summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)AuthorFilesLines
2016-05-21raxix-tree: introduce CONFIG_RADIX_TREE_MULTIORDERMatthew Wilcox1-0/+1
I've been receiving increasingly concerned notes from 0day about how much my recent changes have been bloating the radix tree. Make it happier by only including multiorder support if CONFIG_TRANSPARENT_HUGEPAGES is set. This is an independent Kconfig option, so other radix tree users can also set it if they have a need. Signed-off-by: Matthew Wilcox <willy@linux.intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com> Cc: Jan Kara <jack@suse.com> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm/zsmalloc: don't fail if can't create debugfs infoDan Streetman1-11/+7
Change the return type of zs_pool_stat_create() to void, and remove the logic to abort pool creation if the stat debugfs dir/file could not be created. The debugfs stat file is for debugging/information only, and doesn't affect operation of zsmalloc; there is no reason to abort creating the pool if the stat file can't be created. This was seen with zswap, which used the same name for all pool creations, which caused zsmalloc to fail to create a second pool for zswap if CONFIG_ZSMALLOC_STAT was enabled. Signed-off-by: Dan Streetman <ddstreet@ieee.org> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Dan Streetman <dan.streetman@canonical.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm/zswap: use workqueue to destroy poolDan Streetman1-4/+8
Add a work_struct to struct zswap_pool, and change __zswap_pool_empty to use the workqueue instead of using call_rcu(). When zswap destroys a pool no longer in use, it uses call_rcu() to perform the destruction/freeing. Since that executes in softirq context, it must not sleep. However, actually destroying the pool involves freeing the per-cpu compressors (which requires locking the cpu_add_remove_lock mutex) and freeing the zpool, for which the implementation may sleep (e.g. zsmalloc calls kmem_cache_destroy, which locks the slab_mutex). So if either mutex is currently taken, or any other part of the compressor or zpool implementation sleeps, it will result in a BUG(). It's not easy to reproduce this when changing zswap's params normally. In testing with a loaded system, this does not fail: $ cd /sys/module/zswap/parameters $ echo lz4 > compressor ; echo zsmalloc > zpool nor does this: $ while true ; do > echo lzo > compressor ; echo zbud > zpool > sleep 1 > echo lz4 > compressor ; echo zsmalloc > zpool > sleep 1 > done although it's still possible either of those might fail, depending on whether anything else besides zswap has locked the mutexes. However, changing a parameter with no delay immediately causes the schedule while atomic BUG: $ while true ; do > echo lzo > compressor ; echo lz4 > compressor > done This is essentially the same as Yu Zhao's proposed patch to zsmalloc, but moved to zswap, to cover compressor and zpool freeing. Fixes: f1c54846ee45 ("zswap: dynamic pool creation") Signed-off-by: Dan Streetman <ddstreet@ieee.org> Reported-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Dan Streetman <dan.streetman@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21zsmalloc: require GFP in zs_malloc()Sergey Senozhatsky1-11/+13
Pass GFP flags to zs_malloc() instead of using a fixed mask supplied to zs_create_pool(), so we can be more flexible, but, more importantly, we need this to switch zram to per-cpu compression streams -- zram will try to allocate handle with preemption disabled in a fast path and switch to a slow path (using different gfp mask) if the fast one has failed. Apart from that, this also align zs_malloc() interface with zspool/zbud. [sergey.senozhatsky@gmail.com: pass GFP flags to zs_malloc() instead of using a fixed mask] Link: http://lkml.kernel.org/r/20160429150942.GA637@swordfish Link: http://lkml.kernel.org/r/20160429150942.GA637@swordfish Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21zsmalloc: remove unused pool param in obj_freeMinchan Kim1-4/+3
Let's remove unused pool param in obj_free Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21zsmalloc: reorder function parametersMinchan Kim1-24/+26
Clean up function parameter ordering to order higher data structure first. Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21zsmalloc: clean up many BUG_ONMinchan Kim1-27/+15
There are many BUG_ON in zsmalloc.c which is not recommened so change them as alternatives. Normal rule is as follows: 1. avoid BUG_ON if possible. Instead, use VM_BUG_ON or VM_BUG_ON_PAGE 2. use VM_BUG_ON_PAGE if we need to see struct page's fields 3. use those assertion in primitive functions so higher functions can rely on the assertion in the primitive function. 4. Don't use assertion if following instruction can trigger Oops Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21zsmalloc: use first_page rather than pageMinchan Kim1-30/+32
Clean up function parameter "struct page". Many functions of zsmalloc expect that page paramter is "first_page" so use "first_page" rather than "page" for code readability. Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm/kasan: add API to check memory regionsAndrey Ryabinin1-0/+12
Memory access coded in an assembly won't be seen by KASAN as a compiler can instrument only C code. Add kasan_check_[read,write]() API which is going to be used to check a certain memory range. Link: http://lkml.kernel.org/r/1462538722-1574-3-git-send-email-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm/kasan: print name of mem[set,cpy,move]() caller in reportAndrey Ryabinin1-30/+34
When bogus memory access happens in mem[set,cpy,move]() it's usually caller's fault. So don't blame mem[set,cpy,move]() in bug report, blame the caller instead. Before: BUG: KASAN: out-of-bounds access in memset+0x23/0x40 at <address> After: BUG: KASAN: out-of-bounds access in <memset_caller> at <address> Link: http://lkml.kernel.org/r/1462538722-1574-2-git-send-email-aryabinin@virtuozzo.com Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Acked-by: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, kasan: don't call kasan_krealloc() from ksize().Alexander Potapenko2-3/+4
Instead of calling kasan_krealloc(), which replaces the memory allocation stack ID (if stack depot is used), just unpoison the whole memory chunk. Signed-off-by: Alexander Potapenko <glider@google.com> Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Konstantin Serebryany <kcc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm: kasan: initial memory quarantine implementationAlexander Potapenko9-13/+376
Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. When the object is freed, its state changes from KASAN_STATE_ALLOC to KASAN_STATE_QUARANTINE. The object is poisoned and put into quarantine instead of being returned to the allocator, therefore every subsequent access to that object triggers a KASAN error, and the error handler is able to say where the object has been allocated and deallocated. When it's time for the object to leave quarantine, its state becomes KASAN_STATE_FREE and it's returned to the allocator. From now on the allocator may reuse it for another allocation. Before that happens, it's still possible to detect a use-after free on that object (it retains the allocation/deallocation stacks). When the allocator reuses this object, the shadow is unpoisoned and old allocation/deallocation stacks are wiped. Therefore a use of this object, even an incorrect one, won't trigger ASan warning. Without the quarantine, it's not guaranteed that the objects aren't reused immediately, that's why the probability of catching a use-after-free is lower than with quarantine in place. Quarantine isolates freed objects in a separate queue. The objects are returned to the allocator later, which helps to detect use-after-free errors. Freed objects are first added to per-cpu quarantine queues. When a cache is destroyed or memory shrinking is requested, the objects are moved into the global quarantine queue. Whenever a kmalloc call allows memory reclaiming, the oldest objects are popped out of the global queue until the total size of objects in quarantine is less than 3/4 of the maximum quarantine size (which is a fraction of installed physical memory). As long as an object remains in the quarantine, KASAN is able to report accesses to it, so the chance of reporting a use-after-free is increased. Once the object leaves quarantine, the allocator may reuse it, in which case the object is unpoisoned and KASAN can't detect incorrect accesses to it. Right now quarantine support is only enabled in SLAB allocator. Unification of KASAN features in SLAB and SLUB will be done later. This patch is based on the "mm: kasan: quarantine" patch originally prepared by Dmitry Chernenkov. A number of improvements have been suggested by Andrey Ryabinin. [glider@google.com: v9] Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Andrey Konovalov <adech.fo@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Konstantin Serebryany <kcc@google.com> Cc: Dmitry Chernenkov <dmitryc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, migrate: increment fail count on ENOMEMDavid Rientjes1-0/+1
If page migration fails due to -ENOMEM, nr_failed should still be incremented for proper statistics. This was encountered recently when all page migration vmstats showed 0, and inferred that migrate_pages() was never called, although in reality the first page migration failed because compaction_alloc() failed to find a migration target. This patch increments nr_failed so the vmstat is properly accounted on ENOMEM. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1605191510230.32658@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm/compaction.c: fix zoneindex in kcompactd()Chen Feng1-2/+2
While testing the kcompactd in my platform 3G MEM only DMA ZONE. I found the kcompactd never wakeup. It seems the zoneindex has already minus 1 before. So the traverse here should be <=. It fixes a regression where kswapd could previously compact, but kcompactd not. Not a crash fix though. [akpm@linux-foundation.org: fix kcompactd_do_work() as well, per Hugh] Link: http://lkml.kernel.org/r/1463659121-84124-1-git-send-email-puck.chen@hisilicon.com Fixes: accf62422b3a ("mm, kswapd: replace kswapd compaction with waking up kcompactd") Signed-off-by: Chen Feng <puck.chen@hisilicon.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Zhuangluan Su <suzhuangluan@hisilicon.com> Cc: Yiping Xu <xuyiping@hisilicon.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, thp: khugepaged should scan when sleep value is writtenDavid Rientjes1-3/+16
If a large value is written to scan_sleep_millisecs, for example, that period must lapse before khugepaged will wake up for periodic collapsing. If this value is tuned to 1 day, for example, and then re-tuned to its default 10s, khugepaged will still wait for a day before scanning again. This patch causes khugepaged to wakeup immediately when the value is changed and then sleep until that value is rewritten or the new value lapses. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1605181453200.4786@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21MM: increase safety margin provided by PF_LESS_THROTTLENeilBrown1-2/+2
When nfsd is exporting a filesystem over NFS which is then NFS-mounted on the local machine there is a risk of deadlock. This happens when there are lots of dirty pages in the NFS filesystem and they cause NFSD to be throttled, either in throttle_vm_writeout() or in balance_dirty_pages(). To avoid this problem the PF_LESS_THROTTLE flag is set for NFSD threads and it provides a 25% increase to the limits that affect NFSD. Any process writing to an NFS filesystem will be throttled well before the number of dirty NFS pages reaches the limit imposed on NFSD, so NFSD will not deadlock on pages that it needs to write out. At least it shouldn't. All processes are allowed a small excess margin to avoid performing too many calculations: ratelimit_pages. ratelimit_pages is set so that if a thread on every CPU uses the entire margin, the total will only go 3% over the limit, and this is much less than the 25% bonus that PF_LESS_THROTTLE provides, so this margin shouldn't be a problem. But it is. The "total memory" that these 3% and 25% are calculated against are not really total memory but are "global_dirtyable_memory()" which doesn't include anonymous memory, just free memory and page-cache memory. The "ratelimit_pages" number is based on whatever the global_dirtyable_memory was on the last CPU hot-plug, which might not be what you expect, but is probably close to the total freeable memory. The throttle threshold uses the global_dirtable_memory at the moment when the throttling happens, which could be much less than at the last CPU hotplug. So if lots of anonymous memory has been allocated, thus pushing out lots of page-cache pages, then NFSD might end up being throttled due to dirty NFS pages because the "25%" bonus it gets is calculated against a rather small amount of dirtyable memory, while the "3%" margin that other processes are allowed to dirty without penalty is calculated against a much larger number. To remove this possibility of deadlock we need to make sure that the margin granted to PF_LESS_THROTTLE exceeds that rate-limit margin. Simply adding ratelimit_pages isn't enough as that should be multiplied by the number of cpus. So add "global_wb_domain.dirty_limit / 32" as that more accurately reflects the current total over-shoot margin. This ensures that the number of dirty NFS pages never gets so high that nfsd will be throttled waiting for them to be written. Link: http://lkml.kernel.org/r/87futgowwv.fsf@notabene.neil.brown.name Signed-off-by: NeilBrown <neilb@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm: check_new_page_bad() directly returns in __PG_HWPOISON caseNaoya Horiguchi1-6/+3
Currently we check page->flags twice for "HWPoisoned" case of check_new_page_bad(), which can cause a race with unpoisoning. This race unnecessarily taints kernel with "BUG: Bad page state". check_new_page_bad() is the only caller of bad_page() which is interested in __PG_HWPOISON, so let's move the hwpoison related code in bad_page() to it. Link: http://lkml.kernel.org/r/20160518100949.GA17299@hori1.linux.bs1.fc.nec.co.jp Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, kasan: fix to call kasan_free_pages() after poisoning pageseokhoon.yoon1-1/+1
