Age | Commit message (Collapse) | Author | Files | Lines |
|
Introduce new config option, which is used to replace repeating
CONFIG_MEMCG && !CONFIG_SLOB pattern. Next patches add a little more
memcg+kmem related code, so let's keep the defines more clearly.
Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "Improve shrink_slab() scalability (old complexity was O(n^2), new is O(n))", v8.
This patcheset solves the problem with slow shrink_slab() occuring on
the machines having many shrinkers and memory cgroups (i.e., with many
containers). The problem is complexity of shrink_slab() is O(n^2) and
it grows too fast with the growth of containers numbers.
Let us have 200 containers, and every container has 10 mounts and 10
cgroups. All container tasks are isolated, and they don't touch foreign
containers mounts.
In case of global reclaim, a task has to iterate all over the memcgs and
to call all the memcg-aware shrinkers for all of them. This means, the
task has to visit 200 * 10 = 2000 shrinkers for every memcg, and since
there are 2000 memcgs, the total calls of do_shrink_slab() are 2000 *
2000 = 4000000.
4 million calls are not a number operations, which can takes 1 cpu
cycle. E.g., super_cache_count() accesses at least two lists, and makes
arifmetical calculations. Even, if there are no charged objects, we do
these calculations, and replaces cpu caches by read memory. I observed
nodes spending almost 100% time in kernel, in case of intensive writing
and global reclaim. The writer consumes pages fast, but it's need to
shrink_slab() before the reclaimer reached shrink pages function (and
frees SWAP_CLUSTER_MAX pages). Even if there is no writing, the
iterations just waste the time, and slows reclaim down.
Let's see the small test below:
$echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy
$mkdir /sys/fs/cgroup/memory/ct
$echo 4000M > /sys/fs/cgroup/memory/ct/memory.kmem.limit_in_bytes
$for i in `seq 0 4000`;
do mkdir /sys/fs/cgroup/memory/ct/$i;
echo $$ > /sys/fs/cgroup/memory/ct/$i/cgroup.procs;
mkdir -p s/$i; mount -t tmpfs $i s/$i; touch s/$i/file;
done
Then, let's see drop caches time (5 sequential calls):
$time echo 3 > /proc/sys/vm/drop_caches
0.00user 13.78system 0:13.78elapsed 99%CPU
0.00user 5.59system 0:05.60elapsed 99%CPU
0.00user 5.48system 0:05.48elapsed 99%CPU
0.00user 8.35system 0:08.35elapsed 99%CPU
0.00user 8.34system 0:08.35elapsed 99%CPU
The last four calls don't actually shrink anything. So, the iterations
over slab shrinkers take 5.48 seconds. Not so good for scalability.
The patchset solves the problem by making shrink_slab() of O(n)
complexity. There are following functional actions:
1) Assign id to every registered memcg-aware shrinker.
2) Maintain per-memcgroup bitmap of memcg-aware shrinkers, and set a
shrinker-related bit after the first element is added to lru list
(also, when removed child memcg elements are reparanted).
3) Split memcg-aware shrinkers and !memcg-aware shrinkers, and call a
shrinker if its bit is set in memcg's shrinker bitmap. (Also, there is
a functionality to clear the bit, after last element is shrinked).
This gives significant performance increase. The result after patchset
is applied:
$time echo 3 > /proc/sys/vm/drop_caches
0.00user 1.10system 0:01.10elapsed 99%CPU
0.00user 0.00system 0:00.01elapsed 64%CPU
0.00user 0.01system 0:00.01elapsed 82%CPU
0.00user 0.00system 0:00.01elapsed 64%CPU
0.00user 0.01system 0:00.01elapsed 82%CPU
The results show the performance increases at least in 548 times.
So, the patchset makes shrink_slab() of less complexity and improves the
performance in such types of load I pointed. This will give a profit in
case of !global reclaim case, since there also will be less
do_shrink_slab() calls.
This patch (of 17):
These two pairs of blocks of code are under the same #ifdef #else
#endif.
Link: http://lkml.kernel.org/r/153063052519.1818.9393587113056959488.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Roman Gushchin <guro@fb.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Waiman Long <longman@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Most functions in memblock already use phys_addr_t to represent a
physical address with __memblock_free_late() being an exception.
This patch replaces u64 with phys_addr_t in __memblock_free_late() and
switches several format strings from %llx to %pa to avoid casting from
phys_addr_t to u64.
Link: http://lkml.kernel.org/r/1530637506-1256-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
sparse_init_one_section() is being called from two sites: sparse_init()
and sparse_add_one_section(). The former calls it from a
for_each_present_section_nr() loop, and the latter marks the section as
present before calling it. This means that when
sparse_init_one_section() gets called, we already know that the section
is present. So there is no point to double check that in the function.
This removes the check and makes the function void.
[ross.zwisler@linux.intel.com: fix error path in sparse_add_one_section]
Link: http://lkml.kernel.org/r/20180706190658.6873-1-ross.zwisler@linux.intel.com
[ross.zwisler@linux.intel.com: simplification suggested by Oscar]
Link: http://lkml.kernel.org/r/20180706223358.742-1-ross.zwisler@linux.intel.com
Link: http://lkml.kernel.org/r/20180702154325.12196-1-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 3812c8c8f395 ("mm: memcg: do not trap chargers with full
callstack on OOM") has changed the ENOMEM semantic of memcg charges.
Rather than invoking the oom killer from the charging context it delays
the oom killer to the page fault path (pagefault_out_of_memory). This
in turn means that many users (e.g. slab or g-u-p) will get ENOMEM when
the corresponding memcg hits the hard limit and the memcg is is OOM.
This is behavior is inconsistent with !memcg case where the oom killer
is invoked from the allocation context and the allocator keeps retrying
until it succeeds.
The difference in the behavior is user visible. mmap(MAP_POPULATE)
might result in not fully populated ranges while the mmap return code
doesn't tell that to the userspace. Random syscalls might fail with
ENOMEM etc.
The primary motivation of the different memcg oom semantic was the
deadlock avoidance. Things have changed since then, though. We have an
async oom teardown by the oom reaper now and so we do not have to rely
on the victim to tear down its memory anymore. Therefore we can return
to the original semantic as long as the memcg oom killer is not handed
over to the users space.
There is still one thing to be careful about here though. If the oom
killer is not able to make any forward progress - e.g. because there is
no eligible task to kill - then we have to bail out of the charge path
to prevent from same class of deadlocks. We have basically two options
here. Either we fail the charge with ENOMEM or force the charge and
allow overcharge. The first option has been considered more harmful
than useful because rare inconsistencies in the ENOMEM behavior is hard
to test for and error prone. Basically the same reason why the page
allocator doesn't fail allocations under such conditions. The later
might allow runaways but those should be really unlikely unless somebody
misconfigures the system. E.g. allowing to migrate tasks away from the
memcg to a different unlimited memcg with move_charge_at_immigrate
disabled.
