Age | Commit message (Collapse) | Author | Files | Lines |
|
- Remove bogus code for compiling netlink as module
- Add module refcounting support for modules implementing a netlink
protocol
- Add support for autoloading modules that implement a netlink protocol
as soon as someone opens a socket for that protocol
Signed-off-by: Harald Welte <laforge@netfilter.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Bonding just wants the device before the skb_bond()
decapsulation occurs, so simply pass that original
device into packet_type->func() as an argument.
It remains to be seen whether we can use this same
exact thing to get rid of skb->input_dev as well.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Remove the "list" member of struct sk_buff, as it is entirely
redundant. All SKB list removal callers know which list the
SKB is on, so storing this in sk_buff does nothing other than
taking up some space.
Two tricky bits were SCTP, which I took care of, and two ATM
drivers which Francois Romieu <romieu@fr.zoreil.com> fixed
up.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Francois Romieu <romieu@fr.zoreil.com>
|
|
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Steven Whitehouse <steve@chygwyn.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Move the protocol specific config options out to the specific protocols.
With this change net/Kconfig now starts to become readable and serve as a
good basis for further re-structuring.
The menu structure is left almost intact, except that indention is
fixed in most cases. Most visible are the INET changes where several
"depends on INET" are replaced with a single ifdef INET / endif pair.
Several new files were created to accomplish this change - they are
small but serve the purpose that config options are now distributed
out where they belongs.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This is part of the grand scheme to eliminate the qlen
member of skb_queue_head, and subsequently remove the
'list' member of sk_buff.
Most users of skb_queue_len() want to know if the queue is
empty or not, and that's trivially done with skb_queue_empty()
which doesn't use the skb_queue_head->qlen member and instead
uses the queue list emptyness as the test.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch was supposed to be part of the neighbour tables related
patchset but apparently got lost.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This patch rectifies some rtnetlink message builders that derive the
flags from the pid. It is now explicit like the other cases
which get it right. Also fixes half a dozen dumpers which did not
set NLM_F_MULTI at all.
Signed-off-by: Jamal Hadi Salim <hadi@cyberus.ca>
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The qlen should continue to decrement, even if we
pop partially processed SKBs back onto the receive queue.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Let's recap the problem. The current asynchronous netlink kernel
message processing is vulnerable to these attacks:
1) Hit and run: Attacker sends one or more messages and then exits
before they're processed. This may confuse/disable the next netlink
user that gets the netlink address of the attacker since it may
receive the responses to the attacker's messages.
Proposed solutions:
a) Synchronous processing.
b) Stream mode socket.
c) Restrict/prohibit binding.
2) Starvation: Because various netlink rcv functions were written
to not return until all messages have been processed on a socket,
it is possible for these functions to execute for an arbitrarily
long period of time. If this is successfully exploited it could
also be used to hold rtnl forever.
Proposed solutions:
a) Synchronous processing.
b) Stream mode socket.
Firstly let's cross off solution c). It only solves the first
problem and it has user-visible impacts. In particular, it'll
break user space applications that expect to bind or communicate
with specific netlink addresses (pid's).
So we're left with a choice of synchronous processing versus
SOCK_STREAM for netlink.
For the moment I'm sticking with the synchronous approach as
suggested by Alexey since it's simpler and I'd rather spend
my time working on other things.
However, it does have a number of deficiencies compared to the
stream mode solution:
1) User-space to user-space netlink communication is still vulnerable.
2) Inefficient use of resources. This is especially true for rtnetlink
since the lock is shared with other users such as networking drivers.
The latter could hold the rtnl while communicating with hardware which
causes the rtnetlink user to wait when it could be doing other things.
3) It is still possible to DoS all netlink users by flooding the kernel
netlink receive queue. The attacker simply fills the receive socket
with a single netlink message that fills up the entire queue. The
attacker then continues to call sendmsg with the same message in a loop.
Point 3) can be countered by retransmissions in user-space code, however
it is pretty messy.
In light of these problems (in particular, point 3), we should implement
stream mode netlink at some point. In the mean time, here is a patch
that implements synchronous processing.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Converts remaining rtnetlink_link tables to use c99 designated
initializers to make greping a little bit easier.
Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|