR enters steady state. In steady state, PROBE_BW mode cycles between first pacing faster to probe for more bandwidth, then pacing slower to drain any queue that created if no more bandwidth was available, and then cruising at the estimated bandwidth to utilize the pipe without creating excess queue. Occasionally, on an as-needed basis, it sends significantly slower to probe for RTT (PROBE_RTT mode). BBR has been fully deployed on Google's wide-area backbone networks and we're experimenting with BBR on Google.com and YouTube on a global scale. Replacing CUBIC with BBR has resulted in significant improvements in network latency and application (RPC, browser, and video) metrics. For more details please refer to our upcoming ACM Queue publication. Example performance results, to illustrate the difference between BBR and CUBIC: Resilience to random loss (e.g. from shallow buffers): Consider a netperf TCP_STREAM test lasting 30 secs on an emulated path with a 10Gbps bottleneck, 100ms RTT, and 1% packet loss rate. CUBIC gets 3.27 Mbps, and BBR gets 9150 Mbps (2798x higher). Low latency with the bloated buffers common in today's last-mile links: Consider a netperf TCP_STREAM test lasting 120 secs on an emulated path with a 10Mbps bottleneck, 40ms RTT, and 1000-packet bottleneck buffer. Both fully utilize the bottleneck bandwidth, but BBR achieves this with a median RTT 25x lower (43 ms instead of 1.09 secs). Our long-term goal is to improve the congestion control algorithms used on the Internet. We are hopeful that BBR can help advance the efforts toward this goal, and motivate the community to do further research. Test results, performance evaluations, feedback, and BBR-related discussions are very welcome in the public e-mail list for BBR: https://groups.google.com/forum/#!forum/bbr-dev NOTE: BBR *must* be used with the fq qdisc ("man tc-fq") with pacing enabled, since pacing is integral to the BBR design and implementation. BBR without pacing would not function properly, and may incur unnecessary high packet loss rates. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-21tcp: track data delivery rate for a TCP connectionYuchung Cheng1-1/+1
This patch generates data delivery rate (throughput) samples on a per-ACK basis. These rate samples can be used by congestion control modules, and specifically will be used by TCP BBR in later patches in this series. Key state: tp->delivered: Tracks the total number of data packets (original or not) delivered so far. This is an already-existing field. tp->delivered_mstamp: the last time tp->delivered was updated. Algorithm: A rate sample is calculated as (d1 - d0)/(t1 - t0) on a per-ACK basis: d1: the current tp->delivered after processing the ACK t1: the current time after processing the ACK d0: the prior tp->delivered when the acked skb was transmitted t0: the prior tp->delivered_mstamp when the acked skb was transmitted When an skb is transmitted, we snapshot d0 and t0 in its control block in tcp_rate_skb_sent(). When an ACK arrives, it may SACK and ACK some skbs. For each SACKed or ACKed skb, tcp_rate_skb_delivered() updates the rate_sample struct to reflect the latest (d0, t0). Finally, tcp_rate_gen() generates a rate sample by storing (d1 - d0) in rs->delivered and (t1 - t0) in rs->interval_us. One caveat: if an skb was sent with no packets in flight, then tp->delivered_mstamp may be either invalid (if the connection is starting) or outdated (if the connection was idle). In that case, we'll re-stamp tp->delivered_mstamp. At first glance it seems t0 should always be the time when an skb was transmitted, but actually this could over-estimate the rate due to phase mismatch between transmit and ACK events. To track the delivery rate, we ensure that if packets are in flight then t0 and and t1 are times at which packets were marked delivered. If the initial and final RTTs are different then one may be corrupted by some sort of noise. The noise we see most often is sending gaps caused by delayed, compressed, or stretched acks. This either affects both RTTs equally or artificially reduces the final RTT. We approach this by recording the info we need to compute the initial RTT (duration of the "send phase" of the window) when we recorded the associated inflight. Then, for a filter to avoid bandwidth overestimates, we generalize the per-sample bandwidth computation from: bw = delivered / ack_phase_rtt to the following: bw = delivered / max(send_phase_rtt, ack_phase_rtt) In large-scale experiments, this filtering approach incorporating send_phase_rtt is effective at avoiding bandwidth overestimates due to ACK compression or stretched ACKs. Signed-off-by: Van Jacobson <vanj@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Nandita Dukkipati <nanditad@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-06-11tcp: add NV congestion controlLawrence Brakmo1-0/+1
TCP-NV (New Vegas) is a major update to TCP-Vegas. An earlier version of NV was presented at 2010's LPC. It is a delayed based congestion avoidance for the data center. This version has been tested within a 10G rack where the HW RTTs are 20-50us and with 1 to 400 flows. A description of TCP-NV, including implementation details as well as experimental results, can be found at: http://www.brakmo.org/networking/tcp-nv/TCPNV.html Signed-off-by: Lawrence Brakmo <brakmo@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-18ipv4: Remove inet_lro libraryBen Hutchings1-1/+0
There are no longer any in-tree drivers that use it. Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-01-21net: drop tcp_memcontrol.cVladimir Davydov1-1/+0
tcp_memcontrol.c only contains legacy memory.tcp.kmem.* file definitions and mem_cgroup->tcp_mem init/destroy stuff. This doesn't belong to network subsys. Let's move it to memcontrol.c. This also allows us to reuse generic code for handling legacy memcg files. Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: "David S. Miller" <davem@davemloft.net> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-21mm: memcontrol: introduce CONFIG_MEMCG_LEGACY_KMEMJohannes Weiner1-1/+1
Let the user know that CONFIG_MEMCG_KMEM does not apply to the cgroup2 interface. This also makes legacy-only code sections stand out better. [arnd@arndb.de: mm: memcontrol: only manage socket pressure for CONFIG_INET] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-10-21tcp: track the packet timings in RACKYuchung Cheng1-0/+1
This patch is the first half of the RACK loss recovery. RACK loss recovery uses the notion of time instead of packet sequence (FACK) or counts (dupthresh). It's inspired by the previous FACK heuristic in tcp_mark_lost_retrans(): when a limited transmit (new data packet) is sacked, then current retransmitted sequence below the newly sacked sequence must been lost, since at least one round trip time has elapsed. But it has several limitations: 1) can't detect tail drops since it depends on limited transmit 2) is disabled upon reordering (assumes no reordering) 3) only enabled in fast recovery ut not timeout recovery RACK (Recently ACK) addresses these limitations with the notion of time instead: a packet P1 is lost if a later packet P2 is s/acked, as at least one round trip has passed. Since RACK cares about the time sequence instead of the data sequence of packets, it can detect tail drops when later retransmission is s/acked while FACK or dupthresh can't. For reordering RACK uses a dynamically adjusted reordering window ("reo_wnd") to reduce false positives on ever (small) degree of reordering. This patch implements tcp_advanced_rack() which tracks the most recent transmission time among the packets that have been delivered (ACKed or SACKed) in tp->rack.mstamp. This timestamp is the key to determine which packet has been lost. Consider an example that the sender sends six packets: T1: P1 (lost) T2: P2 T3: P3 T4: P4 T100: sack of P2. rack.mstamp = T2 T101: retransmit P1 T102: sack of P2,P3,P4. rack.mstamp = T4 T205: ACK of P4 since the hole is repaired. rack.mstamp = T101 We need to be careful about spurious retransmission because it may falsely advance tp->rack.mstamp by an RTT or an RTO, causing RACK to falsely mark all packets lost, just like a spurious timeout. We identify spurious retransmission by the ACK's TS echo value. If TS option is not applicable but the retransmission is acknowledged less than min-RTT ago, it is likely to be spurious. We refrain from using the transmission time of these spurious retransmissions. The second half is implemented in the next patch that marks packet lost using RACK timestamp. Signed-off-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Neal Cardwell <ncardwell@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-08-28geneve: Consolidate Geneve functionality in single module.Pravin B Shelar1-1/+0