Link: http://lkml.kernel.org/r/20180628151101.25307-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The deferred memory initialization relies on section definitions, e.g
PAGES_PER_SECTION, that are only available when CONFIG_SPARSEMEM=y on
most architectures.
Initially DEFERRED_STRUCT_PAGE_INIT depended on explicit
ARCH_SUPPORTS_DEFERRED_STRUCT_PAGE_INIT configuration option, but since
the commit 2e3ca40f03bb13709df4 ("mm: relax deferred struct page
requirements") this requirement was relaxed and now it is possible to
enable DEFERRED_STRUCT_PAGE_INIT on architectures that support
DISCONTINGMEM and NO_BOOTMEM which causes build failures.
For instance, setting SMP=y and DEFERRED_STRUCT_PAGE_INIT=y on arc
causes the following build failure:
CC mm/page_alloc.o
mm/page_alloc.c: In function 'update_defer_init':
mm/page_alloc.c:321:14: error: 'PAGES_PER_SECTION'
undeclared (first use in this function); did you mean 'USEC_PER_SEC'?
(pfn & (PAGES_PER_SECTION - 1)) == 0) {
^~~~~~~~~~~~~~~~~
USEC_PER_SEC
mm/page_alloc.c:321:14: note: each undeclared identifier is reported only once for each function it appears in
In file included from include/linux/cache.h:5:0,
from include/linux/printk.h:9,
from include/linux/kernel.h:14,
from include/asm-generic/bug.h:18,
from arch/arc/include/asm/bug.h:32,
from include/linux/bug.h:5,
from include/linux/mmdebug.h:5,
from include/linux/mm.h:9,
from mm/page_alloc.c:18:
mm/page_alloc.c: In function 'deferred_grow_zone':
mm/page_alloc.c:1624:52: error: 'PAGES_PER_SECTION' undeclared (first use in this function); did you mean 'USEC_PER_SEC'?
unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
^
include/uapi/linux/kernel.h:11:47: note: in definition of macro '__ALIGN_KERNEL_MASK'
#define __ALIGN_KERNEL_MASK(x, mask) (((x) + (mask)) & ~(mask))
^~~~
include/linux/kernel.h:58:22: note: in expansion of macro '__ALIGN_KERNEL'
#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
^~~~~~~~~~~~~~
mm/page_alloc.c:1624:34: note: in expansion of macro 'ALIGN'
unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
^~~~~
In file included from include/asm-generic/bug.h:18:0,
from arch/arc/include/asm/bug.h:32,
from include/linux/bug.h:5,
from include/linux/mmdebug.h:5,
from include/linux/mm.h:9,
from mm/page_alloc.c:18:
mm/page_alloc.c: In function 'free_area_init_node':
mm/page_alloc.c:6379:50: error: 'PAGES_PER_SECTION' undeclared (first use in this function); did you mean 'USEC_PER_SEC'?
pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
^
include/linux/kernel.h:812:22: note: in definition of macro '__typecheck'
(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
^
include/linux/kernel.h:836:24: note: in expansion of macro '__safe_cmp'
__builtin_choose_expr(__safe_cmp(x, y), \
^~~~~~~~~~
include/linux/kernel.h:904:27: note: in expansion of macro '__careful_cmp'
#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <)
^~~~~~~~~~~~~
mm/page_alloc.c:6379:29: note: in expansion of macro 'min_t'
pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
^~~~~
include/linux/kernel.h:836:2: error: first argument to '__builtin_choose_expr' not a constant
__builtin_choose_expr(__safe_cmp(x, y), \
^
include/linux/kernel.h:904:27: note: in expansion of macro '__careful_cmp'
#define min_t(type, x, y) __careful_cmp((type)(x), (type)(y), <)
^~~~~~~~~~~~~
mm/page_alloc.c:6379:29: note: in expansion of macro 'min_t'
pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
^~~~~
scripts/Makefile.build:317: recipe for target 'mm/page_alloc.o' failed
Let's make the DEFERRED_STRUCT_PAGE_INIT explicitly depend on SPARSEMEM
as the systems that support DISCONTIGMEM do not seem to have that huge
amounts of memory that would make DEFERRED_STRUCT_PAGE_INIT relevant.
Link: http://lkml.kernel.org/r/1530279308-24988-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
KASAN learns about hotadded memory via the memory hotplug notifier.
devm_memremap_pages() intentionally skips calling memory hotplug
notifiers. So KASAN doesn't know anything about new memory added by
devm_memremap_pages(). This causes a crash when KASAN tries to access
non-existent shadow memory:
BUG: unable to handle kernel paging request at ffffed0078000000
RIP: 0010:check_memory_region+0x82/0x1e0
Call Trace:
memcpy+0x1f/0x50
pmem_do_bvec+0x163/0x720
pmem_make_request+0x305/0xac0
generic_make_request+0x54f/0xcf0
submit_bio+0x9c/0x370
submit_bh_wbc+0x4c7/0x700
block_read_full_page+0x5ef/0x870
do_read_cache_page+0x2b8/0xb30
read_dev_sector+0xbd/0x3f0
read_lba.isra.0+0x277/0x670
efi_partition+0x41a/0x18f0
check_partition+0x30d/0x5e9
rescan_partitions+0x18c/0x840
__blkdev_get+0x859/0x1060
blkdev_get+0x23f/0x810
__device_add_disk+0x9c8/0xde0
pmem_attach_disk+0x9a8/0xf50
nvdimm_bus_probe+0xf3/0x3c0
driver_probe_device+0x493/0xbd0
bus_for_each_drv+0x118/0x1b0
__device_attach+0x1cd/0x2b0
bus_probe_device+0x1ac/0x260
device_add+0x90d/0x1380
nd_async_device_register+0xe/0x50
async_run_entry_fn+0xc3/0x5d0
process_one_work+0xa0a/0x1810
worker_thread+0x87/0xe80
kthread+0x2d7/0x390
ret_from_fork+0x3a/0x50
Add kasan_add_zero_shadow()/kasan_remove_zero_shadow() - post mm_init()
interface to map/unmap kasan_zero_page at requested virtual addresses.
And use it to add/remove the shadow memory for hotplugged/unplugged
device memory.
Link: http://lkml.kernel.org/r/20180629164932.740-1-aryabinin@virtuozzo.com
Fixes: 41e94a851304 ("add devm_memremap_pages")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
khugepaged_enter_vma_merge() passes a stale vma->vm_flags to
hugepage_vma_check(). The argument vm_flags contains the latest value.
Therefore, it is necessary to pass this vm_flags into
hugepage_vma_check().