When CONFIG_PAGE_POISONING and CONFIG_KASAN is enabled, free_pages_prepare()'s codeflow is below. 1)kmemcheck_free_shadow() 2)kasan_free_pages() - set shadow byte of page is freed 3)kernel_poison_pages() 3.1) check access to page is valid or not using kasan ---> error occur, kasan think it is invalid access 3.2) poison page 4)kernel_map_pages() So kasan_free_pages() should be called after poisoning the page. Link: http://lkml.kernel.org/r/1463220405-7455-1-git-send-email-iamyooon@gmail.com Signed-off-by: seokhoon.yoon <iamyooon@gmail.com> Cc: Andrey Ryabinin <a.ryabinin@samsung.com> Cc: Laura Abbott <labbott@fedoraproject.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm: disable fault around on emulated access bit architectureMinchan Kim1-0/+8
fault_around aims to reduce minor faults of file-backed pages via speculative ahead pte mapping and relying on readahead logic. However, on non-HW access bit architecture the benefit is highly limited because they should emulate the young bit with minor faults for reclaim's page aging algorithm. IOW, we cannot reduce minor faults on those architectures. I did quick a test on my ARM machine. 512M file mmap sequential every word read on eSATA drive 4 times. stddev is stable. = fault_around 4096 = elapsed time(usec): 6747645 = fault_around 65536 = elapsed time(usec): 6709263 0.5% gain. Even when I tested it with eMMC there is no gain because I guess with slow storage the major fault is the dominant factor. Also, fault_around has the side effect of shrinking slab more aggressively and causes higher vmpressure, so if such speculation fails, it can evict slab more which can result in page I/O (e.g., inode cache). In the end, it would make void any benefit of fault_around. So let's make the default "disabled" on those architectures. Link: http://lkml.kernel.org/r/20160518014229.GB21538@bbox Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Kirill A. Shutemov <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm: make faultaround produce old ptesKirill A. Shutemov2-6/+19
Currently, faultaround code produces young pte. This can screw up vmscan behaviour[1], as it makes vmscan think that these pages are hot and not push them out on first round. During sparse file access faultaround gets more pages mapped and all of them are young. Under memory pressure, this makes vmscan swap out anon pages instead, or to drop other page cache pages which otherwise stay resident. Modify faultaround to produce old ptes, so they can easily be reclaimed under memory pressure. This can to some extend defeat the purpose of faultaround on machines without hardware accessed bit as it will not help us with reducing the number of minor page faults. We may want to disable faultaround on such machines altogether, but that's subject for separate patchset. Minchan: "I tested 512M mmap sequential word read test on non-HW access bit system (i.e., ARM) and confirmed it doesn't increase minor fault any more. old: 4096 fault_around minor fault: 131291 elapsed time: 6747645 usec new: 65536 fault_around minor fault: 131291 elapsed time: 6709263 usec 0.56% benefit" [1] https://lkml.kernel.org/r/1460992636-711-1-git-send-email-vinmenon@codeaurora.org Link: http://lkml.kernel.org/r/1463488366-47723-1-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Minchan Kim <minchan@kernel.org> Tested-by: Minchan Kim <minchan@kernel.org> Acked-by: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vinayak Menon <vinmenon@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm: use phys_addr_t for reserve_bootmem_region() argumentsStefan Bader1-1/+1
Since commit 92923ca3aace ("mm: meminit: only set page reserved in the memblock region") the reserved bit is set on reserved memblock regions. However start and end address are passed as unsigned long. This is only 32bit on i386, so it can end up marking the wrong pages reserved for ranges at 4GB and above. This was observed on a 32bit Xen dom0 which was booted with initial memory set to a value below 4G but allowing to balloon in memory (dom0_mem=1024M for example). This would define a reserved bootmem region for the additional memory (for example on a 8GB system there was a reverved region covering the 4GB-8GB range). But since the addresses were passed on as unsigned long, this was actually marking all pages from 0 to 4GB as reserved. Fixes: 92923ca3aacef63 ("mm: meminit: only set page reserved in the memblock region") Link: http://lkml.kernel.org/r/1463491221-10573-1-git-send-email-stefan.bader@canonical.com Signed-off-by: Stefan Bader <stefan.bader@canonical.com> Cc: <stable@vger.kernel.org> [4.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm/memblock.c: remove unnecessary always-true comparisonRichard Leitner1-1/+1
Comparing an u64 variable to >= 0 returns always true and can therefore be removed. This issue was detected using the -Wtype-limits gcc flag. This patch fixes following type-limits warning: mm/memblock.c: In function `__next_reserved_mem_region': mm/memblock.c:843:11: warning: comparison of unsigned expression >= 0 is always true [-Wtype-limits] if (*idx >= 0 && *idx < type->cnt) { Link: http://lkml.kernel.org/r/20160510103625.3a7f8f32@g0hl1n.net Signed-off-by: Richard Leitner <dev@g0hl1n.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21z3fold: the 3-fold allocator for compressed pagesVitaly Wool3-1/+804
This patch introduces z3fold, a special purpose allocator for storing compressed pages. It is designed to store up to three compressed pages per physical page. It is a ZBUD derivative which allows for higher compression ratio keeping the simplicity and determinism of its predecessor. This patch comes as a follow-up to the discussions at the Embedded Linux Conference in San-Diego related to the talk [1]. The outcome of these discussions was that it would be good to have a compressed page allocator as stable and deterministic as zbud with with higher compression ratio. To keep the determinism and simplicity, z3fold, just like zbud, always stores an integral number of compressed pages per page, but it can store up to 3 pages unlike zbud which can store at most 2. Therefore the compression ratio goes to around 2.6x while zbud's one is around 1.7x. The patch is based on the latest linux.git tree. This version has been updated after testing on various simulators (e.g. ARM Versatile Express, MIPS Malta, x86_64/Haswell) and basing on comments from Dan Streetman [3]. [1] https://openiotelc2016.sched.org/event/6DAC/swapping-and-embedded-compression-relieves-the-pressure-vitaly-wool-softprise-consulting-ou [2] https://lkml.org/lkml/2016/4/21/799 [3] https://lkml.org/lkml/2016/5/4/852 Link: http://lkml.kernel.org/r/20160509151753.ec3f9fda3c9898d31ff52a32@gmail.com Signed-off-by: Vitaly Wool <vitalywool@gmail.com> Cc: Seth Jennings <sjenning@redhat.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm: thp: split_huge_pmd_address() comment improvementAndrea Arcangeli1-2/+4
Comment is partly wrong, this improves it by including the case of split_huge_pmd_address() called by try_to_unmap_one if TTU_SPLIT_HUGE_PMD is set. Link: http://lkml.kernel.org/r/1462547040-1737-4-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Alex Williamson <alex.williamson@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21vmstat: get rid of the ugly cpu_stat_off variableChristoph Lameter1-41/+10
