Age | Commit message (Collapse) | Author | Files | Lines |
|
The access to mlock_pvec is protected by disabling preemption via
get_cpu_var() or implicit by having preemption disabled by the caller
(in mlock_page_drain() case). This breaks on PREEMPT_RT since
folio_lruvec_lock_irq() acquires a sleeping lock in this section.
Create struct mlock_pvec which consits of the local_lock_t and the
pagevec. Acquire the local_lock() before accessing the per-CPU pagevec.
Replace mlock_page_drain() with a _local() version which is invoked on
the local CPU and acquires the local_lock_t and a _remote() version
which uses the pagevec from a remote CPU which offline.
Link: https://lkml.kernel.org/r/YjizWi9IY0mpvIfb@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull shm ucounts fix from Eric Biederman:
"The introduction of a new failure mode when the code was converted to
ucounts resulted in user_shm_lock misbehaving.
The change simplifies the code to make the code easier to follow and
removes the known misbehaviors"
* tag 'ucount-rlimit-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
mm/mlock: fix two bugs in user_shm_lock()
|
|
user_shm_lock forgets to set allowed to 0 when get_ucounts fails. So the
later user_shm_unlock might do the extra dec_rlimit_ucounts. Also in the
RLIM_INFINITY case, user_shm_lock will success regardless of the value of
memlock where memblock == LONG_MAX && !capable(CAP_IPC_LOCK) should fail.
Fix all of these by changing the code to leave lock_limit at ULONG_MAX aka
RLIM_INFINITY, leave "allowed" initialized to 0 and remove the special case
of RLIM_INFINITY as nothing can be greater than ULONG_MAX.
Credit goes to Eric W. Biederman for proposing simplifying the code and
thus catching the later bug.
Fixes: d7c9e99aee48 ("Reimplement RLIMIT_MEMLOCK on top of ucounts")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: stable@vger.kernel.org
v1: https://lkml.kernel.org/r/20220310132417.41189-1-linmiaohe@huawei.com
v2: https://lkml.kernel.org/r/20220314064039.62972-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20220322080918.59861-1-linmiaohe@huawei.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
Pull folio updates from Matthew Wilcox:
- Rewrite how munlock works to massively reduce the contention on
i_mmap_rwsem (Hugh Dickins):
https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/
- Sort out the page refcount mess for ZONE_DEVICE pages (Christoph
Hellwig):
https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/
- Convert GUP to use folios and make pincount available for order-1
pages. (Matthew Wilcox)
- Convert a few more truncation functions to use folios (Matthew
Wilcox)
- Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew
Wilcox)
- Convert rmap_walk to use folios (Matthew Wilcox)
- Convert most of shrink_page_list() to use a folio (Matthew Wilcox)
- Add support for creating large folios in readahead (Matthew Wilcox)
* tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits)
mm/damon: minor cleanup for damon_pa_young
selftests/vm/transhuge-stress: Support file-backed PMD folios
mm/filemap: Support VM_HUGEPAGE for file mappings
mm/readahead: Switch to page_cache_ra_order
mm/readahead: Align file mappings for non-DAX
mm/readahead: Add large folio readahead
mm: Support arbitrary THP sizes
mm: Make large folios depend on THP
mm: Fix READ_ONLY_THP warning
mm/filemap: Allow large folios to be added to the page cache
mm: Turn can_split_huge_page() into can_split_folio()
mm/vmscan: Convert pageout() to take a folio
mm/vmscan: Turn page_check_references() into folio_check_references()
mm/vmscan: Account large folios correctly
mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios
mm/vmscan: Free non-shmem folios without splitting them
mm/rmap: Constify the rmap_walk_control argument
mm/rmap: Convert rmap_walk() to take a folio
mm: Turn page_anon_vma() into folio_anon_vma()
mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read()
...
|
|
user_shm_lock forgets to set allowed to 0 when get_ucounts fails. So
the later user_shm_unlock might do the extra dec_rlimit_ucounts. Fix
this by resetting allowed to 0.
Link: https://lkml.kernel.org/r/20220310132417.41189-1-linmiaohe@huawei.com
Fixes: d7c9e99aee48 ("Reimplement RLIMIT_MEMLOCK on top of ucounts")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Herbert van den Bergh <herbert.van.den.bergh@oracle.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Convert mlock_page() into mlock_folio() and convert the callers. Keep
mlock_vma_page() as a wrapper.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Avoid mixing strings and their anon_vma_name referenced pointers by
using struct anon_vma_name whenever possible. This simplifies the code
and allows easier sharing of anon_vma_name structures when they
represent the same name.
[surenb@google.com: fix comment]
Link: https://lkml.kernel.org/r/20220223153613.835563-1-surenb@google.com
Link: https://lkml.kernel.org/r/20220224231834.1481408-1-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Colin Cross <ccross@google.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Alexey Gladkov <legion@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Chris Hyser <chris.hyser@oracle.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Xiaofeng Cao <caoxiaofeng@yulong.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A weakness of the page->mlock_count approach is the need for lruvec lock
while holding page table lock. That is not an overhead we would allow on
normal pages, but I think acceptable just for pages in an mlocked area.
But let's try to amortize the extra cost by gathering on per-cpu pagevec
before acquiring the lruvec lock.
I have an unverified conjecture that the mlock pagevec might work out
well for delaying the mlock processing of new file pages until they have
got off lru_cache_add()'s pagevec and on to LRU.
The initialization of page->mlock_count is subject to races and awkward:
0 or !!PageMlocked or 1? Was it wrong even in the implementation before
this commit, which just widens the window? I haven't gone back to think
it through. Maybe someone can point out a better way to initialize it.
Bringing lru_cache_add_inactive_or_unevictable()'s mlock initialization
into mm/mlock.c has helped: mlock_new_page(), using the mlock pagevec,
rather than lru_cache_add()'s pagevec.
Experimented with various orderings: the right thing seems to be for
mlock_page() and mlock_new_page() to TestSetPageMlocked before adding to
pagevec, but munlock_page() to leave TestClearPageMlocked to the later
pagevec processing.
Dropped the VM_BUG_ON_PAGE(PageTail)s this time around: they have made
their point, and the thp_nr_page()s already contain a VM_BUG_ON_PGFLAGS()
for that.