With this bug, madvise(MADV_HUGEPAGE) for mmap files in shmem fails to
put memory in huge pages. Here is an example of failed madvise():
/* mount /dev/shm with huge=advise:
* mount -o remount,huge=advise /dev/shm */
/* create file /dev/shm/huge */
#define HUGE_FILE "/dev/shm/huge"
fd = open(HUGE_FILE, O_RDONLY);
ptr = mmap(NULL, FILE_SIZE, PROT_READ, MAP_PRIVATE, fd, 0);
ret = madvise(ptr, FILE_SIZE, MADV_HUGEPAGE);
madvise() will return 0, but this memory region is never put in huge
page (check from /proc/meminfo: ShmemHugePages).
Link: http://lkml.kernel.org/r/20180629181752.792831-1-songliubraving@fb.com
Fixes: 02b75dc8160d ("mm: thp: register mm for khugepaged when merging vma for shmem")
Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed integer overflow is undefined according to the C standard. The
overflow in ksys_fadvise64_64() is deliberate, but since it is signed
overflow, UBSAN complains:
UBSAN: Undefined behaviour in mm/fadvise.c:76:10
signed integer overflow:
4 + 9223372036854775805 cannot be represented in type 'long long int'
Use unsigned types to do math. Unsigned overflow is defined so UBSAN
will not complain about it. This patch doesn't change generated code.
[akpm@linux-foundation.org: add comment explaining the casts]
Link: http://lkml.kernel.org/r/20180629184453.7614-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: <icytxw@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
swap_slots_cache_enable_mutex static
The mutexes swap_slots_cache_mutex and swap_slots_cache_enable_mutex are
local to the source and do not need to be in global scope, so make them
static.
Cleans up sparse warnings:
symbol 'swap_slots_cache_mutex' was not declared. Should it be static?
symbol 'swap_slots_cache_enable_mutex' was not declared. Should it be static?
Link: http://lkml.kernel.org/r/20180624182536.4937-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The functions zs_page_isolate, zs_page_migrate, zs_page_putback,
lock_zspage, trylock_zspage and structure zsmalloc_aops are local to
source and do not need to be in global scope, so make them static.
Cleans up sparse warnings:
symbol 'zs_page_isolate' was not declared. Should it be static?
symbol 'zs_page_migrate' was not declared. Should it be static?
symbol 'zs_page_putback' was not declared. Should it be static?
symbol 'zsmalloc_aops' was not declared. Should it be static?
symbol 'lock_zspage' was not declared. Should it be static?
symbol 'trylock_zspage' was not declared. Should it be static?
[arnd@arndb.de: hide unused lock_zspage]
Link: http://lkml.kernel.org/r/20180706130924.3891230-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20180624213322.13776-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 93f78d882865 ("writeback: move backing_dev_info->bdi_stat[] into
bdi_writeback") replaced BDI_DIRTIED with WB_DIRTIED in
account_page_redirty(). Update comment to track that change.
BDI_DIRTIED => WB_DIRTIED
BDI_WRITTEN => WB_WRITTEN
Link: http://lkml.kernel.org/r/20180625171526.173483-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The buffer_head can consume a significant amount of system memory and is
directly related to the amount of page cache. In our production
environment we have observed that a lot of machines are spending a
significant amount of memory as buffer_head and can not be left as
system memory overhead.
Charging buffer_head is not as simple as adding __GFP_ACCOUNT to the
allocation. The buffer_heads can be allocated in a memcg different from
the memcg of the page for which buffer_heads are being allocated. One
concrete example is memory reclaim. The reclaim can trigger I/O of
pages of any memcg on the system. So, the right way to charge
buffer_head is to extract the memcg from the page for which buffer_heads
are being allocated and then use targeted memcg charging API.
[shakeelb@google.com: use __GFP_ACCOUNT for directed memcg charging]
Link: http://lkml.kernel.org/r/20180702220208.213380-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180627191250.209150-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "Directed kmem charging", v8.
The Linux kernel's memory cgroup allows limiting the memory usage of the
jobs running on the system to provide isolation between the jobs. All
the kernel memory allocated in the context of the job and marked with
__GFP_ACCOUNT will also be included in the memory usage and be limited
by the job's limit.
The kernel memory can only be charged to the memcg of the process in
whose context kernel memory was allocated. However there are cases
where the allocated kernel memory should be charged to the memcg
different from the current processes's memcg. This patch series
contains two such concrete use-cases i.e. fsnotify and buffer_head.
The fsnotify event objects can consume a lot of system memory for large
or unlimited queues if there is either no or slow listener. The events
are allocated in the context of the event producer. However they should
be charged to the event consumer. Similarly the buffer_head objects can
be allocated in a memcg different from the memcg of the page for which
buffer_head objects are being allocated.
To solve this issue, this patch series introduces mechanism to charge
kernel memory to a given memcg. In case of fsnotify events, the memcg
of the consumer can be used for charging and for buffer_head, the memcg
of the page can be charged. For directed charging, the caller can use
the scope API memalloc_[un]use_memcg() to specify the memcg to charge
for all the __GFP_ACCOUNT allocations within the scope.
This patch (of 2):
A lot of memory can be consumed by the events generated for the huge or
unlimited queues if there is either no or slow listener. This can cause
system level memory pressure or OOMs. So, it's better to account the
fsnotify kmem caches to the memcg of the listener.
However the listener can be in a different memcg than the memcg of the
producer and these allocations happen in the context of the event
producer. This patch introduces remote memcg charging API which the
producer can use to charge the allocations to the memcg of the listener.
There are seven fsnotify kmem caches and among them allocations from
dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and
inotify_inode_mark_cachep happens in the context of syscall from the
listener. So, SLAB_ACCOUNT is enough for these caches.
The objects from fsnotify_mark_connector_cachep are not accounted as
they are small compared to the notification mark or events and it is
unclear whom to account connector to since it is shared by all events
attached to the inode.
The allocations from the event caches happen in the context of the event
producer. For such caches we will need to remote charge the allocations
to the listener's memcg. Thus we save the memcg reference in the
fsnotify_group structure of the listener.
This patch has also moved the members of fsnotify_group to keep the size
same, at least for 64 bit build, even with additional member by filling
the holes.
[shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it]
Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Some architectures just don't have PAGE_KERNEL_EXEC. The mm/nommu.c and
mm/vmalloc.c code have been using PAGE_KERNEL as a fallback for years.
Move this fallback to asm-generic.
Link: http://lkml.kernel.org/r/20180510185507.2439-3-mcgrof@kernel.org
Signed-off-by: Luis R. Rodriguez <mcgrof@kernel.org>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
walk_memory_range()
link_mem_sections() and walk_memory_range() share most of the code, so
we can use convert link_mem_sections() into a dummy function that calls
walk_memory_range() with a callback to register_mem_sect_under_node().
This patch converts register_mem_sect_under_node() in order to match a
walk_memory_range's callback, getting rid of the check_nid argument and
checking instead if the system is still boothing, since we only have to
check for the nid if the system is in such state.
Link: http://lkml.kernel.org/r/20180622111839.10071-4-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Suggested-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When hotplugging memory, it is possible that two calls are being made to
register_mem_sect_under_node().