geneve_core module handles send and receive functionality. This way OVS could use the Geneve API. Now with use of tunnel meatadata mode OVS can directly use Geneve netdevice. So there is no need for separate module for Geneve. Following patch consolidates Geneve protocol processing in single module. Signed-off-by: Pravin B Shelar <pshelar@nicira.com> Reviewed-by: Jesse Gross <jesse@nicira.com> Acked-by: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-06-11tcp: add CDG congestion controlKenneth Klette Jonassen1-0/+1
CAIA Delay-Gradient (CDG) is a TCP congestion control that modifies the TCP sender in order to [1]: o Use the delay gradient as a congestion signal. o Back off with an average probability that is independent of the RTT. o Coexist with flows that use loss-based congestion control, i.e., flows that are unresponsive to the delay signal. o Tolerate packet loss unrelated to congestion. (Disabled by default.) Its FreeBSD implementation was presented for the ICCRG in July 2012; slides are available at http://www.ietf.org/proceedings/84/iccrg.html Running the experiment scenarios in [1] suggests that our implementation achieves more goodput compared with FreeBSD 10.0 senders, although it also causes more queueing delay for a given backoff factor. The loss tolerance heuristic is disabled by default due to safety concerns for its use in the Internet [2, p. 45-46]. We use a variant of the Hybrid Slow start algorithm in tcp_cubic to reduce the probability of slow start overshoot. [1] D.A. Hayes and G. Armitage. "Revisiting TCP congestion control using delay gradients." In Networking 2011, pages 328-341. Springer, 2011. [2] K.K. Jonassen. "Implementing CAIA Delay-Gradient in Linux." MSc thesis. Department of Informatics, University of Oslo, 2015. Cc: Eric Dumazet <edumazet@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Neal Cardwell <ncardwell@google.com> Cc: David Hayes <davihay@ifi.uio.no> Cc: Andreas Petlund <apetlund@simula.no> Cc: Dave Taht <dave.taht@bufferbloat.net> Cc: Nicolas Kuhn <nicolas.kuhn@telecom-bretagne.eu> Signed-off-by: Kenneth Klette Jonassen <kennetkl@ifi.uio.no> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-05-13geneve: Rename support library as geneve_coreJohn W. Linville1-1/+1
net/ipv4/geneve.c -> net/ipv4/geneve_core.c This name better reflects the purpose of the module. Signed-off-by: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-10-06net: Add Geneve tunneling protocol driverAndy Zhou1-0/+1
This adds a device level support for Geneve -- Generic Network Virtualization Encapsulation. The protocol is documented at http://tools.ietf.org/html/draft-gross-geneve-01 Only protocol layer Geneve support is provided by this driver. Openvswitch can be used for configuring, set up and tear down functional Geneve tunnels. Signed-off-by: Jesse Gross <jesse@nicira.com> Signed-off-by: Andy Zhou <azhou@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-29net: tcp: add DCTCP congestion control algorithmDaniel Borkmann1-0/+1
This work adds the DataCenter TCP (DCTCP) congestion control algorithm [1], which has been first published at SIGCOMM 2010 [2], resp. follow-up analysis at SIGMETRICS 2011 [3] (and also, more recently as an informational IETF draft available at [4]). DCTCP is an enhancement to the TCP congestion control algorithm for data center networks. Typical data center workloads are i.e. i) partition/aggregate (queries; bursty, delay sensitive), ii) short messages e.g. 50KB-1MB (for coordination and control state; delay sensitive), and iii) large flows e.g. 1MB-100MB (data update; throughput sensitive). DCTCP has therefore been designed for such environments to provide/achieve the following three requirements: * High burst tolerance (incast due to partition/aggregate) * Low latency (short flows, queries) * High throughput (continuous data updates, large file transfers) with commodity, shallow buffered switches The basic idea of its design consists of two fundamentals: i) on the switch side, packets are being marked when its internal queue length > threshold K (K is chosen so that a large enough headroom for marked traffic is still available in the switch queue); ii) the sender/host side maintains a moving average of the fraction of marked packets, so each RTT, F is being updated as follows: F := X / Y, where X is # of marked ACKs, Y is total # of ACKs alpha := (1 - g) * alpha + g * F, where g is a smoothing constant The resulting alpha (iow: probability that switch queue is congested) is then being used in order to adaptively decrease the congestion window W: W := (1 - (alpha / 2)) * W The means for receiving marked packets resp. marking them on switch side in DCTCP is the use of ECN. RFC3168 describes a mechanism for using Explicit Congestion Notification from the switch for early detection of congestion, rather than waiting for segment loss to occur. However, this method only detects the presence of congestion, not the *extent*. In the presence of mild congestion, it reduces the TCP congestion window too aggressively and unnecessarily affects the throughput of long flows [4]. DCTCP, as mentioned, enhances Explicit Congestion Notification (ECN) processing to estimate the fraction of bytes that encounter congestion, rather than simply detecting that some congestion has occurred. DCTCP then scales the TCP congestion window based on this estimate [4], thus it can derive multibit feedback from the information present in the single-bit sequence of marks in its control law. And thus act in *proportion* to the extent of congestion, not its *presence*. Switches therefore set the Congestion Experienced (CE) codepoint in packets when internal queue lengths exceed threshold K. Resulting, DCTCP delivers the same or better throughput than normal TCP, while using 90% less buffer space. It was found in [2] that DCTCP enables the applications to handle 10x the current background traffic, without impacting foreground traffic. Moreover, a 10x increase in foreground traffic did not cause any timeouts, and thus largely eliminates TCP incast collapse problems. The algorithm itself has already seen deployments in large production data centers since then. We did a long-term stress-test and analysis in a data center, short summary of our TCP incast tests with iperf compared to cubic: This test measured DCTCP throughput and latency and compared it with CUBIC throughput and latency for an incast scenario. In this test, 19 senders sent at maximum rate to a single receiver. The receiver simply ran iperf -s. The senders ran iperf -c <receiver> -t 30. All senders started simultaneously (using local clocks synchronized by ntp). This test was repeated multiple times. Below shows the results from a single test. Other tests are similar. (DCTCP results were extremely consistent, CUBIC results show some variance induced by the TCP timeouts that CUBIC encountered.) For this test, we report statistics on the number of TCP timeouts, flow throughput, and traffic latency. 1) Timeouts (total over all flows, and per flow summaries): CUBIC DCTCP Total 3227 25 Mean 169.842 1.316 Median 183 1 Max 207 5 Min 123 0 Stddev 28.991 1.600 Timeout data is taken by measuring the net change in netstat -s "other TCP timeouts" reported. As a result, the timeout measurements above are not restricted to the test traffic, and we believe that it is likely that all of the "DCTCP timeouts" are actually timeouts for non-test traffic. We report them nevertheless. CUBIC will also include some non-test timeouts, but they are drawfed by bona fide test traffic timeouts for CUBIC. Clearly DCTCP does an excellent job of preventing TCP timeouts. DCTCP reduces timeouts by at least two orders of magnitude and may well have eliminated them in this scenario. 