This still leaves acquiring lruvec locks under page table lock each time
the pagevec fills (or a THP is added): which I suppose is rather silly,
since they sit on pagevec waiting to be processed long after page table
lock has been dropped; but I'm disinclined to uglify the calling sequence
until some load shows an actual problem with it (nothing wrong with
taking lruvec lock under page table lock, just "nicer" to do it less).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Fill in missing pieces: reimplementation of munlock_vma_pages_range(),
required to lower the mlock_counts when munlocking without munmapping;
and its complement, implementation of mlock_vma_pages_range(), required
to raise the mlock_counts on pages already there when a range is mlocked.
Combine them into just the one function mlock_vma_pages_range(), using
walk_page_range() to run mlock_pte_range(). This approach fixes the
"Very slow unlockall()" of unpopulated PROT_NONE areas, reported in
https://lore.kernel.org/linux-mm/70885d37-62b7-748b-29df-9e94f3291736@gmail.com/
Munlock clears VM_LOCKED at the start, under exclusive mmap_lock; but if
a racing truncate or holepunch (depending on i_mmap_rwsem) gets to the
pte first, it will not try to munlock the page: leaving release_pages()
to correct it when the last reference to the page is gone - that's okay,
a page is not evictable anyway while it is held by an extra reference.
Mlock sets VM_LOCKED at the start, under exclusive mmap_lock; but if
a racing remove_migration_pte() or try_to_unmap_one() (depending on
i_mmap_rwsem) gets to the pte first, it will try to mlock the page,
then mlock_pte_range() mlock it a second time. This is harder to
reproduce, but a more serious race because it could leave the page
unevictable indefinitely though the area is munlocked afterwards.
Guard against it by setting the (inappropriate) VM_IO flag,
and modifying mlock_vma_page() to decline such vmas.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Previous patches have been preparatory: now implement page->mlock_count.
The ordering of the "Unevictable LRU" is of no significance, and there is
no point holding unevictable pages on a list: place page->mlock_count to
overlay page->lru.prev (since page->lru.next is overlaid by compound_head,
which needs to be even so as not to satisfy PageTail - though 2 could be
added instead of 1 for each mlock, if that's ever an improvement).
But it's only safe to rely on or modify page->mlock_count while lruvec
lock is held and page is on unevictable "LRU" - we can save lots of edits
by continuing to pretend that there's an imaginary LRU here (there is an
unevictable count which still needs to be maintained, but not a list).
The mlock_count technique suffers from an unreliability much like with
page_mlock(): while someone else has the page off LRU, not much can
be done. As before, err on the safe side (behave as if mlock_count 0),
and let try_to_unlock_one() move the page to unevictable if reclaim finds
out later on - a few misplaced pages don't matter, what we want to avoid
is imbalancing reclaim by flooding evictable lists with unevictable pages.
I am not a fan of "if (!isolate_lru_page(page)) putback_lru_page(page);":
if we have taken lruvec lock to get the page off its present list, then
we save everyone trouble (and however many extra atomic ops) by putting
it on its destination list immediately.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Placing munlock_vma_page() at the end of page_remove_rmap() shifts most
of the munlocking to clear_page_mlock(), since PageMlocked is typically
still set when mapcount has fallen to 0. That is not what we want: we
want /proc/vmstat's unevictable_pgs_cleared to remain as a useful check
on the integrity of of the mlock/munlock protocol - small numbers are
not surprising, but big numbers mean the protocol is not working.
That could be easily fixed by placing munlock_vma_page() at the start of
page_remove_rmap(); but later in the series we shall want to batch the
munlocking, and that too would tend to leave PageMlocked still set at
the point when it is checked.
So delete clear_page_mlock() now: leave it instead to release_pages()
(and __page_cache_release()) to do this backstop clearing of Mlocked,
when page refcount has fallen to 0. If a pinned page occasionally gets
counted as Mlocked and Unevictable until it is unpinned, that's okay.
A slightly regrettable side-effect of this change is that, since
release_pages() and __page_cache_release() may be called at interrupt
time, those places which update NR_MLOCK with interrupts enabled
had better use mod_zone_page_state() than __mod_zone_page_state()
(but holding the lruvec lock always has interrupts disabled).
This change, forcing Mlocked off when refcount 0 instead of earlier
when mapcount 0, is not fundamental: it can be reversed if performance
or something else is found to suffer; but this is the easiest way to
separate the stats - let's not complicate that without good reason.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Add vma argument to mlock_vma_page() and munlock_vma_page(), make them
inline functions which check (vma->vm_flags & VM_LOCKED) before calling
mlock_page() and munlock_page() in mm/mlock.c.
Add bool compound to mlock_vma_page() and munlock_vma_page(): this is
because we have understandable difficulty in accounting pte maps of THPs,
and if passed a PageHead page, mlock_page() and munlock_page() cannot
tell whether it's a pmd map to be counted or a pte map to be ignored.
Add vma arg to page_add_file_rmap() and page_remove_rmap(), like the
others, and use that to call mlock_vma_page() at the end of the page
adds, and munlock_vma_page() at the end of page_remove_rmap() (end or
beginning? unimportant, but end was easier for assertions in testing).
No page lock is required (although almost all adds happen to hold it):
delete the "Serialize with page migration" BUG_ON(!PageLocked(page))s.
Certainly page lock did serialize with page migration, but I'm having
difficulty explaining why that was ever important.
Mlock accounting on THPs has been hard to define, differed between anon
and file, involved PageDoubleMap in some places and not others, required
clear_page_mlock() at some points. Keep it simple now: just count the
pmds and ignore the ptes, there is no reason for ptes to undo pmd mlocks.
page_add_new_anon_rmap() callers unchanged: they have long been calling
lru_cache_add_inactive_or_unevictable(), which does its own VM_LOCKED
handling (it also checks for not VM_SPECIAL: I think that's overcautious,
and inconsistent with other checks, that mmap_region() already prevents
VM_LOCKED on VM_SPECIAL; but haven't quite convinced myself to change it).
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
munlock_vma_pages_range() will still be required, when munlocking but
not munmapping a set of pages; but when unmapping a pte, the mlock count
will be maintained in much the same way as it will be maintained when
mapping in the pte. Which removes the need for munlock_vma_pages_all()
on mlocked vmas when munmapping or exiting: eliminating the catastrophic
contention on i_mmap_rwsem, and the need for page lock on the pages.
There is still a need to update locked_vm accounting according to the
munmapped vmas when munmapping: do that in detach_vmas_to_be_unmapped().
exit_mmap() does not need locked_vm updates, so delete unlock_range().