The cpu_stat_off variable is unecessary since we can check if a workqueue request is pending otherwise. Removal of cpu_stat_off makes it pretty easy for the vmstat shepherd to ensure that the proper things happen. Removing the state also removes all races related to it. Should a workqueue not be scheduled as needed for vmstat_update then the shepherd will notice and schedule it as needed. Should a workqueue be unecessarily scheduled then the vmstat updater will disable it. [akpm@linux-foundation.org: fix indentation, per Michal] Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1605061306460.17934@east.gentwo.org Signed-off-by: Christoph Lameter <cl@linux.com> Cc: Tejun Heo <htejun@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21memcg: fix stale mem_cgroup_force_empty() commentGreg Thelen1-2/+1
Commit f61c42a7d911 ("memcg: remove tasks/children test from mem_cgroup_force_empty()") removed memory reparenting from the function. Fix the function's comment. Link: http://lkml.kernel.org/r/1462569810-54496-1-git-send-email-gthelen@google.com Signed-off-by: Greg Thelen <gthelen@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm: use existing helper to convert "on"/"off" to booleanMinfei Huang2-15/+2
It's more convenient to use existing function helper to convert string "on/off" to boolean. Link: http://lkml.kernel.org/r/1461908824-16129-1-git-send-email-mnghuan@gmail.com Signed-off-by: Minfei Huang <mnghuan@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm/swap.c: put activate_page_pvecs and other pagevecs togetherMing Li1-2/+3
Put the activate_page_pvecs definition next to those of the other pagevecs, for clarity. Signed-off-by: Ming Li <mingli199x@qq.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, hugetlb_cgroup: round limit_in_bytes down to hugepage sizeDavid Rientjes1-9/+26
The page_counter rounds limits down to page size values. This makes sense, except in the case of hugetlb_cgroup where it's not possible to charge partial hugepages. If the hugetlb_cgroup margin is less than the hugepage size being charged, it will fail as expected. Round the hugetlb_cgroup limit down to hugepage size, since it is the effective limit of the cgroup. For consistency, round down PAGE_COUNTER_MAX as well when a hugetlb_cgroup is created: this prevents error reports when a user cannot restore the value to the kernel default. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Nikolay Borisov <kernel@kyup.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm: enable RLIMIT_DATA by default with workaround for valgrindKonstantin Khlebnikov1-4/+8
Since commit 84638335900f ("mm: rework virtual memory accounting") RLIMIT_DATA limits both brk() and private mmap() but this's disabled by default because of incompatibility with older versions of valgrind. Valgrind always set limit to zero and fails if RLIMIT_DATA is enabled. Fortunately it changes only rlim_cur and keeps rlim_max for reverting limit back when needed. This patch checks current usage also against rlim_max if rlim_cur is zero. This is safe because task anyway can increase rlim_cur up to rlim_max. Size of brk is still checked against rlim_cur, so this part is completely compatible - zero rlim_cur forbids brk() but allows private mmap(). Link: http://lkml.kernel.org/r/56A28613.5070104@de.ibm.com Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm: fix incorrect pfn passed to untrack_pfn() in remap_pfn_range()Yongji Xie1-2/+3
We use generic hooks in remap_pfn_range() to help archs to track pfnmap regions. The code is something like: int remap_pfn_range() { ... track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); ... pfn -= addr >> PAGE_SHIFT; ... untrack_pfn(vma, pfn, PAGE_ALIGN(size)); ... } Here we can easily find the pfn is changed but not recovered before untrack_pfn() is called. That's incorrect. There are no known runtime effects - this is from inspection. Signed-off-by: Yongji Xie <xyjxie@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <matthew.r.wilcox@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: David Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm/vmalloc: keep a separate lazy-free listChris Wilson1-20/+19
When mixing lots of vmallocs and set_memory_*() (which calls vm_unmap_aliases()) I encountered situations where the performance degraded severely due to the walking of the entire vmap_area list each invocation. One simple improvement is to add the lazily freed vmap_area to a separate lockless free list, such that we then avoid having to walk the full list on each purge. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Roman Pen <r.peniaev@gmail.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Roman Pen <r.peniaev@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Shawn Lin <shawn.lin@rock-chips.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm/memblock.c: move memblock_{add,reserve}_region into memblock_{add,reserve}Alexander Kuleshov1-22/+6
memblock_add_region() and memblock_reserve_region() do nothing specific before the call of memblock_add_range(), only print debug output. We can do the same in memblock_add() and memblock_reserve() since both memblock_add_region() and memblock_reserve_region() are not used by anybody outside of memblock.c and memblock_{add,reserve}() have the same set of flags and nids. Since memblock_add_region() and memblock_reserve_region() will be inlined, there will not be functional changes, but will improve code readability a little. Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Pekka Enberg <penberg@kernel.org> Cc: Tony Luck <tony.luck@intel.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm/memory-failure.c: replace "MCE" with "Memory failure"Chen Yucong1-32/+40
HWPoison was specific to some particular x86 platforms. And it is often seen as high level machine check handler. And therefore, 'MCE' is used for the format prefix of printk(). However, 'PowerNV' has also used HWPoison for handling memory errors[1], so 'MCE' is no longer suitable to memory_failure.c. Additionally, 'MCE' and 'Memory failure' have different context. The former belongs to exception context and the latter belongs to process context. Furthermore, HWPoison can also be used for off-lining those sub-health pages that do not trigger any machine check exception. This patch aims to replace 'MCE' with a more appropriate prefix. [1] commit 75eb3d9b60c2 ("powerpc/powernv: Get FSP memory errors and plumb into memory poison infrastructure.") Signed-off-by: Chen Yucong <slaoub@gmail.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm: thp: simplify the implementation of mk_huge_pmd()Yang Shi1-4/+1
The implementation of mk_huge_pmd looks verbose, it could be just simplified to one line code. Signed-off-by: Yang Shi <yang.shi@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm,oom: speed up select_bad_process() loopTetsuo Handa1-11/+6
Since commit 3a5dda7a17cf ("oom: prevent unnecessary oom kills or kernel panics"), select_bad_process() is using for_each_process_thread(). Since oom_unkillable_task() scans all threads in the caller's thread group and oom_task_origin() scans signal_struct of the caller's thread group, we don't need to call oom_unkillable_task() and oom_task_origin() on each thread. Also, since !mm test will be done later at oom_badness(), we don't need to do !mm test on each thread. Therefore, we only need to do TIF_MEMDIE test on each thread. Although the original code was correct it was quite inefficient because each thread group was scanned num_threads times which can be a lot especially with processes with many threads. Even though the OOM is extremely cold path it is always good to be as effective as possible when we are inside rcu_read_lock() - aka unpreemptible context. If we track number of TIF_MEMDIE threads inside signal_struct, we don't need to do TIF_MEMDIE test on each thread. This will allow select_bad_process() to use for_each_process(). This patch adds a counter to signal_struct for tracking how many TIF_MEMDIE threads are in a given thread group, and check it at oom_scan_process_thread() so that select_bad_process() can use for_each_process() rather than for_each_process_thread(). [mhocko@suse.com: do not blow the signal_struct size] Link: http://lkml.kernel.org/r/20160520075035.GF19172@dhcp22.suse.cz Link: http://lkml.kernel.org/r/201605182230.IDC73435.MVSOHLFOQFOJtF@I-love.SAKURA.ne.jp Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, oom_reaper: do not mmput synchronously from the oom reaper contextMichal Hocko1-2/+6