2) Throughput (per flow in Mbps): CUBIC DCTCP Mean 521.684 521.895 Median 464 523 Max 776 527 Min 403 519 Stddev 105.891 2.601 Fairness 0.962 0.999 Throughput data was simply the average throughput for each flow reported by iperf. By avoiding TCP timeouts, DCTCP is able to achieve much better per-flow results. In CUBIC, many flows experience TCP timeouts which makes flow throughput unpredictable and unfair. DCTCP, on the other hand, provides very clean predictable throughput without incurring TCP timeouts. Thus, the standard deviation of CUBIC throughput is dramatically higher than the standard deviation of DCTCP throughput. Mean throughput is nearly identical because even though cubic flows suffer TCP timeouts, other flows will step in and fill the unused bandwidth. Note that this test is something of a best case scenario for incast under CUBIC: it allows other flows to fill in for flows experiencing a timeout. Under situations where the receiver is issuing requests and then waiting for all flows to complete, flows cannot fill in for timed out flows and throughput will drop dramatically. 3) Latency (in ms): CUBIC DCTCP Mean 4.0088 0.04219 Median 4.055 0.0395 Max 4.2 0.085 Min 3.32 0.028 Stddev 0.1666 0.01064 Latency for each protocol was computed by running "ping -i 0.2 <receiver>" from a single sender to the receiver during the incast test. For DCTCP, "ping -Q 0x6 -i 0.2 <receiver>" was used to ensure that traffic traversed the DCTCP queue and was not dropped when the queue size was greater than the marking threshold. The summary statistics above are over all ping metrics measured between the single sender, receiver pair. The latency results for this test show a dramatic difference between CUBIC and DCTCP. CUBIC intentionally overflows the switch buffer which incurs the maximum queue latency (more buffer memory will lead to high latency.) DCTCP, on the other hand, deliberately attempts to keep queue occupancy low. The result is a two orders of magnitude reduction of latency with DCTCP - even with a switch with relatively little RAM. Switches with larger amounts of RAM will incur increasing amounts of latency for CUBIC, but not for DCTCP. 4) Convergence and stability test: This test measured the time that DCTCP took to fairly redistribute bandwidth when a new flow commences. It also measured DCTCP's ability to remain stable at a fair bandwidth distribution. DCTCP is compared with CUBIC for this test. At the commencement of this test, a single flow is sending at maximum rate (near 10 Gbps) to a single receiver. One second after that first flow commences, a new flow from a distinct server begins sending to the same receiver as the first flow. After the second flow has sent data for 10 seconds, the second flow is terminated. The first flow sends for an additional second. Ideally, the bandwidth would be evenly shared as soon as the second flow starts, and recover as soon as it stops. The results of this test are shown below. Note that the flow bandwidth for the two flows was measured near the same time, but not simultaneously. DCTCP performs nearly perfectly within the measurement limitations of this test: bandwidth is quickly distributed fairly between the two flows, remains stable throughout the duration of the test, and recovers quickly. CUBIC, in contrast, is slow to divide the bandwidth fairly, and has trouble remaining stable. CUBIC DCTCP Seconds Flow 1 Flow 2 Seconds Flow 1 Flow 2 0 9.93 0 0 9.92 0 0.5 9.87 0 0.5 9.86 0 1 8.73 2.25 1 6.46 4.88 1.5 7.29 2.8 1.5 4.9 4.99 2 6.96 3.1 2 4.92 4.94 2.5 6.67 3.34 2.5 4.93 5 3 6.39 3.57 3 4.92 4.99 3.5 6.24 3.75 3.5 4.94 4.74 4 6 3.94 4 5.34 4.71 4.5 5.88 4.09 4.5 4.99 4.97 5 5.27 4.98 5 4.83 5.01 5.5 4.93 5.04 5.5 4.89 4.99 6 4.9 4.99 6 4.92 5.04 6.5 4.93 5.1 6.5 4.91 4.97 7 4.28 5.8 7 4.97 4.97 7.5 4.62 4.91 7.5 4.99 4.82 8 5.05 4.45 8 5.16 4.76 8.5 5.93 4.09 8.5 4.94 4.98 9 5.73 4.2 9 4.92 5.02 9.5 5.62 4.32 9.5 4.87 5.03 10 6.12 3.2 10 4.91 5.01 10.5 6.91 3.11 10.5 4.87 5.04 11 8.48 0 11 8.49 4.94 11.5 9.87 0 11.5 9.9 0 SYN/ACK ECT test: This test demonstrates the importance of ECT on SYN and SYN-ACK packets by measuring the connection probability in the presence of competing flows for a DCTCP connection attempt *without* ECT in the SYN packet. The test was repeated five times for each number of competing