And wasn't I the one who forbade the OOM reaper to attack mlocked vmas,
because of the uncertainty in blocking on all those page locks?
No fear of that now, so permit the OOM reaper on mlocked vmas.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
We have recommended some applications to mlock their userspace, but that
turns out to be counter-productive: when many processes mlock the same
file, contention on rmap's i_mmap_rwsem can become intolerable at exit: it
is needed for write, to remove any vma mapping that file from rmap's tree;
but hogged for read by those with mlocks calling page_mlock() (formerly
known as try_to_munlock()) on *each* page mapped from the file (the
purpose being to find out whether another process has the page mlocked,
so therefore it should not be unmlocked yet).
Several optimizations have been made in the past: one is to skip
page_mlock() when mapcount tells that nothing else has this page
mapped; but that doesn't help at all when others do have it mapped.
This time around, I initially intended to add a preliminary search
of the rmap tree for overlapping VM_LOCKED ranges; but that gets
messy with locking order, when in doubt whether a page is actually
present; and risks adding even more contention on the i_mmap_rwsem.
A solution would be much easier, if only there were space in struct page
for an mlock_count... but actually, most of the time, there is space for
it - an mlocked page spends most of its life on an unevictable LRU, but
since 3.18 removed the scan_unevictable_pages sysctl, that "LRU" has
been redundant. Let's try to reuse its page->lru.
But leave that until a later patch: in this patch, clear the ground by
removing page_mlock(), and all the infrastructure that has gathered
around it - which mostly hinders understanding, and will make reviewing
new additions harder. Don't mind those old comments about THPs, they
date from before 4.5's refcounting rework: splitting is not a risk here.
Just keep a minimal version of munlock_vma_page(), as reminder of what it
should attend to (in particular, the odd way PGSTRANDED is counted out of
PGMUNLOCKED), and likewise a stub for munlock_vma_pages_range(). Move
unchanged __mlock_posix_error_return() out of the way, down to above its
caller: this series then makes no further change after mlock_fixup().
After this and each following commit, the kernel builds, boots and runs;
but with deficiencies which may show up in testing of mlock and munlock.
The system calls succeed or fail as before, and mlock remains effective
in preventing page reclaim; but meminfo's Unevictable and Mlocked amounts
may be shown too low after mlock, grow, then stay too high after munlock:
with previously mlocked pages remaining unevictable for too long, until
finally unmapped and freed and counts corrected. Normal service will be
resumed in "mm/munlock: mlock_pte_range() when mlocking or munlocking".
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
In many userspace applications, and especially in VM based applications
like Android uses heavily, there are multiple different allocators in
use. At a minimum there is libc malloc and the stack, and in many cases
there are libc malloc, the stack, direct syscalls to mmap anonymous
memory, and multiple VM heaps (one for small objects, one for big
objects, etc.). Each of these layers usually has its own tools to
inspect its usage; malloc by compiling a debug version, the VM through
heap inspection tools, and for direct syscalls there is usually no way
to track them.
On Android we heavily use a set of tools that use an extended version of
the logic covered in Documentation/vm/pagemap.txt to walk all pages
mapped in userspace and slice their usage by process, shared (COW) vs.
unique mappings, backing, etc. This can account for real physical
memory usage even in cases like fork without exec (which Android uses
heavily to share as many private COW pages as possible between
processes), Kernel SamePage Merging, and clean zero pages. It produces
a measurement of the pages that only exist in that process (USS, for
unique), and a measurement of the physical memory usage of that process
with the cost of shared pages being evenly split between processes that
share them (PSS).
If all anonymous memory is indistinguishable then figuring out the real
physical memory usage (PSS) of each heap requires either a pagemap
walking tool that can understand the heap debugging of every layer, or
for every layer's heap debugging tools to implement the pagemap walking
logic, in which case it is hard to get a consistent view of memory
across the whole system.
Tracking the information in userspace leads to all sorts of problems.
It either needs to be stored inside the process, which means every
process has to have an API to export its current heap information upon
request, or it has to be stored externally in a filesystem that somebody
needs to clean up on crashes. It needs to be readable while the process
is still running, so it has to have some sort of synchronization with
every layer of userspace. Efficiently tracking the ranges requires
reimplementing something like the kernel vma trees, and linking to it
from every layer of userspace. It requires more memory, more syscalls,
more runtime cost, and more complexity to separately track regions that
the kernel is already tracking.
This patch adds a field to /proc/pid/maps and /proc/pid/smaps to show a
userspace-provided name for anonymous vmas. The names of named
anonymous vmas are shown in /proc/pid/maps and /proc/pid/smaps as
[anon:<name>].
Userspace can set the name for a region of memory by calling
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, start, len, (unsigned long)name)
Setting the name to NULL clears it. The name length limit is 80 bytes
including NUL-terminator and is checked to contain only printable ascii
characters (including space), except '[',']','\','$' and '`'.
Ascii strings are being used to have a descriptive identifiers for vmas,
which can be understood by the users reading /proc/pid/maps or
/proc/pid/smaps. Names can be standardized for a given system and they
can include some variable parts such as the name of the allocator or a
library, tid of the thread using it, etc.
The name is stored in a pointer in the shared union in vm_area_struct
that points to a null terminated string. Anonymous vmas with the same
name (equivalent strings) and are otherwise mergeable will be merged.
The name pointers are not shared between vmas even if they contain the
same name. The name pointer is stored in a union with fields that are
only used on file-backed mappings, so it does not increase memory usage.
CONFIG_ANON_VMA_NAME kernel configuration is introduced to enable this
feature. It keeps the feature disabled by default to prevent any
additional memory overhead and to avoid confusing procfs parsers on
systems which are not ready to support named anonymous vmas.
The patch is based on the original patch developed by Colin Cross, more
specifically on its latest version [1] posted upstream by Sumit Semwal.
It used a userspace pointer to store vma names. In that design, name
pointers could be shared between vmas. However during the last
upstreaming attempt, Kees Cook raised concerns [2] about this approach
and suggested to copy the name into kernel memory space, perform
validity checks [3] and store as a string referenced from
vm_area_struct.
One big concern is about fork() performance which would need to strdup
anonymous vma names. Dave Hansen suggested experimenting with
worst-case scenario of forking a process with 64k vmas having longest
possible names [4]. I ran this experiment on an ARM64 Android device
and recorded a worst-case regression of almost 40% when forking such a
process.