Tetsuo has properly noted that mmput slow path might get blocked waiting for another party (e.g. exit_aio waits for an IO). If that happens the oom_reaper would be put out of the way and will not be able to process next oom victim. We should strive for making this context as reliable and independent on other subsystems as much as possible. Introduce mmput_async which will perform the slow path from an async (WQ) context. This will delay the operation but that shouldn't be a problem because the oom_reaper has reclaimed the victim's address space for most cases as much as possible and the remaining context shouldn't bind too much memory anymore. The only exception is when mmap_sem trylock has failed which shouldn't happen too often. The issue is only theoretical but not impossible. Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, oom_reaper: hide oom reaped tasks from OOM killer more carefullyMichal Hocko1-2/+7
Commit 36324a990cf5 ("oom: clear TIF_MEMDIE after oom_reaper managed to unmap the address space") not only clears TIF_MEMDIE for oom reaped task but also set OOM_SCORE_ADJ_MIN for the target task to hide it from the oom killer. This works in simple cases but it is not sufficient for (unlikely) cases where the mm is shared between independent processes (as they do not share signal struct). If the mm had only small amount of memory which could be reaped then another task sharing the mm could be selected and that wouldn't help to move out from the oom situation. Introduce MMF_OOM_REAPED mm flag which is checked in oom_badness (same as OOM_SCORE_ADJ_MIN) and task is skipped if the flag is set. Set the flag after __oom_reap_task is done with a task. This will force the select_bad_process() to ignore all already oom reaped tasks as well as no such task is sacrificed for its parent. Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, oom: protect !costly allocations some more for !CONFIG_COMPACTIONMichal Hocko1-0/+18
Joonsoo has reported that he is able to trigger OOM for !costly high order requests (heavy fork() workload close the OOM) with the new oom detection rework. This is because we rely only on should_reclaim_retry when the compaction is disabled and it only checks watermarks for the requested order and so we might trigger OOM when there is a lot of free memory. It is not very clear what are the usual workloads when the compaction is disabled. Relying on high order allocations heavily without any mechanism to create those orders except for unbound amount of reclaim is certainly not a good idea. To prevent from potential regressions let's help this configuration some. We have to sacrifice the determinsm though because there simply is none here possible. should_compact_retry implementation for !CONFIG_COMPACTION, which was empty so far, will do watermark check for order-0 on all eligible zones. This will cause retrying until either the reclaim cannot make any further progress or all the zones are depleted even for order-0 pages. This means that the number of retries is basically unbounded for !costly orders but that was the case before the rework as well so this shouldn't regress. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/1463051677-29418-3-git-send-email-mhocko@kernel.org Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, oom, compaction: prevent from should_compact_retry looping for ever for ↵Michal Hocko2-13/+52
costly orders "mm: consider compaction feedback also for costly allocation" has removed the upper bound for the reclaim/compaction retries based on the number of reclaimed pages for costly orders. While this is desirable the patch did miss a mis interaction between reclaim, compaction and the retry logic. The direct reclaim tries to get zones over min watermark while compaction backs off and returns COMPACT_SKIPPED when all zones are below low watermark + 1<<order gap. If we are getting really close to OOM then __compaction_suitable can keep returning COMPACT_SKIPPED a high order request (e.g. hugetlb order-9) while the reclaim is not able to release enough pages to get us over low watermark. The reclaim is still able to make some progress (usually trashing over few remaining pages) so we are not able to break out from the loop. I have seen this happening with the same test described in "mm: consider compaction feedback also for costly allocation" on a swapless system. The original problem got resolved by "vmscan: consider classzone_idx in compaction_ready" but it shows how things might go wrong when we approach the oom event horizont. The reason why compaction requires being over low rather than min watermark is not clear to me. This check was there essentially since 56de7263fcf3 ("mm: compaction: direct compact when a high-order allocation fails"). It is clearly an implementation detail though and we shouldn't pull it into the generic retry logic while we should be able to cope with such eventuality. The only place in should_compact_retry where we retry without any upper bound is for compaction_withdrawn() case. Introduce compaction_zonelist_suitable function which checks the given zonelist and returns true only if there is at least one zone which would would unblock __compaction_suitable if more memory got reclaimed. In this implementation it checks __compaction_suitable with NR_FREE_PAGES plus part of the reclaimable memory as the target for the watermark check. The reclaimable memory is reduced linearly by the allocation order. The idea is that we do not want to reclaim all the remaining memory for a single allocation request just unblock __compaction_suitable which doesn't guarantee we will make a further progress. The new helper is then used if compaction_withdrawn() feedback was provided so we do not retry if there is no outlook for a further progress. !costly requests shouldn't be affected much - e.g. order-2 pages would require to have at least 64kB on the reclaimable LRUs while order-9 would need at least 32M which should be enough to not lock up. [vbabka@suse.cz: fix classzone_idx vs. high_zoneidx usage in compaction_zonelist_suitable] [akpm@linux-foundation.org: fix it for Mel's mm-page_alloc-remove-field-from-alloc_context.patch] Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm: consider compaction feedback also for costly allocationMichal Hocko1-31/+32
