summaryrefslogtreecommitdiff
path: root/mm/mmap.c
AgeCommit message (Collapse)AuthorFilesLines
2005-06-22[PATCH] mmap topdown fix for large stack limit, large allocationChris Wright1-0/+4
The topdown changes in 2.6.12-rc1 can cause large allocations with large stack limit to fail, despite there being space available. The mmap_base-len is only valid when len >= mmap_base. However, nothing in topdown allocator checks this. It's only (now) caught at higher level, which will cause allocation to simply fail. The following change restores the fallback to bottom-up path, which will allow large allocations with large stack limit to potentially still succeed. Signed-off-by: Chris Wright <chrisw@osdl.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-06-22[PATCH] Avoiding mmap fragmentationWolfgang Wander1-13/+40
Ingo recently introduced a great speedup for allocating new mmaps using the free_area_cache pointer which boosts the specweb SSL benchmark by 4-5% and causes huge performance increases in thread creation. The downside of this patch is that it does lead to fragmentation in the mmap-ed areas (visible via /proc/self/maps), such that some applications that work fine under 2.4 kernels quickly run out of memory on any 2.6 kernel. The problem is twofold: 1) the free_area_cache is used to continue a search for memory where the last search ended. Before the change new areas were always searched from the base address on. So now new small areas are cluttering holes of all sizes throughout the whole mmap-able region whereas before small holes tended to close holes near the base leaving holes far from the base large and available for larger requests. 2) the free_area_cache also is set to the location of the last munmap-ed area so in scenarios where we allocate e.g. five regions of 1K each, then free regions 4 2 3 in this order the next request for 1K will be placed in the position of the old region 3, whereas before we appended it to the still active region 1, placing it at the location of the old region 2. Before we had 1 free region of 2K, now we only get two free regions of 1K -> fragmentation. The patch addresses thes issues by introducing yet another cache descriptor cached_hole_size that contains the largest known hole size below the current free_area_cache. If a new request comes in the size is compared against the cached_hole_size and if the request can be filled with a hole below free_area_cache the search is started from the base instead. The results look promising: Whereas 2.6.12-rc4 fragments quickly and my (earlier posted) leakme.c test program terminates after 50000+ iterations with 96 distinct and fragmented maps in /proc/self/maps it performs nicely (as expected) with thread creation, Ingo's test_str02 with 20000 threads requires 0.7s system time. Taking out Ingo's patch (un-patch available per request) by basically deleting all mentions of free_area_cache from the kernel and starting the search for new memory always at the respective bases we observe: leakme terminates successfully with 11 distinctive hardly fragmented areas in /proc/self/maps but thread creating is gringdingly slow: 30+s(!) system time for Ingo's test_str02 with 20000 threads. Now - drumroll ;-) the appended patch works fine with leakme: it ends with only 7 distinct areas in /proc/self/maps and also thread creation seems sufficiently fast with 0.71s for 20000 threads. Signed-off-by: Wolfgang Wander <wwc@rentec.com> Credit-to: "Richard Purdie" <rpurdie@rpsys.net> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Acked-by: Ingo Molnar <mingo@elte.hu> (partly) Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-20Fix get_unmapped_area sanity testsLinus Torvalds1-28/+31
As noted by Chris Wright, we need to do the full range of tests regardless of whether MAP_FIXED is set or not, so re-organize get_unmapped_area() slightly to do the sanity checks unconditionally.