This regression is addressed in the followup patch which replaces the
pointer to a name with a refcounted structure that allows sharing the
name pointer between vmas of the same name. Instead of duplicating the
string during fork() or when splitting a vma it increments the refcount.
[1] https://lore.kernel.org/linux-mm/20200901161459.11772-4-sumit.semwal@linaro.org/
[2] https://lore.kernel.org/linux-mm/202009031031.D32EF57ED@keescook/
[3] https://lore.kernel.org/linux-mm/202009031022.3834F692@keescook/
[4] https://lore.kernel.org/linux-mm/5d0358ab-8c47-2f5f-8e43-23b89d6a8e95@intel.com/
Changes for prctl(2) manual page (in the options section):
PR_SET_VMA
Sets an attribute specified in arg2 for virtual memory areas
starting from the address specified in arg3 and spanning the
size specified in arg4. arg5 specifies the value of the attribute
to be set. Note that assigning an attribute to a virtual memory
area might prevent it from being merged with adjacent virtual
memory areas due to the difference in that attribute's value.
Currently, arg2 must be one of:
PR_SET_VMA_ANON_NAME
Set a name for anonymous virtual memory areas. arg5 should
be a pointer to a null-terminated string containing the
name. The name length including null byte cannot exceed
80 bytes. If arg5 is NULL, the name of the appropriate
anonymous virtual memory areas will be reset. The name
can contain only printable ascii characters (including
space), except '[',']','\','$' and '`'.
This feature is available only if the kernel is built with
the CONFIG_ANON_VMA_NAME option enabled.
[surenb@google.com: docs: proc.rst: /proc/PID/maps: fix malformed table]
Link: https://lkml.kernel.org/r/20211123185928.2513763-1-surenb@google.com
[surenb: rebased over v5.15-rc6, replaced userpointer with a kernel copy,
added input sanitization and CONFIG_ANON_VMA_NAME config. The bulk of the
work here was done by Colin Cross, therefore, with his permission, keeping
him as the author]
Link: https://lkml.kernel.org/r/20211019215511.3771969-2-surenb@google.com
Signed-off-by: Colin Cross <ccross@google.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jan Glauber <jan.glauber@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rob Landley <rob@landley.net>
Cc: "Serge E. Hallyn" <serge.hallyn@ubuntu.com>
Cc: Shaohua Li <shli@fusionio.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
These are the folio equivalents of relock_page_lruvec_irq() and
folio_lruvec_relock_irqsave(). Also convert page_matches_lruvec()
to folio_matches_lruvec().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
|
|
Introduce "memfd_secret" system call with the ability to create memory
areas visible only in the context of the owning process and not mapped not
only to other processes but in the kernel page tables as well.
The secretmem feature is off by default and the user must explicitly
enable it at the boot time.
Once secretmem is enabled, the user will be able to create a file
descriptor using the memfd_secret() system call. The memory areas created
by mmap() calls from this file descriptor will be unmapped from the kernel
direct map and they will be only mapped in the page table of the processes
that have access to the file descriptor.
Secretmem is designed to provide the following protections:
* Enhanced protection (in conjunction with all the other in-kernel
attack prevention systems) against ROP attacks. Seceretmem makes
"simple" ROP insufficient to perform exfiltration, which increases the
required complexity of the attack. Along with other protections like
the kernel stack size limit and address space layout randomization which
make finding gadgets is really hard, absence of any in-kernel primitive
for accessing secret memory means the one gadget ROP attack can't work.
Since the only way to access secret memory is to reconstruct the missing
mapping entry, the attacker has to recover the physical page and insert
a PTE pointing to it in the kernel and then retrieve the contents. That
takes at least three gadgets which is a level of difficulty beyond most
standard attacks.
* Prevent cross-process secret userspace memory exposures. Once the
secret memory is allocated, the user can't accidentally pass it into the
kernel to be transmitted somewhere. The secreremem pages cannot be
accessed via the direct map and they are disallowed in GUP.
* Harden against exploited kernel flaws. In order to access secretmem,
a kernel-side attack would need to either walk the page tables and
create new ones, or spawn a new privileged uiserspace process to perform
secrets exfiltration using ptrace.
The file descriptor based memory has several advantages over the
"traditional" mm interfaces, such as mlock(), mprotect(), madvise(). File
descriptor approach allows explicit and controlled sharing of the memory
areas, it allows to seal the operations. Besides, file descriptor based
memory paves the way for VMMs to remove the secret memory range from the
userspace hipervisor process, for instance QEMU. Andy Lutomirski says:
"Getting fd-backed memory into a guest will take some possibly major
work in the kernel, but getting vma-backed memory into a guest without
mapping it in the host user address space seems much, much worse."
memfd_secret() is made a dedicated system call rather than an extension to
memfd_create() because it's purpose is to allow the user to create more
secure memory mappings rather than to simply allow file based access to
the memory. Nowadays a new system call cost is negligible while it is way
simpler for userspace to deal with a clear-cut system calls than with a
multiplexer or an overloaded syscall. Moreover, the initial
implementation of memfd_secret() is completely distinct from
memfd_create() so there is no much sense in overloading memfd_create() to
begin with. If there will be a need for code sharing between these
implementation it can be easily achieved without a need to adjust user
visible APIs.
The secret memory remains accessible in the process context using uaccess
primitives, but it is not exposed to the kernel otherwise; secret memory
areas are removed from the direct map and functions in the
follow_page()/get_user_page() family will refuse to return a page that
belongs to the secret memory area.
Once there will be a use case that will require exposing secretmem to the
kernel it will be an opt-in request in the system call flags so that user
would have to decide what data can be exposed to the kernel.
Removing of the pages from the direct map may cause its fragmentation on
architectures that use large pages to map the physical memory which
affects the system performance. However, the original Kconfig text for
CONFIG_DIRECT_GBPAGES said that gigabyte pages in the direct map "... can
improve the kernel's performance a tiny bit ..." (commit 00d1c5e05736
("x86: add gbpages switches")) and the recent report [1] showed that "...
although 1G mappings are a good default choice, there is no compelling
evidence that it must be the only choice". Hence, it is sufficient to
have secretmem disabled by default with the ability of a system
administrator to enable it at boot time.
Pages in the secretmem regions are unevictable and unmovable to avoid
accidental exposure of the sensitive data via swap or during page
migration.