PAGE_ALLOC_COSTLY_ORDER retry logic is mostly handled inside should_reclaim_retry currently where we decide to not retry after at least order worth of pages were reclaimed or the watermark check for at least one zone would succeed after reclaiming all pages if the reclaim hasn't made any progress. Compaction feedback is mostly ignored and we just try to make sure that the compaction did at least something before giving up. The first condition was added by a41f24ea9fd6 ("page allocator: smarter retry of costly-order allocations) and it assumed that lumpy reclaim could have created a page of the sufficient order. Lumpy reclaim, has been removed quite some time ago so the assumption doesn't hold anymore. Remove the check for the number of reclaimed pages and rely on the compaction feedback solely. should_reclaim_retry now only makes sure that we keep retrying reclaim for high order pages only if they are hidden by watermaks so order-0 reclaim makes really sense. should_compact_retry now keeps retrying even for the costly allocations. The number of retries is reduced wrt. !costly requests because they are less important and harder to grant and so their pressure shouldn't cause contention for other requests or cause an over reclaim. We also do not reset no_progress_loops for costly request to make sure we do not keep reclaiming too agressively. This has been tested by running a process which fragments memory: - compact memory - mmap large portion of the memory (1920M on 2GRAM machine with 2G of swapspace) - MADV_DONTNEED single page in PAGE_SIZE*((1UL<<MAX_ORDER)-1) steps until certain amount of memory is freed (250M in my test) and reduce the step to (step / 2) + 1 after reaching the end of the mapping - then run a script which populates the page cache 2G (MemTotal) from /dev/zero to a new file And then tries to allocate nr_hugepages=$(awk '/MemAvailable/{printf "%d\n", $2/(2*1024)}' /proc/meminfo) huge pages. root@test1:~# echo 1 > /proc/sys/vm/overcommit_memory;echo 1 > /proc/sys/vm/compact_memory; ./fragment-mem-and-run /root/alloc_hugepages.sh 1920M 250M Node 0, zone DMA 31 28 31 10 2 0 2 1 2 3 1 Node 0, zone DMA32 437 319 171 50 28 25 20 16 16 14 437 * This is the /proc/buddyinfo after the compaction Done fragmenting. size=2013265920 freed=262144000 Node 0, zone DMA 165 48 3 1 2 0 2 2 2 2 0 Node 0, zone DMA32 35109 14575 185 51 41 12 6 0 0 0 0 * /proc/buddyinfo after memory got fragmented Executing "/root/alloc_hugepages.sh" Eating some pagecache 508623+0 records in 508623+0 records out 2083319808 bytes (2.1 GB) copied, 11.7292 s, 178 MB/s Node 0, zone DMA 3 5 3 1 2 0 2 2 2 2 0 Node 0, zone DMA32 111 344 153 20 24 10 3 0 0 0 0 * /proc/buddyinfo after page cache got eaten Trying to allocate 129 129 * 129 hugepages requested and all of them granted. Node 0, zone DMA 3 5 3 1 2 0 2 2 2 2 0 Node 0, zone DMA32 127 97 30 99 11 6 2 1 4 0 0 * /proc/buddyinfo after hugetlb allocation. 10 runs will behave as follows: Trying to allocate 130 130 -- Trying to allocate 129 129 -- Trying to allocate 128 128 -- Trying to allocate 129 129 -- Trying to allocate 128 128 -- Trying to allocate 129 129 -- Trying to allocate 132 132 -- Trying to allocate 129 129 -- Trying to allocate 128 128 -- Trying to allocate 129 129 So basically 100% success for all 10 attempts. Without the patch numbers looked much worse: Trying to allocate 128 12 -- Trying to allocate 129 14 -- Trying to allocate 129 7 -- Trying to allocate 129 16 -- Trying to allocate 129 30 -- Trying to allocate 129 38 -- Trying to allocate 129 19 -- Trying to allocate 129 37 -- Trying to allocate 129 28 -- Trying to allocate 129 37 Just for completness the base kernel without oom detection rework looks as follows: Trying to allocate 127 30 -- Trying to allocate 129 12 -- Trying to allocate 129 52 -- Trying to allocate 128 32 -- Trying to allocate 129 12 -- Trying to allocate 129 10 -- Trying to allocate 129 32 -- Trying to allocate 128 14 -- Trying to allocate 128 16 -- Trying to allocate 129 8 As we can see the success rate is much more volatile and smaller without this patch. So the patch not only makes the retry logic for costly requests more sensible the success rate is even higher. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, oom: protect !costly allocations some moreMichal Hocko1-10/+78
should_reclaim_retry will give up retries for higher order allocations if none of the eligible zones has any requested or higher order pages available even if we pass the watermak check for order-0. This is done because there is no guarantee that the reclaimable and currently free pages will form the required order. This can, however, lead to situations where the high-order request (e.g. order-2 required for the stack allocation during fork) will trigger OOM too early - e.g. after the first reclaim/compaction round. Such a system would have to be highly fragmented and there is no guarantee further reclaim/compaction attempts would help but at least make sure that the compaction was active before we go OOM and keep retrying even if should_reclaim_retry tells us to oom if - the last compaction round backed off or - we haven't completed at least MAX_COMPACT_RETRIES active compaction rounds. The first rule ensures that the very last attempt for compaction was not ignored while the second guarantees that the compaction has done some work. Multiple retries might be needed to prevent occasional pigggy backing of other contexts to steal the compacted pages before the current context manages to retry to allocate them. compaction_failed() is taken as a final word from the compaction that the retry doesn't make much sense. We have to be careful though because the first compaction round is MIGRATE_ASYNC which is rather weak as it ignores pages under writeback and gives up too easily in other situations. We therefore have to make sure that MIGRATE_SYNC_LIGHT mode has been used before we give up. With this logic in place we do not have to increase the migration mode unconditionally and rather do it only if the compaction failed for the weaker mode. A nice side effect is that the stronger migration mode is used only when really needed so this has a potential of smaller latencies in some cases. Please note that the compaction doesn't tell us much about how successful it was when returning compaction_made_progress so we just have to blindly trust that another retry is worthwhile and cap the number to something reasonable to guarantee a convergence. If the given number of successful retries is not sufficient for a reasonable workloads we should focus on the collected compaction tracepoints data and try to address the issue in the compaction code. If this is not feasible we can increase the retries limit. [mhocko@suse.com: fix warning] Link: http://lkml.kernel.org/r/20160512061636.GA4200@dhcp22.suse.cz Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm: throttle on IO only when there are too many dirty and writeback pagesMichal Hocko2-21/+40