One comes from __add_section()->hotplug_memory_register() and the other
from add_memory_resource()->link_mem_sections() if we had to register a
new node.
In case we had to register a new node, hotplug_memory_register() will
only handle/allocate the memory_block's since
register_mem_sect_under_node() will return right away because the node
it is not online yet.
I think it is better if we leave hotplug_memory_register() to
handle/allocate only memory_block's and make link_mem_sections() to call
register_mem_sect_under_node().
So this patch removes the call to register_mem_sect_under_node() from
hotplug_memory_register(), and moves the call to link_mem_sections() out
of the condition, so it will always be called. In this way we only have
one place where the memory sections are registered.
Link: http://lkml.kernel.org/r/20180622111839.10071-3-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This is a small cleanup for the memhotplug code. A lot more could be
done, but it is better to start somewhere. I tried to unify/remove
duplicated code.
The following is what this patchset does:
1) add_memory_resource() has code to allocate a node in case it was
offline. Since try_online_node has some code for that as well, I just
made add_memory_resource() to use that so we can remove duplicated
code.. This is better explained in patch 1/4.
2) register_mem_sect_under_node() will be called only from
link_mem_sections()
3) Make register_mem_sect_under_node() a callback of
walk_memory_range()
4) Drop unnecessary checks from register_mem_sect_under_node()
I have done some tests and I could not see anything broken because of
this patchset.
add_memory_resource() contains code to allocate a new node in case it is
necessary. Since try_online_node() also has some code for this purpose,
let us make use of that and remove duplicate code.
This introduces __try_online_node(), which is called by
add_memory_resource() and try_online_node(). __try_online_node() has
two new parameters, start_addr of the node, and if the node should be
onlined and registered right away. This is always wanted if we are
calling from do_cpu_up(), but not when we are calling from memhotplug
code. Nothing changes from the point of view of the users of
try_online_node(), since try_online_node passes start_addr=0 and
online_node=true to __try_online_node().
Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__list_lru_count_one() has a single callsite.
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
shadow_lru_isolate() disables interrupts and acquires a lock. It could
use spin_lock_irq() instead. It also uses local_irq_enable() while it
could use spin_unlock_irq()/xa_unlock_irq().
Use proper suffix for lock/unlock in order to enable/disable interrupts
during release/acquire of a lock.
Link: http://lkml.kernel.org/r/20180622151221.28167-3-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm: use irq locking suffix instead local_irq_disable()".
A small series which avoids using local_irq_disable()/local_irq_enable()
but instead does spin_lock_irq()/spin_unlock_irq() so it is within the
context of the lock which it belongs to. Patch #1 is a cleanup where
local_irq_.*() remained after the lock was removed.
This patch (of 2):
In 0c7c1bed7e13 ("mm: make counting of list_lru_one::nr_items lockless")
the
spin_lock(&nlru->lock);
statement was replaced with
rcu_read_lock();
in __list_lru_count_one(). The comment in count_shadow_nodes() says
that the local_irq_disable() is required because the lock must be
acquired with disabled interrupts and (spin_lock()) does not do so.
Since the lock is replaced with rcu_read_lock() the local_irq_disable()
is no longer needed. The code path is
list_lru_shrink_count()
-> list_lru_count_one()
-> __list_lru_count_one()
-> rcu_read_lock()
-> list_lru_from_memcg_idx()
-> rcu_read_unlock()
Remove the local_irq_disable() statement.
Link: http://lkml.kernel.org/r/20180622151221.28167-2-bigeasy@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is no real reason to blow up just because the caller doesn't know
that __get_free_pages cannot return highmem pages. Simply fix that up
silently. Even if we have some confused users such a fixup will not be
harmful.
[akpm@linux-foundation.org: mask off __GFP_HIGHMEM]
Link: http://lkml.kernel.org/r/20180622162841.25114-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jiankang Chen <chenjiankang1@huawei.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This is to take better advantage of the general huge page copying
optimization. Where, the target subpage will be copied last to avoid
the cache lines of target subpage to be evicted when copying other
subpages. This works better if the address of the target subpage is
available when copying huge page. So hugetlbfs page fault handlers are
changed to pass that information to hugetlb_cow(). This will benefit
workloads which don't access the begin of the hugetlbfs huge page after
the page fault under heavy cache contention.
Link: http://lkml.kernel.org/r/20180524005851.4079-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
To take better advantage of general huge page copying optimization, the
target subpage address will be passed to hugetlb_cow(), then
copy_user_huge_page(). So we will use both target subpage address and
huge page size aligned address in hugetlb_cow(). To distinguish between
them, "haddr" is used for huge page size aligned address to be
consistent with Transparent Huge Page naming convention.
Now, only huge page size aligned address is used in hugetlb_cow(), so
the "address" is renamed to "haddr" in hugetlb_cow() in this patch.
Next patch will use target subpage address in hugetlb_cow() too.
The patch is just code cleanup without any functionality changes.
Link: http://lkml.kernel.org/r/20180524005851.4079-4-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Punit Agrawal <punit.agrawal@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Huge page helps to reduce TLB miss rate, but it has higher cache
footprint, sometimes this may cause some issue. For example, when
copying huge page on x86_64 platform, the cache footprint is 4M. But on
a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M LLC
(last level cache). That is, in average, there are 2.5M LLC for each
core and 1.25M LLC for each thread.
If the cache contention is heavy when copying the huge page, and we copy
the huge page from the begin to the end, it is possible that the begin
of huge page is evicted from the cache after we finishing copying the
end of the huge page. And it is possible for the application to access
the begin of the huge page after copying the huge page.
In c79b57e462b5d ("mm: hugetlb: clear target sub-page last when clearing
huge page"), to keep the cache lines of the target subpage hot, the
order to clear the subpages in the huge page in clear_huge_page() is
changed to clearing the subpage which is furthest from the target
subpage firstly, and the target subpage last. The similar order
changing helps huge page copying too. That is implemented in this
patch. Because we have put the order algorithm into a separate
function, the implementation is quite simple.
The patch is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patch, we tested it with vm-scalability run on
transparent huge page.
With this patch, the throughput increases ~16.6% in vm-scalability
anon-cow-seq test case with 36 processes on a 2 socket Xeon E5 v3 2699
system (36 cores, 72 threads). The test case set
/sys/kernel/mm/transparent_hugepage/enabled to be always, mmap() a big
anonymous memory area and populate it, then forked 36 child processes,
each writes to the anonymous memory area from the begin to the end, so
cause copy on write. For each child process, other child processes
could be seen as other workloads which generate heavy cache pressure.
At the same time, the IPC (instruction per cycle) increased from 0.63 to
0.78, and the time spent in user space is reduced ~7.2%.
Link: http://lkml.kernel.org/r/20180524005851.4079-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm, huge page: Copy target sub-page last when copy huge
page", v2.