Since the secretmem mappings are locked in memory they cannot exceed
RLIMIT_MEMLOCK. Since these mappings are already locked independently
from mlock(), an attempt to mlock()/munlock() secretmem range would fail
and mlockall()/munlockall() will ignore secretmem mappings.
However, unlike mlock()ed memory, secretmem currently behaves more like
long-term GUP: secretmem mappings are unmovable mappings directly consumed
by user space. With default limits, there is no excessive use of
secretmem and it poses no real problem in combination with
ZONE_MOVABLE/CMA, but in the future this should be addressed to allow
balanced use of large amounts of secretmem along with ZONE_MOVABLE/CMA.
A page that was a part of the secret memory area is cleared when it is
freed to ensure the data is not exposed to the next user of that page.
The following example demonstrates creation of a secret mapping (error
handling is omitted):
fd = memfd_secret(0);
ftruncate(fd, MAP_SIZE);
ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);
[1] https://lore.kernel.org/linux-mm/213b4567-46ce-f116-9cdf-bbd0c884eb3c@linux.intel.com/
[akpm@linux-foundation.org: suppress Kconfig whine]
Link: https://lkml.kernel.org/r/20210518072034.31572-5-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Hagen Paul Pfeifer <hagen@jauu.net>
Acked-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Elena Reshetova <elena.reshetova@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Palmer Dabbelt <palmerdabbelt@google.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tycho Andersen <tycho@tycho.ws>
Cc: Will Deacon <will@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Merge more updates from Andrew Morton:
"190 patches.
Subsystems affected by this patch series: mm (hugetlb, userfaultfd,
vmscan, kconfig, proc, z3fold, zbud, ras, mempolicy, memblock,
migration, thp, nommu, kconfig, madvise, memory-hotplug, zswap,
zsmalloc, zram, cleanups, kfence, and hmm), procfs, sysctl, misc,
core-kernel, lib, lz4, checkpatch, init, kprobes, nilfs2, hfs,
signals, exec, kcov, selftests, compress/decompress, and ipc"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits)
ipc/util.c: use binary search for max_idx
ipc/sem.c: use READ_ONCE()/WRITE_ONCE() for use_global_lock
ipc: use kmalloc for msg_queue and shmid_kernel
ipc sem: use kvmalloc for sem_undo allocation
lib/decompressors: remove set but not used variabled 'level'
selftests/vm/pkeys: exercise x86 XSAVE init state
selftests/vm/pkeys: refill shadow register after implicit kernel write
selftests/vm/pkeys: handle negative sys_pkey_alloc() return code
selftests/vm/pkeys: fix alloc_random_pkey() to make it really, really random
kcov: add __no_sanitize_coverage to fix noinstr for all architectures
exec: remove checks in __register_bimfmt()
x86: signal: don't do sas_ss_reset() until we are certain that sigframe won't be abandoned
hfsplus: report create_date to kstat.btime
hfsplus: remove unnecessary oom message
nilfs2: remove redundant continue statement in a while-loop
kprobes: remove duplicated strong free_insn_page in x86 and s390
init: print out unknown kernel parameters
checkpatch: do not complain about positive return values starting with EPOLL
checkpatch: improve the indented label test
checkpatch: scripts/spdxcheck.py now requires python3
...
|
|
The behaviour of try_to_unmap_one() is difficult to follow because it
performs different operations based on a fairly large set of flags used in
different combinations.
TTU_MUNLOCK is one such flag. However it is exclusively used by
try_to_munlock() which specifies no other flags. Therefore rather than
overload try_to_unmap_one() with unrelated behaviour split this out into
it's own function and remove the flag.
Link: https://lkml.kernel.org/r/20210616105937.23201-4-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace rlimit handling update from Eric Biederman:
"This is the work mainly by Alexey Gladkov to limit rlimits to the
rlimits of the user that created a user namespace, and to allow users
to have stricter limits on the resources created within a user
namespace."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
cred: add missing return error code when set_cred_ucounts() failed
ucounts: Silence warning in dec_rlimit_ucounts
ucounts: Set ucount_max to the largest positive value the type can hold
kselftests: Add test to check for rlimit changes in different user namespaces
Reimplement RLIMIT_MEMLOCK on top of ucounts
Reimplement RLIMIT_SIGPENDING on top of ucounts
Reimplement RLIMIT_MSGQUEUE on top of ucounts
Reimplement RLIMIT_NPROC on top of ucounts
Use atomic_t for ucounts reference counting
Add a reference to ucounts for each cred
Increase size of ucounts to atomic_long_t
|
|
Various coding style tweaks to various files under mm/
[daizhiyuan@phytium.com.cn: mm/swapfile: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614223624-16055-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/sparse: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614227288-19363-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/vmscan: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614227649-19853-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/compaction: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614228218-20770-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/oom_kill: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614228360-21168-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/shmem: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614228504-21491-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/page_alloc: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614228613-21754-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/filemap: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1614228936-22337-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/mlock: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1613956588-2453-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/frontswap: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1613962668-15045-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/vmalloc: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1613963379-15988-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/memory_hotplug: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1613971784-24878-1-git-send-email-daizhiyuan@phytium.com.cn
[daizhiyuan@phytium.com.cn: mm/mempolicy: minor coding style tweaks]
Link: https://lkml.kernel.org/r/1613972228-25501-1-git-send-email-daizhiyuan@phytium.com.cn
Link: https://lkml.kernel.org/r/1614222374-13805-1-git-send-email-daizhiyuan@phytium.com.cn
Signed-off-by: Zhiyuan Dai <daizhiyuan@phytium.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The rlimit counter is tied to uid in the user_namespace. This allows
rlimit values to be specified in userns even if they are already
globally exceeded by the user. However, the value of the previous
user_namespaces cannot be exceeded.
Changelog
v11:
* Fix issue found by lkp robot.
v8:
* Fix issues found by lkp-tests project.
v7:
* Keep only ucounts for RLIMIT_MEMLOCK checks instead of struct cred.
v6:
* Fix bug in hugetlb_file_setup() detected by trinity.
Reported-by: kernel test robot <oliver.sang@intel.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/970d50c70c71bfd4496e0e8d2a0a32feebebb350.1619094428.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
There will be no vma satisfies addr < vm_end when find_vma() returns NULL.
Thus it's meaningless to traverse the vma list below because we can't
find any vma to count mlocked pages. Stop counting mlocked pages in this
case to save some vma list traversal cycles.