wait_iff_congested has been used to throttle allocator before it retried another round of direct reclaim to allow the writeback to make some progress and prevent reclaim from looping over dirty/writeback pages without making any progress. We used to do congestion_wait before commit 0e093d99763e ("writeback: do not sleep on the congestion queue if there are no congested BDIs or if significant congestion is not being encountered in the current zone") but that led to undesirable stalls and sleeping for the full timeout even when the BDI wasn't congested. Hence wait_iff_congested was used instead. But it seems that even wait_iff_congested doesn't work as expected. We might have a small file LRU list with all pages dirty/writeback and yet the bdi is not congested so this is just a cond_resched in the end and can end up triggering pre mature OOM. This patch replaces the unconditional wait_iff_congested by congestion_wait which is executed only if we _know_ that the last round of direct reclaim didn't make any progress and dirty+writeback pages are more than a half of the reclaimable pages on the zone which might be usable for our target allocation. This shouldn't reintroduce stalls fixed by 0e093d99763e because congestion_wait is called only when we are getting hopeless when sleeping is a better choice than OOM with many pages under IO. We have to preserve logic introduced by commit 373ccbe59270 ("mm, vmstat: allow WQ concurrency to discover memory reclaim doesn't make any progress") into the __alloc_pages_slowpath now that wait_iff_congested is not used anymore. As the only remaining user of wait_iff_congested is shrink_inactive_list we can remove the WQ specific short sleep from wait_iff_congested because the sleep is needed to be done only once in the allocation retry cycle. [mhocko@suse.com: high_zoneidx->ac_classzone_idx to evaluate memory reserves properly] Link: http://lkml.kernel.org/r/1463051677-29418-2-git-send-email-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, oom: rework oom detectionMichal Hocko2-29/+96
__alloc_pages_slowpath has traditionally relied on the direct reclaim and did_some_progress as an indicator that it makes sense to retry allocation rather than declaring OOM. shrink_zones had to rely on zone_reclaimable if shrink_zone didn't make any progress to prevent from a premature OOM killer invocation - the LRU might be full of dirty or writeback pages and direct reclaim cannot clean those up. zone_reclaimable allows to rescan the reclaimable lists several times and restart if a page is freed. This is really subtle behavior and it might lead to a livelock when a single freed page keeps allocator looping but the current task will not be able to allocate that single page. OOM killer would be more appropriate than looping without any progress for unbounded amount of time. This patch changes OOM detection logic and pulls it out from shrink_zone which is too low to be appropriate for any high level decisions such as OOM which is per zonelist property. It is __alloc_pages_slowpath which knows how many attempts have been done and what was the progress so far therefore it is more appropriate to implement this logic. The new heuristic is implemented in should_reclaim_retry helper called from __alloc_pages_slowpath. It tries to be more deterministic and easier to follow. It builds on an assumption that retrying makes sense only if the currently reclaimable memory + free pages would allow the current allocation request to succeed (as per __zone_watermark_ok) at least for one zone in the usable zonelist. This alone wouldn't be sufficient, though, because the writeback might get stuck and reclaimable pages might be pinned for a really long time or even depend on the current allocation context. Therefore there is a backoff mechanism implemented which reduces the reclaim target after each reclaim round without any progress. This means that we should eventually converge to only NR_FREE_PAGES as the target and fail on the wmark check and proceed to OOM. The backoff is simple and linear with 1/16 of the reclaimable pages for each round without any progress. We are optimistic and reset counter for successful reclaim rounds. Costly high order pages mostly preserve their semantic and those without __GFP_REPEAT fail right away while those which have the flag set will back off after the amount of reclaimable pages reaches equivalent of the requested order. The only difference is that if there was no progress during the reclaim we rely on zone watermark check. This is more logical thing to do than previous 1<<order attempts which were a result of zone_reclaimable faking the progress. [vdavydov@virtuozzo.com: check classzone_idx for shrink_zone] [hannes@cmpxchg.org: separate the heuristic into should_reclaim_retry] [rientjes@google.com: use zone_page_state_snapshot for NR_FREE_PAGES] [rientjes@google.com: shrink_zones doesn't need to return anything] Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, compaction: simplify __alloc_pages_direct_compact feedback interfaceMichal Hocko1-36/+31
__alloc_pages_direct_compact communicates potential back off by two variables: - deferred_compaction tells that the compaction returned COMPACT_DEFERRED - contended_compaction is set when there is a contention on zone->lock resp. zone->lru_lock locks __alloc_pages_slowpath then backs of for THP allocation requests to prevent from long stalls. This is rather messy and it would be much cleaner to return a single compact result value and hide all the nasty details into __alloc_pages_direct_compact. This patch shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, compaction: distinguish between full and partial COMPACT_COMPLETEMichal Hocko2-3/+12
COMPACT_COMPLETE now means that compaction and free scanner met. This is not very useful information if somebody just wants to use this feedback and make any decisions based on that. The current caller might be a poor guy who just happened to scan tiny portion of the zone and that could be the reason no suitable pages were compacted. Make sure we distinguish the full and partial zone walks. Consumers should treat COMPACT_PARTIAL_SKIPPED as a potential success and be optimistic in retrying. The existing users of COMPACT_COMPLETE are conservatively changed to use COMPACT_PARTIAL_SKIPPED as well but some of them should be probably reconsidered and only defer the compaction only for COMPACT_COMPLETE with the new semantic. This patch shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, compaction: distinguish COMPACT_DEFERRED from COMPACT_SKIPPEDMichal Hocko1-3/+5
try_to_compact_pages() can currently return COMPACT_SKIPPED even when the compaction is defered for some zone just because zone DMA is skipped in 99% of cases due to watermark checks. This makes COMPACT_DEFERRED basically unusable for the page allocator as a feedback mechanism. Make sure we distinguish those two states properly and switch their ordering in the enum. This would mean that the COMPACT_SKIPPED will be returned only when all eligible zones are skipped. As a result COMPACT_DEFERRED handling for THP in __alloc_pages_slowpath will be more precise and we would bail out rather than reclaim. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, compaction: cover all compaction mode in compact_zoneMichal Hocko1-8/+5
The compiler is complaining after "mm, compaction: change COMPACT_ constants into enum" mm/compaction.c: In function `compact_zone': mm/compaction.c:1350:2: warning: enumeration value `COMPACT_DEFERRED' not handled in switch [-Wswitch] switch (ret) { ^ mm/compaction.c:1350:2: warning: enumeration value `COMPACT_COMPLETE' not handled in switch [-Wswitch] mm/compaction.c:1350:2: warning: enumeration value `COMPACT_NO_SUITABLE_PAGE' not handled in switch [-Wswitch] mm/compaction.c:1350:2: warning: enumeration value `COMPACT_NOT_SUITABLE_ZONE' not handled in switch [-Wswitch] mm/compaction.c:1350:2: warning: enumeration value `COMPACT_CONTENDED' not handled in switch [-Wswitch] compaction_suitable is allowed to return only COMPACT_PARTIAL, COMPACT_SKIPPED and COMPACT_CONTINUE so other cases are simply impossible. Put a VM_BUG_ON to catch an impossible return value. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21mm, compaction: change COMPACT_ constants into enumMichal Hocko2-14/+15