Huge page helps to reduce TLB miss rate, but it has higher cache
footprint, sometimes this may cause some issue. For example, when
copying huge page on x86_64 platform, the cache footprint is 4M. But on
a Xeon E5 v3 2699 CPU, there are 18 cores, 36 threads, and only 45M LLC
(last level cache). That is, in average, there are 2.5M LLC for each
core and 1.25M LLC for each thread.
If the cache contention is heavy when copying the huge page, and we copy
the huge page from the begin to the end, it is possible that the begin
of huge page is evicted from the cache after we finishing copying the
end of the huge page. And it is possible for the application to access
the begin of the huge page after copying the huge page.
In c79b57e462b5d ("mm: hugetlb: clear target sub-page last when clearing
huge page"), to keep the cache lines of the target subpage hot, the
order to clear the subpages in the huge page in clear_huge_page() is
changed to clearing the subpage which is furthest from the target
subpage firstly, and the target subpage last. The similar order
changing helps huge page copying too. That is implemented in this
patchset.
The patchset is a generic optimization which should benefit quite some
workloads, not for a specific use case. To demonstrate the performance
benefit of the patchset, we have tested it with vm-scalability run on
transparent huge page.
With this patchset, the throughput increases ~16.6% in vm-scalability
anon-cow-seq test case with 36 processes on a 2 socket Xeon E5 v3 2699
system (36 cores, 72 threads). The test case set
/sys/kernel/mm/transparent_hugepage/enabled to be always, mmap() a big
anonymous memory area and populate it, then forked 36 child processes,
each writes to the anonymous memory area from the begin to the end, so
cause copy on write. For each child process, other child processes
could be seen as other workloads which generate heavy cache pressure.
At the same time, the IPC (instruction per cycle) increased from 0.63 to
0.78, and the time spent in user space is reduced ~7.2%.
This patch (of 4):
In c79b57e462b5d ("mm: hugetlb: clear target sub-page last when clearing
huge page"), to keep the cache lines of the target subpage hot, the
order to clear the subpages in the huge page in clear_huge_page() is
changed to clearing the subpage which is furthest from the target
subpage firstly, and the target subpage last. This optimization could
be applied to copying huge page too with the same order algorithm. To
avoid code duplication and reduce maintenance overhead, in this patch,
the order algorithm is moved out of clear_huge_page() into a separate
function: process_huge_page(). So that we can use it for copying huge
page too.
This will change the direct calls to clear_user_highpage() into the
indirect calls. But with the proper inline support of the compilers,
the indirect call will be optimized to be the direct call. Our tests
show no performance change with the patch.
This patch is a code cleanup without functionality change.
Link: http://lkml.kernel.org/r/20180524005851.4079-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Christopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
/sys/kernel/mm/transparent_hugepage/khugepaged/pages_collapsed is used
to record the counter of collapsed THP, but it just gets inc'ed in
anonymous THP collapse path, do this for shmem THP collapse too.
Link: http://lkml.kernel.org/r/1529622949-75504-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When merging anonymous page vma, if the size of the vma can fit in at
least one hugepage, the mm will be registered for khugepaged for
collapsing THP in the future.
But it skips shmem vmas. Do so for shmem also, but not for file-private
mappings when merging a vma in order to increase the odds of collapsing
a hugepage via khugepaged.
hugepage_vma_check() sounds like a good fit to do the check. And move
the definition of it before khugepaged_enter_vma_merge() to avoid a
build error.
Link: http://lkml.kernel.org/r/1529697791-6950-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
remove_element()
The argument "gfp_t flags" is not used in kasan_unpoison_element() and
remove_element(), so remove it.
Link: http://lkml.kernel.org/r/20180621070332.16633-1-baijiaju1990@gmail.com
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use smaller scan_control fields for order, priority, and reclaim_idx.
Convert fields from int => s8. All easily fit within a byte:
- allocation order range: 0..MAX_ORDER(64?)
- priority range: 0..12(DEF_PRIORITY)
- reclaim_idx range: 0..6(__MAX_NR_ZONES)
Since 6538b8ea886e ("x86_64: expand kernel stack to 16K") x86_64 stack
overflows are not an issue. But it's inefficient to use ints.
Use s8 (signed byte) rather than u8 to allow for loops like:
do {
...
} while (--sc.priority >= 0);
Add BUILD_BUG_ON to verify that s8 is capable of storing max values.
This reduces sizeof(struct scan_control):
- 96 => 80 bytes (x86_64)
- 68 => 56 bytes (i386)
scan_control structure field order is changed to utilize padding. After
this patch there is 1 bit of scan_control padding.
akpm: makes my vmscan.o's .text 572 bytes smaller as well.
Link: http://lkml.kernel.org/r/20180530061212.84915-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
lookup_page_ext() finds 'struct page_ext' for a given page. It requires
only read access to the given struct page.
Current implemnentation takes 'struct page *' as an argument. It makes
compiler complain when 'const struct page *' passed.
Change the argument to 'const struct page *'.
Link: http://lkml.kernel.org/r/20180531135457.20167-3-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
get_seconds() is deprecated because it will lead to a 32-bit overflow in
2038 or 2106. We don't need the i_generation to be strictly monotonic
anyway, and other file systems like ext4 and xfs just use prandom_u32(),
so let's use the same one here.
If this is considered too slow, we could also use ktime_get_seconds() or
ktime_get_real_seconds() to keep the previous behavior. Both of these
return a time64_t and are not deprecated, but only return a unique value
once per second, and are predictable.
Link: http://lkml.kernel.org/r/20180620082556.581543-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__alloc_pages_slowpath() has for a long time contained code to ignore
node restrictions from memory policies for high priority allocations.
The current code that resets the zonelist iterator however does
effectively nothing after commit 7810e6781e0f ("mm, page_alloc: do not
break __GFP_THISNODE by zonelist reset") removed a buggy zonelist reset.
Even before that commit, mempolicy restrictions were still not ignored,
as they are passed in ac->nodemask which is untouched by the code.
We can either remove the code, or make it work as intended. Since
ac->nodemask can be set from task's mempolicy via alloc_pages_current()
and thus also alloc_pages(), it may indeed affect kernel allocations,
and it makes sense to ignore it to allow progress for high priority
allocations.
Thus, this patch resets ac->nodemask to NULL in such cases. This
assumes all callers can handle it (i.e. there are no guarantees as in
the case of __GFP_THISNODE) which seems to be the case. The same
assumption is already present in check_retry_cpuset() for some time.
The expected effect is that high priority kernel allocations in the
context of userspace tasks (e.g. OOM victims) restricted by mempolicies
will have higher chance to succeed if they are restricted to nodes with
depleted memory, while there are other nodes with free memory left.
It's not a new intention, but for the first time the code will match the
intention, AFAICS. It was intended by commit 183f6371aac2 ("mm: ignore
mempolicies when using ALLOC_NO_WATERMARK") in v3.6 but I think it never
really worked, as mempolicy restriction was already encoded in nodemask,
not zonelist, at that time.