Link: https://lkml.kernel.org/r/20210204110705.17586-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The parameter is redundant in the sense that it can be potentially
extracted from the "struct page" parameter by page_lru(). We need to
make sure that existing PageActive() or PageUnevictable() remains
until the function returns. A few places don't conform, and simple
reordering fixes them.
This patch may have left page_off_lru() seemingly odd, and we'll take
care of it in the next patch.
Link: https://lore.kernel.org/linux-mm/20201207220949.830352-6-yuzhao@google.com/
Link: https://lkml.kernel.org/r/20210122220600.906146-6-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add relock_page_lruvec() to replace repeated same code, no functional
change.
When testing for relock we can avoid the need for RCU locking if we simply
compare the page pgdat and memcg pointers versus those that the lruvec is
holding. By doing this we can avoid the extra pointer walks and accesses
of the memory cgroup.
In addition we can avoid the checks entirely if lruvec is currently NULL.
[alex.shi@linux.alibaba.com: use page_memcg()]
Link: https://lkml.kernel.org/r/66d8e79d-7ec6-bfbc-1c82-bf32db3ae5b7@linux.alibaba.com
Link: https://lkml.kernel.org/r/1604566549-62481-19-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Chen, Rong A" <rong.a.chen@intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch moves per node lru_lock into lruvec, thus bring a lru_lock for
each of memcg per node. So on a large machine, each of memcg don't have
to suffer from per node pgdat->lru_lock competition. They could go fast
with their self lru_lock.
After move memcg charge before lru inserting, page isolation could
serialize page's memcg, then per memcg lruvec lock is stable and could
replace per node lru lock.
In isolate_migratepages_block(), compact_unlock_should_abort and
lock_page_lruvec_irqsave are open coded to work with compact_control.
Also add a debug func in locking which may give some clues if there are
sth out of hands.
Daniel Jordan's testing show 62% improvement on modified readtwice case on
his 2P * 10 core * 2 HT broadwell box.
https://lore.kernel.org/lkml/20200915165807.kpp7uhiw7l3loofu@ca-dmjordan1.us.oracle.com/
Hugh Dickins helped on the patch polish, thanks!
[alex.shi@linux.alibaba.com: fix comment typo]
Link: https://lkml.kernel.org/r/5b085715-292a-4b43-50b3-d73dc90d1de5@linux.alibaba.com
[alex.shi@linux.alibaba.com: use page_memcg()]
Link: https://lkml.kernel.org/r/5a4c2b72-7ee8-2478-fc0e-85eb83aafec4@linux.alibaba.com
Link: https://lkml.kernel.org/r/1604566549-62481-18-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rong Chen <rong.a.chen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently lru_lock still guards both lru list and page's lru bit, that's
ok. but if we want to use specific lruvec lock on the page, we need to
pin down the page's lruvec/memcg during locking. Just taking lruvec lock
first may be undermined by the page's memcg charge/migration. To fix this
problem, we will clear the lru bit out of locking and use it as pin down
action to block the page isolation in memcg changing.
So now a standard steps of page isolation is following:
1, get_page(); #pin the page avoid to be free
2, TestClearPageLRU(); #block other isolation like memcg change
3, spin_lock on lru_lock; #serialize lru list access
4, delete page from lru list;
This patch start with the first part: TestClearPageLRU, which combines
PageLRU check and ClearPageLRU into a macro func TestClearPageLRU. This
function will be used as page isolation precondition to prevent other
isolations some where else. Then there are may !PageLRU page on lru list,
need to remove BUG() checking accordingly.
There 2 rules for lru bit now:
1, the lru bit still indicate if a page on lru list, just in some
temporary moment(isolating), the page may have no lru bit when
it's on lru list. but the page still must be on lru list when the
lru bit set.
2, have to remove lru bit before delete it from lru list.
As Andrew Morton mentioned this change would dirty cacheline for a page
which isn't on the LRU. But the loss would be acceptable in Rong Chen
<rong.a.chen@intel.com> report:
https://lore.kernel.org/lkml/20200304090301.GB5972@shao2-debian/
Link: https://lkml.kernel.org/r/1604566549-62481-15-git-send-email-alex.shi@linux.alibaba.com
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__munlock_isolate_lru_page() only has one caller, remove it to clean up
and simplify code.
Link: https://lkml.kernel.org/r/1604566549-62481-14-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Chen, Rong A" <rong.a.chen@intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In the func munlock_vma_page, comments mentained lru_lock needed for
serialization with split_huge_pages. But the page must be PageLocked as
well as pages in split_huge_page series funcs. Thus the PageLocked is
enough to serialize both funcs.
Further more, Hugh Dickins pointed: before splitting in
split_huge_page_to_list, the page was unmap_page() to remove pmd/ptes
which protect the page from munlock. Thus, no needs to guard
__split_huge_page_tail for mlock clean, just keep the lru_lock there for
isolation purpose.
LKP found a preempt issue on __mod_zone_page_state which need change to
mod_zone_page_state. Thanks!
Link: https://lkml.kernel.org/r/1604566549-62481-13-git-send-email-alex.shi@linux.alibaba.com
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Chen, Rong A" <rong.a.chen@intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jann Horn <jannh@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mika Penttilä <mika.penttila@nextfour.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
5.8 commit 5d91f31faf8e ("mm: swap: fix vmstats for huge page") has
established that vm_events should count every subpage of a THP, including
unevictable_pgs_culled and unevictable_pgs_rescued; but
lru_cache_add_inactive_or_unevictable() was not doing so for
unevictable_pgs_mlocked, and mm/mlock.c was not doing so for
unevictable_pgs mlocked, munlocked, cleared and stranded.
Fix them; but THPs don't go the pagevec way in mlock.c, so no fixes needed
on that path.
Fixes: 5d91f31faf8e ("mm: swap: fix vmstats for huge page")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Yang Shi <shy828301@gmail.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2008301408230.5954@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.
[akpm@linux-foundation.org: fix mm/migrate.c]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Convert comments that reference mmap_sem to reference mmap_lock instead.
[akpm@linux-foundation.org: fix up linux-next leftovers]
[akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil]
[akpm@linux-foundation.org: more linux-next fixups, per Michel]
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This change converts the existing mmap_sem rwsem calls to use the new mmap
locking API instead.
The change is generated using coccinelle with the following rule:
// spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir .
@@
expression mm;
@@
(
-init_rwsem
+mmap_init_lock
|
-down_write
+mmap_write_lock
|
-down_write_killable
+mmap_write_lock_killable
|
-down_write_trylock
+mmap_write_trylock
|
-up_write
+mmap_write_unlock
|
-downgrade_write
+mmap_write_downgrade
|
-down_read
+mmap_read_lock
|
-down_read_killable
+mmap_read_lock_killable
|
-down_read_trylock
+mmap_read_trylock
|
-up_read
+mmap_read_unlock
)
-(&mm->mmap_sem)
+(mm)
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
This patch allows tagged pointers to be passed to the following memory
syscalls: get_mempolicy, madvise, mbind, mincore, mlock, mlock2, mprotect,
mremap, msync, munlock, move_pages.
The mmap and mremap syscalls do not currently accept tagged addresses.
Architectures may interpret the tag as a background colour for the
corresponding vma.
Link: http://lkml.kernel.org/r/aaf0c0969d46b2feb9017f3e1b3ef3970b633d91.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
On a 64-bit machine the value of "vma->vm_end - vma->vm_start" may be
negative when using 32 bit ints and the "count >> PAGE_SHIFT"'s result
will be wrong. So change the local variable and return value to
unsigned long to fix the problem.
Link: http://lkml.kernel.org/r/20190513023701.83056-1-swkhack@gmail.com
Fixes: 0cf2f6f6dc60 ("mm: mlock: check against vma for actual mlock() size")
Signed-off-by: swkhack <swkhack@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If mlockall() is called with only MCL_ONFAULT as flag, it removes any
previously applied lockings and does nothing else.
This behavior is counter-intuitive and doesn't match the Linux man page.
For mlockall():
EINVAL Unknown flags were specified or MCL_ONFAULT was specified
without either MCL_FUTURE or MCL_CURRENT.
Consequently, return the error EINVAL, if only MCL_ONFAULT is passed.
That way, applications will at least detect that they are calling
mlockall() incorrectly.
Link: http://lkml.kernel.org/r/20190527075333.GA6339@er01809n.ebgroup.elektrobit.com
Fixes: b0f205c2a308 ("mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage")
Signed-off-by: Stefan Potyra <Stefan.Potyra@elektrobit.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We have common pattern to access lru_lock from a page pointer:
zone_lru_lock(page_zone(page))
Which is silly, because it unfolds to this:
&NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock
while we can simply do
&NODE_DATA(page_to_nid(page))->lru_lock
Remove zone_lru_lock() function, since it's only complicate things. Use
'page_pgdat(page)->lru_lock' pattern instead.
[aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()]
Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch is reworked from an earlier patch that Dan has posted:
https://patchwork.kernel.org/patch/10131727/
VM_MIXEDMAP is used by dax to direct mm paths like vm_normal_page() that
the memory page it is dealing with is not typical memory from the linear
map. The get_user_pages_fast() path, since it does not resolve the vma,
is already using {pte,pmd}_devmap() as a stand-in for VM_MIXEDMAP, so we
use that as a VM_MIXEDMAP replacement in some locations. In the cases
where there is no pte to consult we fallback to using vma_is_dax() to
detect the VM_MIXEDMAP special case.
Now that we have explicit driver pfn_t-flag opt-in/opt-out for
get_user_pages() support for DAX we can stop setting VM_MIXEDMAP. This
also means we no longer need to worry about safely manipulating vm_flags
in a future where we support dynamically changing the dax mode of a
file.
DAX should also now be supported with madvise_behavior(), vma_merge(),
and copy_page_range().
This patch has been tested against ndctl unit test. It has also been
tested against xfstests commit: 625515d using fake pmem created by
memmap and no additional issues have been observed.
Link: http://lkml.kernel.org/r/152847720311.55924.16999195879201817653.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When a thread mlocks an address space backed either by file pages which
are currently not present in memory or swapped out anon pages (not in
swapcache), a new page is allocated and added to the local pagevec
(lru_add_pvec), I/O is triggered and the thread then sleeps on the page.
On I/O completion, the thread can wake on a different CPU, the mlock
syscall will then sets the PageMlocked() bit of the page but will not be
able to put that page in unevictable LRU as the page is on the pagevec
of a different CPU. Even on drain, that page will go to evictable LRU
because the PageMlocked() bit is not checked on pagevec drain.
The page will eventually go to right LRU on reclaim but the LRU stats
will remain skewed for a long time.
This patch puts all the pages, even unevictable, to the pagevecs and on
the drain, the pages will be added on their LRUs correctly by checking
their evictability. This resolves the mlocked pages on pagevec of other
CPUs issue because when those pagevecs will be drained, the mlocked file
pages will go to unevictable LRU. Also this makes the race with munlock
easier to resolve because the pagevec drains happen in LRU lock.
However there is still one place which makes a page evictable and does
PageLRU check on that page without LRU lock and needs special attention.
TestClearPageMlocked() and isolate_lru_page() in clear_page_mlock().
#0: __pagevec_lru_add_fn #1: clear_page_mlock
SetPageLRU() if (!TestClearPageMlocked())
return
smp_mb() // <--required
// inside does PageLRU
if (!PageMlocked()) if (isolate_lru_page())
move to evictable LRU putback_lru_page()
else
move to unevictable LRU
In '#1', TestClearPageMlocked() provides full memory barrier semantics
and thus the PageLRU check (inside isolate_lru_page) can not be
reordered before it.
In '#0', without explicit memory barrier, the PageMlocked() check can be
reordered before SetPageLRU(). If that happens, '#0' can put a page in
unevictable LRU and '#1' might have just cleared the Mlocked bit of that
page but fails to isolate as PageLRU fails as '#0' still hasn't set
PageLRU bit of that page. That page will be stranded on the unevictable
LRU.
There is one (good) side effect though. Without this patch, the pages
allocated for System V shared memory segment are added to evictable LRUs
even after shmctl(SHM_LOCK) on that segment. This patch will correctly
put such pages to unevictable LRU.
Link: http://lkml.kernel.org/r/20171121211241.18877-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
so that kernel-doc will properly recognize the parameter and function
descriptions.
Link: http://lkml.kernel.org/r/1516700871-22279-2-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Now that cond_resched() also provides RCU quiescent states when
needed, it can be used in place of cond_resched_rcu_qs(). This
commit therefore makes this change.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
|
|
lru_add_drain_all() is not required by mlock() and it will drain
everything that has been cached at the time mlock is called. And that
is not really related to the memory which will be faulted in (and
cached) and mlocked by the syscall itself.