flows. Competing Flows 1 | 2 | 4 | 8 | 16 ------------------------------ Mean Connection Probability 1 | 0.67 | 0.45 | 0.28 | 0 Median Connection Probability 1 | 0.65 | 0.45 | 0.25 | 0 As the number of competing flows moves beyond 1, the connection probability drops rapidly. Enabling DCTCP with this patch requires the following steps: DCTCP must be running both on the sender and receiver side in your data center, i.e.: sysctl -w net.ipv4.tcp_congestion_control=dctcp Also, ECN functionality must be enabled on all switches in your data center for DCTCP to work. The default ECN marking threshold (K) heuristic on the switch for DCTCP is e.g., 20 packets (30KB) at 1Gbps, and 65 packets (~100KB) at 10Gbps (K > 1/7 * C * RTT, [4]). In above tests, for each switch port, traffic was segregated into two queues. For any packet with a DSCP of 0x01 - or equivalently a TOS of 0x04 - the packet was placed into the DCTCP queue. All other packets were placed into the default drop-tail queue. For the DCTCP queue, RED/ECN marking was enabled, here, with a marking threshold of 75 KB. More details however, we refer you to the paper [2] under section 3). There are no code changes required to applications running in user space. DCTCP has been implemented in full *isolation* of the rest of the TCP code as its own congestion control module, so that it can run without a need to expose code to the core of the TCP stack, and thus nothing changes for non-DCTCP users. Changes in the CA framework code are minimal, and DCTCP algorithm operates on mechanisms that are already available in most Silicon. The gain (dctcp_shift_g) is currently a fixed constant (1/16) from the paper, but we leave the option that it can be chosen carefully to a different value by the user. In case DCTCP is being used and ECN support on peer site is off, DCTCP falls back after 3WHS to operate in normal TCP Reno mode. ss {-4,-6} -t -i diag interface: ... dctcp wscale:7,7 rto:203 rtt:2.349/0.026 mss:1448 cwnd:2054 ssthresh:1102 ce_state 0 alpha 15 ab_ecn 0 ab_tot 735584 send 10129.2Mbps pacing_rate 20254.1Mbps unacked:1822 retrans:0/15 reordering:101 rcv_space:29200 ... dctcp-reno wscale:7,7 rto:201 rtt:0.711/1.327 ato:40 mss:1448 cwnd:10 ssthresh:1102 fallback_mode send 162.9Mbps pacing_rate 325.5Mbps rcv_rtt:1.5 rcv_space:29200 More information about DCTCP can be found in [1-4]. [1] http://simula.stanford.edu/~alizade/Site/DCTCP.html [2] http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf [3] http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp_analysis-full.pdf [4] http://tools.ietf.org/html/draft-bensley-tcpm-dctcp-00 Joint work with Florian Westphal and Glenn Judd. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Glenn Judd <glenn.judd@morganstanley.com> Acked-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-09-20fou: Support for foo-over-udp RX pathTom Herbert1-0/+1
This patch provides a receive path for foo-over-udp. This allows direct encapsulation of IP protocols over UDP. The bound destination port is used to map to an IP protocol, and the XFRM framework (udp_encap_rcv) is used to receive encapsulated packets. Upon reception, the encapsulation header is logically removed (pointer to transport header is advanced) and the packet is reinjected into the receive path with the IP protocol indicated by the mapping. Netlink is used to configure FOU ports. The configuration information includes the port number to bind to and the IP protocol corresponding to that port. This should support GRE/UDP (http://tools.ietf.org/html/draft-yong-tsvwg-gre-in-udp-encap-02), as will as the other IP tunneling protocols (IPIP, SIT). Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-07-15udp: Add udp_sock_create for UDP tunnels to open listener socketTom Herbert1-0/+1
Added udp_tunnel.c which can contain some common functions for UDP tunnels. The first function in this is udp_sock_create which is used to open the listener port for a UDP tunnel. Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-02-25xfrm4: Add IPsec protocol multiplexerSteffen Klassert1-1/+1
This patch add an IPsec protocol multiplexer. With this it is possible to add alternative protocol handlers as needed for IPsec virtual tunnel interfaces. Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