So originally that was for ALLOC_NO_WATERMARK only. Then it was
adjusted by e46e7b77c909 ("mm, page_alloc: recalculate the preferred
zoneref if the context can ignore memory policies") and cd04ae1e2dc8
("mm, oom: do not rely on TIF_MEMDIE for memory reserves access") to the
current state. So even GFP_ATOMIC would now ignore mempolicies after
the initial attempts fail - if the code worked as people thought it
does.
Link: http://lkml.kernel.org/r/20180612122624.8045-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since commit eca56ff906bd ("mm, shmem: add internal shmem resident
memory accounting"), MM_SHMEMPAGES is added to separate the shmem
accounting from regular files. So, all shmem pages should be accounted
to MM_SHMEMPAGES instead of MM_FILEPAGES.
And, normal 4K shmem pages have been accounted to MM_SHMEMPAGES, so
shmem thp pages should be not treated differently. Account them to
MM_SHMEMPAGES via mm_counter_file() since shmem pages are swap backed to
keep consistent with normal 4K shmem pages.
This will not change the rss counter of processes since shmem pages are
still a part of it.
The /proc/pid/status and /proc/pid/statm counters will however be more
accurate wrt shmem usage, as originally intended. And as eca56ff906bd
("mm, shmem: add internal shmem resident memory accounting") mentioned,
oom also could report more accurate "shmem-rss".
Link: http://lkml.kernel.org/r/1529442518-17398-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The role of zero_resv_unavail() is to make sure that every struct page
that is allocated but is not backed by memory that is accessible by
kernel is zeroed and not in some uninitialized state.
Since struct pages are allocated in blocks (2M pages in x86 case), we
can skip pageblock_nr_pages at a time, when the first one is found to be
invalid.
This optimization may help since now on x86 every hole in e820 maps is
marked as reserved in memblock, and thus will go through this function.
This function is called before sched_clock() is initialized, so I used
my x86 early boot clock patches to measure the performance improvement.
With 1T hole on i7-8700 currently we would take 0.606918s of boot time,
but with this optimization 0.001103s.
Link: http://lkml.kernel.org/r/20180615155733.1175-1-pasha.tatashin@oracle.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use new return type vm_fault_t for fault handler. For now, this is just
documenting that the function returns a VM_FAULT value rather than an
errno. Once all instances are converted, vm_fault_t will become a
distinct type.
Ref-> commit 1c8f422059ae ("mm: change return type to vm_fault_t")
In this patch all the caller of handle_mm_fault() are changed to return
vm_fault_t type.
Link: http://lkml.kernel.org/r/20180617084810.GA6730@jordon-HP-15-Notebook-PC
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: James Hogan <jhogan@kernel.org>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: David S. Miller <davem@davemloft.net>
Cc: Richard Weinberger <richard@nod.at>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Levin, Alexander (Sasha Levin)" <alexander.levin@verizon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In SLUB, prefetch_freepointer() is used when allocating an object from
cache's freelist, to make sure the next object in the list is cache-hot,
since it's probable it will be allocated soon.
Commit 2482ddec670f ("mm: add SLUB free list pointer obfuscation") has
unintentionally changed the prefetch in a way where the prefetch is
turned to a real fetch, and only the next->next pointer is prefetched.
In case there is not a stream of allocations that would benefit from
prefetching, the extra real fetch might add a useless cache miss to the
allocation. Restore the previous behavior.
Link: http://lkml.kernel.org/r/20180809085245.22448-1-vbabka@suse.cz
Fixes: 2482ddec670f ("mm: add SLUB free list pointer obfuscation")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch is reworked from an earlier patch that Dan has posted:
https://patchwork.kernel.org/patch/10131727/
VM_MIXEDMAP is used by dax to direct mm paths like vm_normal_page() that
the memory page it is dealing with is not typical memory from the linear
map. The get_user_pages_fast() path, since it does not resolve the vma,
is already using {pte,pmd}_devmap() as a stand-in for VM_MIXEDMAP, so we
use that as a VM_MIXEDMAP replacement in some locations. In the cases
where there is no pte to consult we fallback to using vma_is_dax() to
detect the VM_MIXEDMAP special case.
Now that we have explicit driver pfn_t-flag opt-in/opt-out for
get_user_pages() support for DAX we can stop setting VM_MIXEDMAP. This
also means we no longer need to worry about safely manipulating vm_flags
in a future where we support dynamically changing the dax mode of a
file.
DAX should also now be supported with madvise_behavior(), vma_merge(),
and copy_page_range().
This patch has been tested against ndctl unit test. It has also been
tested against xfstests commit: 625515d using fake pmem created by
memmap and no additional issues have been observed.
Link: http://lkml.kernel.org/r/152847720311.55924.16999195879201817653.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kconfig consolidation from Masahiro Yamada:
"Consolidation of Kconfig files by Christoph Hellwig.
Move the source statements of arch-independent Kconfig files instead
of duplicating the includes in every arch/$(SRCARCH)/Kconfig"
* tag 'kconfig-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild:
kconfig: add a Memory Management options" menu
kconfig: move the "Executable file formats" menu to fs/Kconfig.binfmt
kconfig: use a menu in arch/Kconfig to reduce clutter
kconfig: include kernel/Kconfig.preempt from init/Kconfig
Kconfig: consolidate the "Kernel hacking" menu
kconfig: include common Kconfig files from top-level Kconfig
kconfig: remove duplicate SWAP symbol defintions
um: create a proper drivers Kconfig
um: cleanup Kconfig files
um: stop abusing KBUILD_KCONFIG
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull hardened usercopy updates from Kees Cook:
"This cleans up a minor Kconfig issue and adds a kernel boot option for
disabling hardened usercopy for distro users that may have corner-case
performance issues (e.g. high bandwidth small-packet UDP traffic).
Summary:
- drop unneeded Kconfig "select BUG" (Kamal Mostafa)
- add "hardened_usercopy=off" rare performance needs (Chris von
Recklinghausen)"
* tag 'hardened-usercopy-v4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
usercopy: Allow boot cmdline disabling of hardening
usercopy: Do not select BUG with HARDENED_USERCOPY
|
|
Pull documentation update from Jonathan Corbet:
"This was a moderately busy cycle for docs, with the usual collection
of small fixes and updates.