Compaction code is doing weird dances between COMPACT_FOO -> int -> unsigned long But there doesn't seem to be any reason for that. All functions which return/use one of those constants are not expecting any other value so it really makes sense to define an enum for them and make it clear that no other values are expected. This is a pure cleanup and shouldn't introduce any functional changes. Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21vmscan: consider classzone_idx in compaction_readyMichal Hocko1-4/+4
Motivation: As pointed out by Linus [2][3] relying on zone_reclaimable as a way to communicate the reclaim progress is rater dubious. I tend to agree, not only it is really obscure, it is not hard to imagine cases where a single page freed in the loop keeps all the reclaimers looping without getting any progress because their gfp_mask wouldn't allow to get that page anyway (e.g. single GFP_ATOMIC alloc and free loop). This is rather rare so it doesn't happen in the practice but the current logic which we have is rather obscure and hard to follow a also non-deterministic. This is an attempt to make the OOM detection more deterministic and easier to follow because each reclaimer basically tracks its own progress which is implemented at the page allocator layer rather spread out between the allocator and the reclaim. The more on the implementation is described in the first patch. I have tested several different scenarios but it should be clear that testing OOM killer is quite hard to be representative. There is usually a tiny gap between almost OOM and full blown OOM which is often time sensitive. Anyway, I have tested the following 2 scenarios and I would appreciate if there are more to test. Testing environment: a virtual machine with 2G of RAM and 2CPUs without any swap to make the OOM more deterministic. 1) 2 writers (each doing dd with 4M blocks to an xfs partition with 1G file size, removes the files and starts over again) running in parallel for 10s to build up a lot of dirty pages when 100 parallel mem_eaters (anon private populated mmap which waits until it gets signal) with 80M each. This causes an OOM flood of course and I have compared both patched and unpatched kernels. The test is considered finished after there are no OOM conditions detected. This should tell us whether there are any excessive kills or some of them premature (e.g. due to dirty pages): I have performed two runs this time each after a fresh boot. * base kernel $ grep "Out of memory:" base-oom-run1.log | wc -l 78 $ grep "Out of memory:" base-oom-run2.log | wc -l 78 $ grep "Kill process" base-oom-run1.log | tail -n1 [ 91.391203] Out of memory: Kill process 3061 (mem_eater) score 39 or sacrifice child $ grep "Kill process" base-oom-run2.log | tail -n1 [ 82.141919] Out of memory: Kill process 3086 (mem_eater) score 39 or sacrifice child $ grep "DMA32 free:" base-oom-run1.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk min: 5376.00 max: 6776.00 avg: 5530.75 std: 166.50 nr: 61 $ grep "DMA32 free:" base-oom-run2.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk min: 5416.00 max: 5608.00 avg: 5514.15 std: 42.94 nr: 52 $ grep "DMA32.*all_unreclaimable? no" base-oom-run1.log | wc -l 1 $ grep "DMA32.*all_unreclaimable? no" base-oom-run2.log | wc -l 3 * patched kernel $ grep "Out of memory:" patched-oom-run1.log | wc -l 78 miso@tiehlicka /mnt/share/devel/miso/kvm $ grep "Out of memory:" patched-oom-run2.log | wc -l 77 e grep "Kill process" patched-oom-run1.log | tail -n1 [ 497.317732] Out of memory: Kill process 3108 (mem_eater) score 39 or sacrifice child $ grep "Kill process" patched-oom-run2.log | tail -n1 [ 316.169920] Out of memory: Kill process 3093 (mem_eater) score 39 or sacrifice child $ grep "DMA32 free:" patched-oom-run1.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk min: 5420.00 max: 5808.00 avg: 5513.90 std: 60.45 nr: 78 $ grep "DMA32 free:" patched-oom-run2.log | sed 's@.*free:\([0-9]*\)kB.*@\1@' | calc_min_max.awk min: 5380.00 max: 6384.00 avg: 5520.94 std: 136.84 nr: 77 e grep "DMA32.*all_unreclaimable? no" patched-oom-run1.log | wc -l 2 $ grep "DMA32.*all_unreclaimable? no" patched-oom-run2.log | wc -l 3 The patched kernel run noticeably longer while invoking OOM killer same number of times. This means that the original implementation is much more aggressive and triggers the OOM killer sooner. free pages stats show that neither kernels went OOM too early most of the time, though. I guess the difference is in the backoff when retries without any progress do sleep for a while if there is memory under writeback or dirty which is highly likely considering the parallel IO. Both kernels have seen races where zone wasn't marked unreclaimable and we still hit the OOM killer. This is most likely a race where a task managed to exit between the last allocation attempt and the oom killer invocation. 2) 2 writers again with 10s of run and then 10 mem_eaters to consume as much memory as possible without triggering the OOM killer. This required a lot of tuning but I've considered 3 consecutive runs in three different boots without OOM as a success. * base kernel size=$(awk '/MemFree/{printf "%dK", ($2/10)-(16*1024)}' /proc/meminfo) * patched kernel size=$(awk '/MemFree/{printf "%dK", ($2/10)-(12*1024)}' /proc/meminfo) That means 40M more memory was usable without triggering OOM killer. The base kernel sometimes managed to handle the same as patched but it wasn't consistent and failed in at least on of the 3 runs. This seems like a minor improvement. I was testing also GPF_REPEAT costly requests (hughetlb) with fragmented memory and under memory pressure. The results are in patch 11 where the logic is implemented. In short I can see huge improvement there. I am certainly interested in other usecases as well as well as any feedback. Especially those which require higher order requests. This patch (of 14): While playing with the oom detection rework [1] I have noticed that my heavy order-9 (hugetlb) load close to OOM ended up in an endless loop where the reclaim hasn't made any progress but did_some_progress didn't reflect that and compaction_suitable was backing off because no zone is above low wmark + 1 << order. It turned out that this is in fact an old standing bug in compaction_ready which ignores the requested_highidx and did the watermark check for 0 classzone_idx. This succeeds for zone DMA most of the time as the zone is mostly unused because of lowmem protection. As a result costly high order allocatios always report a successfull progress even when there was none. This wasn't a problem so far because these allocations usually fail quite early or retry only few times with __GFP_REPEAT but this will change after later patch in this series so make sure to not lie about the progress and propagate requested_highidx down to compaction_ready and use it for both the watermak check and compaction_suitable to fix this issue. [1] http://lkml.kernel.org/r/1459855533-4600-1-git-send-email-mhocko@kernel.org [2] https://lkml.org/lkml/2015/10/12/808 [3] https://lkml.org/lkml/2015/10/13/597 Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>