2014-01-07gre_offload: statically build GRE offloading supportEric Dumazet1-2/+2
GRO/GSO layers can be enabled on a node, even if said node is only forwarding packets. This patch permits GSO (and upcoming GRO) support for GRE encapsulated packets, even if the host has no GRE tunnel setup. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: H.K. Jerry Chu <hkchu@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-07-04net: gre: move GSO functions to gre_offloadDaniel Borkmann1-0/+1
Similarly to TCP/UDP offloading, move all related GRE functions to gre_offload.c to make things more explicit and similar to the rest of the code. Suggested-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-20ip_tunnels: extend iptunnel_xmit()Pravin B Shelar1-1/+1
Refactor various ip tunnels xmit functions and extend iptunnel_xmit() so that there is more code sharing. Signed-off-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-12net: udp4: move GSO functions to udp_offloadDaniel Borkmann1-1/+1
Similarly to TCP offloading and UDPv6 offloading, move all related UDPv4 functions to udp_offload.c to make things more explicit. Also, by this, we can make those functions static. Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-06-08net: tcp: move GRO/GSO functions to tcp_offloadDaniel Borkmann1-1/+1
Would be good to make things explicit and move those functions to a new file called tcp_offload.c, thus make this similar to tcpv6_offload.c. While moving all related functions into tcp_offload.c, we can also make some of them static, since they are only used there. Also, add an explicit registration function. Suggested-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-26GRE: Refactor GRE tunneling code.Pravin B Shelar1-0/+1
Following patch refactors GRE code into ip tunneling code and GRE specific code. Common tunneling code is moved to ip_tunnel module. ip_tunnel module is written as generic library which can be used by different tunneling implementations. ip_tunnel module contains following components: - packet xmit and rcv generic code. xmit flow looks like (gre_xmit/ipip_xmit)->ip_tunnel_xmit->ip_local_out. - hash table of all devices. - lookup for tunnel devices. - control plane operations like device create, destroy, ioctl, netlink operations code. - registration for tunneling modules, like gre, ipip etc. - define single pcpu_tstats dev->tstats. - struct tnl_ptk_info added to pass parsed tunnel packet parameters. ipip.h header is renamed to ip_tunnel.h Signed-off-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-01memcg: rename config variablesAndrew Morton1-1/+1
Sanity: CONFIG_CGROUP_MEM_RES_CTLR -> CONFIG_MEMCG CONFIG_CGROUP_MEM_RES_CTLR_SWAP -> CONFIG_MEMCG_SWAP CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED -> CONFIG_MEMCG_SWAP_ENABLED CONFIG_CGROUP_MEM_RES_CTLR_KMEM -> CONFIG_MEMCG_KMEM [mhocko@suse.cz: fix missed bits] Cc: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-19net-tcp: Fast Open baseYuchung Cheng1-1/+1
This patch impelements the common code for both the client and server. 1. TCP Fast Open option processing. Since Fast Open does not have an option number assigned by IANA yet, it shares the experiment option code 254 by implementing draft-ietf-tcpm-experimental-options with a 16 bits magic number 0xF989. This enables global experiments without clashing the scarce(2) experimental options available for TCP. When the draft status becomes standard (maybe), the client should switch to the new option number assigned while the server supports both numbers for transistion. 2. The new sysctl tcp_fastopen 3. A place holder init function Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-18net/ipv4: VTI support new module for ip_vti.Saurabh1-0/+1
New VTI tunnel kernel module, Kconfig and Makefile changes. Signed-off-by: Saurabh Mohan <saurabh.mohan@vyatta.com> Reviewed-by: Stephen Hemminger <shemminger@vyatta.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-07-11tcp: Move dynamnic metrics handling into seperate file.David S. Miller1-1/+1
Signed-off-by: David S. Miller <davem@davemloft.net>