We also have new ktime_get_*() docs from Arnd, some kernel-doc fixes,
a new set of Italian translations (non so se vale la pena, ma non fa
male - speriamo bene), and some extensive early memory-management
documentation improvements from Mike Rapoport"
* tag 'docs-4.19' of git://git.lwn.net/linux: (52 commits)
Documentation: corrections to console/console.txt
Documentation: add ioctl number entry for v4l2-subdev.h
Remove gendered language from management style documentation
scripts/kernel-doc: Escape all literal braces in regexes
docs/mm: add description of boot time memory management
docs/mm: memblock: add overview documentation
docs/mm: memblock: add kernel-doc description for memblock types
docs/mm: memblock: add kernel-doc comments for memblock_add[_node]
docs/mm: memblock: update kernel-doc comments
mm/memblock: add a name for memblock flags enumeration
docs/mm: bootmem: add overview documentation
docs/mm: bootmem: add kernel-doc description of 'struct bootmem_data'
docs/mm: bootmem: fix kernel-doc warnings
docs/mm: nobootmem: fixup kernel-doc comments
mm/bootmem: drop duplicated kernel-doc comments
Documentation: vm.txt: Adding 'nr_hugepages_mempolicy' parameter description.
doc:it_IT: translation for kernel-hacking
docs: Fix the reference labels in Locking.rst
doc: tracing: Fix a typo of trace_stat
mm: Introduce new type vm_fault_t
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These add a new framework for CPU idle time injection, to be used by
all of the idle injection code in the kernel in the future, fix some
issues and add a number of relatively small extensions in multiple
places.
Specifics:
- Add a new framework for CPU idle time injection (Daniel Lezcano).
- Add AVS support to the armada-37xx cpufreq driver (Gregory
CLEMENT).
- Add support for current CPU frequency reporting to the ACPI CPPC
cpufreq driver (George Cherian).
- Rework the cooling device registration in the imx6q/thermal driver
(Bastian Stender).
- Make the pcc-cpufreq driver refuse to work with dynamic scaling
governors on systems with many CPUs to avoid scalability issues
with it (Rafael Wysocki).
- Fix the intel_pstate driver to report different maximum CPU
frequencies on systems where they really are different and to
ignore the turbo active ratio if hardware-managend P-states (HWP)
are in use; make it use the match_string() helper (Xie Yisheng,
Srinivas Pandruvada).
- Fix a minor deferred probe issue in the qcom-kryo cpufreq driver
(Niklas Cassel).
- Add a tracepoint for the tracking of frequency limits changes (from
Andriod) to the cpufreq core (Ruchi Kandoi).
- Fix a circular lock dependency between CPU hotplug and sysfs
locking in the cpufreq core reported by lockdep (Waiman Long).
- Avoid excessive error reports on driver registration failures in
the ARM cpuidle driver (Sudeep Holla).
- Add a new device links flag to the driver core to make links go
away automatically on supplier driver removal (Vivek Gautam).
- Eliminate potential race condition between system-wide power
management transitions and system shutdown (Pingfan Liu).
- Add a quirk to save NVS memory on system suspend for the ASUS 1025C
laptop (Willy Tarreau).
- Make more systems use suspend-to-idle (instead of ACPI S3) by
default (Tristian Celestin).
- Get rid of stack VLA usage in the low-level hibernation code on
64-bit x86 (Kees Cook).
- Fix error handling in the hibernation core and mark an expected
fall-through switch in it (Chengguang Xu, Gustavo Silva).
- Extend the generic power domains (genpd) framework to support
attaching a device to a power domain by name (Ulf Hansson).
- Fix device reference counting and user limits initialization in the
devfreq core (Arvind Yadav, Matthias Kaehlcke).
- Fix a few issues in the rk3399_dmc devfreq driver and improve its
documentation (Enric Balletbo i Serra, Lin Huang, Nick Milner).
- Drop a redundant error message from the exynos-ppmu devfreq driver
(Markus Elfring)"
* tag 'pm-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (35 commits)
PM / reboot: Eliminate race between reboot and suspend
PM / hibernate: Mark expected switch fall-through
cpufreq: intel_pstate: Ignore turbo active ratio in HWP
cpufreq: Fix a circular lock dependency problem
cpu/hotplug: Add a cpus_read_trylock() function
x86/power/hibernate_64: Remove VLA usage
cpufreq: trace frequency limits change
cpufreq: intel_pstate: Show different max frequency with turbo 3 and HWP
cpufreq: pcc-cpufreq: Disable dynamic scaling on many-CPU systems
cpufreq: qcom-kryo: Silently error out on EPROBE_DEFER
cpufreq / CPPC: Add cpuinfo_cur_freq support for CPPC
cpufreq: armada-37xx: Add AVS support
dt-bindings: marvell: Add documentation for the Armada 3700 AVS binding
PM / devfreq: rk3399_dmc: Fix duplicated opp table on reload.
PM / devfreq: Init user limits from OPP limits, not viceversa
PM / devfreq: rk3399_dmc: fix spelling mistakes.
PM / devfreq: rk3399_dmc: do not print error when get supply and clk defer.
dt-bindings: devfreq: rk3399_dmc: move interrupts to be optional.
PM / devfreq: rk3399_dmc: remove wait for dcf irq event.
dt-bindings: clock: add rk3399 DDR3 standard speed bins.
...
|
|
Pull block updates from Jens Axboe:
"First pull request for this merge window, there will also be a
followup request with some stragglers.
This pull request contains:
- Fix for a thundering heard issue in the wbt block code (Anchal
Agarwal)
- A few NVMe pull requests:
* Improved tracepoints (Keith)
* Larger inline data support for RDMA (Steve Wise)
* RDMA setup/teardown fixes (Sagi)
* Effects log suppor for NVMe target (Chaitanya Kulkarni)
* Buffered IO suppor for NVMe target (Chaitanya Kulkarni)
* TP4004 (ANA) support (Christoph)
* Various NVMe fixes
- Block io-latency controller support. Much needed support for
properly containing block devices. (Josef)
- Series improving how we handle sense information on the stack
(Kees)
- Lightnvm fixes and updates/improvements (Mathias/Javier et al)
- Zoned device support for null_blk (Matias)
- AIX partition fixes (Mauricio Faria de Oliveira)
- DIF checksum code made generic (Max Gurtovoy)
- Add support for discard in iostats (Michael Callahan / Tejun)
- Set of updates for BFQ (Paolo)
- Removal of async write support for bsg (Christoph)
- Bio page dirtying and clone fixups (Christoph)
- Set of bcache fix/changes (via Coly)
- Series improving blk-mq queue setup/teardown speed (Ming)
- Series improving merging performance on blk-mq (Ming)
- Lots of other fixes and cleanups from a slew of folks"
* tag 'for-4.19/block-20180812' of git://git.kernel.dk/linux-block: (190 commits)
blkcg: Make blkg_root_lookup() work for queues in bypass mode
bcache: fix error setting writeback_rate through sysfs interface
null_blk: add lock drop/acquire annotation
Blk-throttle: reduce tail io latency when iops limit is enforced
block: paride: pd: mark expected switch fall-throughs
block: Ensure that a request queue is dissociated from the cgroup controller
block: Introduce blk_exit_queue()
blkcg: Introduce blkg_root_lookup()
block: Remove two superfluous #include directives
blk-mq: count the hctx as active before allocating tag
block: bvec_nr_vecs() returns value for wrong slab
bcache: trivial - remove tailing backslash in macro BTREE_FLAG
bcache: make the pr_err statement used for ENOENT only in sysfs_attatch section
bcache: set max writeback rate when I/O request is idle
bcache: add code comments for bset.c
bcache: fix mistaken comments in request.c
bcache: fix mistaken code comments in bcache.h
bcache: add a comment in super.c
bcache: avoid unncessary cache prefetch bch_btree_node_get()
bcache: display rate debug parameters to 0 when writeback is not running
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
|
|
Merge changes in the PM core, system-wide PM infrastructure, generic
power domains (genpd) framework, ACPI PM infrastructure and cpuidle
for 4.19.