If anything lru_add_drain_all() should be called _after_ pages have been
mlocked and faulted in but even that is not strictly needed because
those pages would get to the appropriate LRUs lazily during the reclaim
path. Moreover follow_page_pte (gup) will drain the local pcp LRU
cache.
On larger machines the overhead of lru_add_drain_all() in mlock() can be
significant when mlocking data already in memory. We have observed high
latency in mlock() due to lru_add_drain_all() when the users were
mlocking in memory tmpfs files.
[mhocko@suse.com: changelog fix]
Link: http://lkml.kernel.org/r/20171019222507.2894-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Every pagevec_init user claims the pages being released are hot even in
cases where it is unlikely the pages are hot. As no one cares about the
hotness of pages being released to the allocator, just ditch the
parameter.
No performance impact is expected as the overhead is marginal. The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.
Link: http://lkml.kernel.org/r/20171018075952.10627-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
page_zone_id() is a specialized function to compare the zone for the pages
that are within the section range. If the section of the pages are
different, page_zone_id() can be different even if their zone is the same.
This wrong usage doesn't cause any actual problem since
__munlock_pagevec_fill() would be called again with failed index.
However, it's better to use more appropriate function here.
Link: http://lkml.kernel.org/r/1503559211-10259-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Kefeng reported that when running the follow test, the mlock count in
meminfo will increase permanently:
[1] testcase
linux:~ # cat test_mlockal
grep Mlocked /proc/meminfo
for j in `seq 0 10`
do
for i in `seq 4 15`
do
./p_mlockall >> log &
done
sleep 0.2
done
# wait some time to let mlock counter decrease and 5s may not enough
sleep 5
grep Mlocked /proc/meminfo
linux:~ # cat p_mlockall.c
#include <sys/mman.h>
#include <stdlib.h>
#include <stdio.h>
#define SPACE_LEN 4096
int main(int argc, char ** argv)
{
int ret;
void *adr = malloc(SPACE_LEN);
if (!adr)
return -1;
ret = mlockall(MCL_CURRENT | MCL_FUTURE);
printf("mlcokall ret = %d\n", ret);
ret = munlockall();
printf("munlcokall ret = %d\n", ret);
free(adr);
return 0;
}
In __munlock_pagevec() we should decrement NR_MLOCK for each page where
we clear the PageMlocked flag. Commit 1ebb7cc6a583 ("mm: munlock: batch
NR_MLOCK zone state updates") has introduced a bug where we don't
decrement NR_MLOCK for pages where we clear the flag, but fail to
isolate them from the lru list (e.g. when the pages are on some other
cpu's percpu pagevec). Since PageMlocked stays cleared, the NR_MLOCK
accounting gets permanently disrupted by this.
Fix it by counting the number of page whose PageMlock flag is cleared.
Fixes: 1ebb7cc6a583 (" mm: munlock: batch NR_MLOCK zone state updates")
Link: http://lkml.kernel.org/r/1495678405-54569-1-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Reported-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joern Engel <joern@logfs.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: zhongjiang <zhongjiang@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
try_to_munlock returns SWAP_MLOCK if the one of VMAs mapped the page has
VM_LOCKED flag. In that time, VM set PG_mlocked to the page if the page
is not pte-mapped THP which cannot be mlocked, either.
With that, __munlock_isolated_page can use PageMlocked to check whether
try_to_munlock is successful or not without relying on try_to_munlock's
retval. It helps to make try_to_unmap/try_to_unmap_one simple with
upcoming patches.
[minchan@kernel.org: remove PG_Mlocked VM_BUG_ON check]
Link: http://lkml.kernel.org/r/20170411025615.GA6545@bbox
Link: http://lkml.kernel.org/r/1489555493-14659-5-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Merge 5-level page table prep from Kirill Shutemov:
"Here's relatively low-risk part of 5-level paging patchset. Merging it
now will make x86 5-level paging enabling in v4.12 easier.
The first patch is actually x86-specific: detect 5-level paging
support. It boils down to single define.
The rest of patchset converts Linux MMU abstraction from 4- to 5-level
paging.
Enabling of new abstraction in most cases requires adding single line
of code in arch-specific code. The rest is taken care by asm-generic/.
Changes to mm/ code are mostly mechanical: add support for new page
table level -- p4d_t -- where we deal with pud_t now.
v2:
- fix build on microblaze (Michal);
- comment for __ARCH_HAS_5LEVEL_HACK in kasan_populate_zero_shadow();
- acks from Michal"
* emailed patches from Kirill A Shutemov <kirill.shutemov@linux.intel.com>:
mm: introduce __p4d_alloc()
mm: convert generic code to 5-level paging
asm-generic: introduce <asm-generic/pgtable-nop4d.h>
arch, mm: convert all architectures to use 5level-fixup.h
asm-generic: introduce __ARCH_USE_5LEVEL_HACK
asm-generic: introduce 5level-fixup.h
x86/cpufeature: Add 5-level paging detection
|
|
The following test case triggers BUG() in munlock_vma_pages_range():
int main(int argc, char *argv[])
{
int fd;
system("mount -t tmpfs -o huge=always none /mnt");
fd = open("/mnt/test", O_CREAT | O_RDWR);
ftruncate(fd, 4UL << 20);
mmap(NULL, 4UL << 20, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED | MAP_LOCKED, fd, 0);
mmap(NULL, 4096, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_LOCKED, fd, 0);
munlockall();
return 0;
}
The second mmap() create PTE-mapping of the first huge page in file. It
makes kernel munlock the page as we never keep PTE-mapped page mlocked.
On munlockall() when we handle vma created by the first mmap(),
munlock_vma_page() returns page_mask == 0, as the page is not mlocked
anymore. On next iteration follow_page_mask() return tail page, but
page_mask is HPAGE_NR_PAGES - 1. It makes us skip to the first tail
page of the next huge page and step on
VM_BUG_ON_PAGE(PageMlocked(page)).
The fix is not use the page_mask from follow_page_mask() at all. It has
no use for us.
Link: http://lkml.kernel.org/r/20170302150252.34120-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [4.5+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Convert all non-architecture-specific code to 5-level paging.
It's mostly mechanical adding handling one more page table level in
places where we deal with pud_t.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|