2005-05-19[PATCH] prevent NULL mmap in topdown modelLinus Torvalds1-2/+2
Prevent the topdown allocator from allocating mmap areas all the way down to address zero. We still allow a MAP_FIXED mapping of page 0 (needed for various things, ranging from Wine and DOSEMU to people who want to allow speculative loads off a NULL pointer). Tested by Chris Wright. Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01[PATCH] RLIMIT_MEMLOCK checking fixChris Wright1-4/+6
Always use page counts when doing RLIMIT_MEMLOCK checking to avoid possible overflow. Signed-off-by: Chris Wright <chrisw@osdl.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-05-01[PATCH] RLIMIT_AS checking fixakpm@osdl.org1-5/+19
Address bug #4508: there's potential for wraparound in the various places where we perform RLIMIT_AS checking. (I'm a bit worried about acct_stack_growth(). Are we sure that vma->vm_mm is always equal to current->mm? If not, then we're comparing some other process's total_vm with the calling process's rlimits). Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-20[PATCH] freepgt: remove FIRST_USER_ADDRESS hackHugh Dickins1-5/+0
Once all the MMU architectures define FIRST_USER_ADDRESS, remove hack from mmap.c which derived it from FIRST_USER_PGD_NR. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-20[PATCH] freepgt: free_pgtables from FIRST_USER_ADDRESSHugh Dickins1-3/+8
The patches to free_pgtables by vma left problems on any architectures which leave some user address page table entries unencapsulated by vma. Andi has fixed the 32-bit vDSO on x86_64 to use a vma. Now fix arm (and arm26), whose first PAGE_SIZE is reserved (perhaps) for machine vectors. Our calls to free_pgtables must not touch that area, and exit_mmap's BUG_ON(nr_ptes) must allow that arm's get_pgd_slow may (or may not) have allocated an extra page table, which its free_pgd_slow would free later. FIRST_USER_PGD_NR has misled me and others: until all the arches define FIRST_USER_ADDRESS instead, a hack in mmap.c to derive one from t'other. This patch fixes the bugs, the remaining patches just clean it up. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-20[PATCH] freepgt: mpnt to vma cleanupHugh Dickins1-18/+17
While dabbling here in mmap.c, clean up mysterious "mpnt"s to "vma"s. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-20[PATCH] freepgt: remove MM_VM_SIZE(mm)Hugh Dickins1-3/+3
There's only one usage of MM_VM_SIZE(mm) left, and it's a troublesome macro because mm doesn't contain the (32-bit emulation?) info needed. But it too is only needed because we ignore the end from the vma list. We could make flush_pgtables return that end, or unmap_vmas. Choose the latter, since it's a natural fit with unmap_mapping_range_vma needing to know its restart addr. This does make more than minimal change, but if unmap_vmas had returned the end before, this is how we'd have done it, rather than storing the break_addr in zap_details. unmap_vmas used to return count of vmas scanned, but that's just debug which hasn't been useful in a while; and if we want the map_count 0 on exit check back, it can easily come from the final remove_vm_struct loop. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-20[PATCH] freepgt: free_pgtables use vma listHugh Dickins1-81/+21
Recent woes with some arches needing their own pgd_addr_end macro; and 4-level clear_page_range regression since 2.6.10's clear_page_tables; and its long-standing well-known inefficiency in searching throughout the higher-level page tables for those few entries to clear and free: all can be blamed on ignoring the list of vmas when we free page tables. Replace exit_mmap's clear_page_range of the total user address space by free_pgtables operating on the mm's vma list; unmap_region use it in the same way, giving floor and ceiling beyond which it may not free tables. This brings lmbench fork/exec/sh numbers back to 2.6.10 (unless preempt is enabled, in which case latency fixes spoil unmap_vmas throughput). Beware: the do_mmap_pgoff driver failure case must now use unmap_region instead of zap_page_range, since a page table might have been allocated, and can only be freed while it is touched by some vma. Move free_pgtables from mmap.c to memory.c, where its lower levels are adapted from the clear_page_range levels. (Most of free_pgtables' old code was actually for a non-existent case, prev not properly set up, dating from before hch gave us split_vma.) Pass mmu_gather** in the public interfaces, since we might want to add latency lockdrops later; but no attempt to do so yet, going by vma should itself reduce latency. But what if is_hugepage_only_range? Those ia64 and ppc64 cases need careful examination: put that off until a later patch of the series. What of x86_64's 32bit vdso page __map_syscall32 maps outside any vma? And the range to sparc64's flush_tlb_pgtables? It's less clear to me now that we need to do more than is done here - every PMD_SIZE ever occupied will be flushed, do we really have to flush every PGDIR_SIZE ever partially occupied? A shame to complicate it unnecessarily. Special thanks to David Miller for time spent repairing my ceilings. Signed-off-by: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-04-17Linux-2.6.12-rc2v2.6.12-rc2Linus Torvalds1-0/+2082
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!