* pm-core:
driver core: Add flag to autoremove device link on supplier unbind
driver core: Rename flag AUTOREMOVE to AUTOREMOVE_CONSUMER
* pm-domains:
PM / Domains: Introduce dev_pm_domain_attach_by_name()
PM / Domains: Introduce option to attach a device by name to genpd
PM / Domains: dt: Add a power-domain-names property
* pm-sleep:
PM / reboot: Eliminate race between reboot and suspend
PM / hibernate: Mark expected switch fall-through
x86/power/hibernate_64: Remove VLA usage
PM / hibernate: cast PAGE_SIZE to int when comparing with error code
* acpi-pm:
ACPI / PM: save NVS memory for ASUS 1025C laptop
ACPI / PM: Default to s2idle in all machines supporting LP S0
* pm-cpuidle:
ARM: cpuidle: silence error on driver registration failure
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs open-related updates from Al Viro:
- "do we need fput() or put_filp()" rules are gone - it's always fput()
now. We keep track of that state where it belongs - in ->f_mode.
- int *opened mess killed - in finish_open(), in ->atomic_open()
instances and in fs/namei.c code around do_last()/lookup_open()/atomic_open().
- alloc_file() wrappers with saner calling conventions are introduced
(alloc_file_clone() and alloc_file_pseudo()); callers converted, with
much simplification.
- while we are at it, saner calling conventions for path_init() and
link_path_walk(), simplifying things inside fs/namei.c (both on
open-related paths and elsewhere).
* 'work.open3' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (40 commits)
few more cleanups of link_path_walk() callers
allow link_path_walk() to take ERR_PTR()
make path_init() unconditionally paired with terminate_walk()
document alloc_file() changes
make alloc_file() static
do_shmat(): grab shp->shm_file earlier, switch to alloc_file_clone()
new helper: alloc_file_clone()
create_pipe_files(): switch the first allocation to alloc_file_pseudo()
anon_inode_getfile(): switch to alloc_file_pseudo()
hugetlb_file_setup(): switch to alloc_file_pseudo()
ocxlflash_getfile(): switch to alloc_file_pseudo()
cxl_getfile(): switch to alloc_file_pseudo()
... and switch shmem_file_setup() to alloc_file_pseudo()
__shmem_file_setup(): reorder allocations
new wrapper: alloc_file_pseudo()
kill FILE_{CREATED,OPENED}
switch atomic_open() and lookup_open() to returning 0 in all success cases
document ->atomic_open() changes
->atomic_open(): return 0 in all success cases
get rid of 'opened' in path_openat() and the helpers downstream
...
|
|
Pull x86 PTI updates from Thomas Gleixner:
"The Speck brigade sadly provides yet another large set of patches
destroying the perfomance which we carefully built and preserved
- PTI support for 32bit PAE. The missing counter part to the 64bit
PTI code implemented by Joerg.
- A set of fixes for the Global Bit mechanics for non PCID CPUs which
were setting the Global Bit too widely and therefore possibly
exposing interesting memory needlessly.
- Protection against userspace-userspace SpectreRSB
- Support for the upcoming Enhanced IBRS mode, which is preferred
over IBRS. Unfortunately we dont know the performance impact of
this, but it's expected to be less horrible than the IBRS
hammering.
- Cleanups and simplifications"
* 'x86/pti' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
x86/mm/pti: Move user W+X check into pti_finalize()
x86/relocs: Add __end_rodata_aligned to S_REL
x86/mm/pti: Clone kernel-image on PTE level for 32 bit
x86/mm/pti: Don't clear permissions in pti_clone_pmd()
x86/mm/pti: Fix 32 bit PCID check
x86/mm/init: Remove freed kernel image areas from alias mapping
x86/mm/init: Add helper for freeing kernel image pages
x86/mm/init: Pass unconverted symbol addresses to free_init_pages()
mm: Allow non-direct-map arguments to free_reserved_area()
x86/mm/pti: Clear Global bit more aggressively
x86/speculation: Support Enhanced IBRS on future CPUs
x86/speculation: Protect against userspace-userspace spectreRSB
x86/kexec: Allocate 8k PGDs for PTI
Revert "perf/core: Make sure the ring-buffer is mapped in all page-tables"
x86/mm: Remove in_nmi() warning from vmalloc_fault()
x86/entry/32: Check for VM86 mode in slow-path check
perf/core: Make sure the ring-buffer is mapped in all page-tables
x86/pti: Check the return value of pti_user_pagetable_walk_pmd()
x86/pti: Check the return value of pti_user_pagetable_walk_p4d()
x86/entry/32: Add debug code to check entry/exit CR3
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Thomas Gleixner:
- Make lazy TLB mode even lazier to avoid pointless switch_mm()
operations, which reduces CPU load by 1-2% for memcache workloads
- Small cleanups and improvements all over the place
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Remove redundant check for kmem_cache_create()
arm/asm/tlb.h: Fix build error implicit func declaration
x86/mm/tlb: Make clear_asid_other() static
x86/mm/tlb: Skip atomic operations for 'init_mm' in switch_mm_irqs_off()
x86/mm/tlb: Always use lazy TLB mode
x86/mm/tlb: Only send page table free TLB flush to lazy TLB CPUs
x86/mm/tlb: Make lazy TLB mode lazier
x86/mm/tlb: Restructure switch_mm_irqs_off()
x86/mm/tlb: Leave lazy TLB mode at page table free time
mm: Allocate the mm_cpumask (mm->cpu_bitmap[]) dynamically based on nr_cpu_ids
x86/mm: Add TLB purge to free pmd/pte page interfaces
ioremap: Update pgtable free interfaces with addr
x86/mm: Disable ioremap free page handling on x86-PAE
|
|
ioremap_prot() can return NULL which could lead to an oops.
Link: http://lkml.kernel.org/r/1533195441-58594-1-git-send-email-chenjie6@huawei.com
Signed-off-by: chen jie <chenjie6@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: chenjie <chenjie6@huawei.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
At present, "systemctl suspend" and "shutdown" can run in parrallel. A
system can suspend after devices_shutdown(), and resume. Then the shutdown
task goes on to power off. This causes many devices are not really shut
off. Hence replacing reboot_mutex with system_transition_mutex (renamed
from pm_mutex) to achieve the exclusion. The renaming of pm_mutex as
system_transition_mutex can be better to reflect the purpose of the mutex.
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|