Age | Commit message (Collapse) | Author | Files | Lines |
|
Nick Bowler reported another sparc64 breakage after the young/dirty
persistent work for page migration (per "Link:" below). That's after a
similar report [2].
It turns out page migration was overlooked, and it wasn't failing before
because page migration was not enabled in the initial report test
environment.
David proposed another way [2] to fix this from sparc64 side, but that
patch didn't land somehow. Neither did I check whether there's any other
arch that has similar issues.
Let's fix it for now as simple as moving the write bit handling to be
after dirty, like what we did before.
Note: this is based on mm-unstable, because the breakage was since 6.1 and
we're at a very late stage of 6.2 (-rc8), so I assume for this specific
case we should target this at 6.3.
[1] https://lore.kernel.org/all/20221021160603.GA23307@u164.east.ru/
[2] https://lore.kernel.org/all/20221212130213.136267-1-david@redhat.com/
Link: https://lkml.kernel.org/r/20230216153059.256739-1-peterx@redhat.com
Fixes: 2e3468778dbe ("mm: remember young/dirty bit for page migrations")
Link: https://lore.kernel.org/all/CADyTPExpEqaJiMGoV+Z6xVgL50ZoMJg49B10LcZ=8eg19u34BA@mail.gmail.com/
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: Nick Bowler <nbowler@draconx.ca>
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Nick Bowler <nbowler@draconx.ca>
Cc: <regressions@lists.linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"A large number of cleanups and bug fixes, with many of the bug fixes
found by Syzbot and fuzzing. (Many of the bug fixes involve less-used
ext4 features such as fast_commit, inline_data and bigalloc)
In addition, remove the writepage function for ext4, since the
medium-term plan is to remove ->writepage() entirely. (The VM doesn't
need or want writepage() for writeback, since it is fine with
->writepages() so long as ->migrate_folio() is implemented)"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (58 commits)
ext4: fix reserved cluster accounting in __es_remove_extent()
ext4: fix inode leak in ext4_xattr_inode_create() on an error path
ext4: allocate extended attribute value in vmalloc area
ext4: avoid unaccounted block allocation when expanding inode
ext4: initialize quota before expanding inode in setproject ioctl
ext4: stop providing .writepage hook
mm: export buffer_migrate_folio_norefs()
ext4: switch to using write_cache_pages() for data=journal writeout
jbd2: switch jbd2_submit_inode_data() to use fs-provided hook for data writeout
ext4: switch to using ext4_do_writepages() for ordered data writeout
ext4: move percpu_rwsem protection into ext4_writepages()
ext4: provide ext4_do_writepages()
ext4: add support for writepages calls that cannot map blocks
ext4: drop pointless IO submission from ext4_bio_write_page()
ext4: remove nr_submitted from ext4_bio_write_page()
ext4: move keep_towrite handling to ext4_bio_write_page()
ext4: handle redirtying in ext4_bio_write_page()
ext4: fix kernel BUG in 'ext4_write_inline_data_end()'
ext4: make ext4_mb_initialize_context return void
ext4: fix deadlock due to mbcache entry corruption
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab updates from Vlastimil Babka:
- SLOB deprecation and SLUB_TINY
The SLOB allocator adds maintenance burden and stands in the way of
API improvements [1]. Deprecate it by renaming the config option (to
make users notice) to CONFIG_SLOB_DEPRECATED with updated help text.
SLUB should be used instead as SLAB will be the next on the removal
list.
Based on reports from a riscv k210 board with 8MB RAM, add a
CONFIG_SLUB_TINY option to minimize SLUB's memory usage at the
expense of scalability. This has resolved the k210 regression [2] so
in case there are no others (that wouldn't be resolvable by further
tweaks to SLUB_TINY) plan is to remove SLOB in a few cycles.
Existing defconfigs with CONFIG_SLOB are converted to
CONFIG_SLUB_TINY.
- kmalloc() slub_debug redzone improvements
A series from Feng Tang that builds on the tracking or requested size
for kmalloc() allocations (for caches with debugging enabled) added
in 6.1, to make redzone checks consider the requested size and not
the rounded up one, in order to catch more subtle buffer overruns.
Includes new slub_kunit test.
- struct slab fields reordering to accomodate larger rcu_head
RCU folks would like to grow rcu_head with debugging options, which
breaks current struct slab layout's assumptions, so reorganize it to
make this possible.
- Miscellaneous improvements/fixes:
- __alloc_size checking compiler workaround (Kees Cook)
- Optimize and cleanup SLUB's sysfs init (Rasmus Villemoes)
- Make SLAB compatible with PROVE_RAW_LOCK_NESTING (Jiri Kosina)
- Correct SLUB's percpu allocation estimates (Baoquan He)
- Re-enableS LUB's run-time failslab sysfs control (Alexander Atanasov)
- Make tools/vm/slabinfo more user friendly when not run as root (Rong Tao)
- Dead code removal in SLUB (Hyeonggon Yoo)
* tag 'slab-for-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: (31 commits)
mm, slob: rename CONFIG_SLOB to CONFIG_SLOB_DEPRECATED
mm, slub: don't aggressively inline with CONFIG_SLUB_TINY
mm, slub: remove percpu slabs with CONFIG_SLUB_TINY
mm, slub: split out allocations from pre/post hooks
mm/slub, kunit: Add a test case for kmalloc redzone check
mm/slub, kunit: add SLAB_SKIP_KFENCE flag for cache creation
mm, slub: refactor free debug processing
mm, slab: ignore SLAB_RECLAIM_ACCOUNT with CONFIG_SLUB_TINY
mm, slub: don't create kmalloc-rcl caches with CONFIG_SLUB_TINY
mm, slub: lower the default slub_max_order with CONFIG_SLUB_TINY
mm, slub: retain no free slabs on partial list with CONFIG_SLUB_TINY
mm, slub: disable SYSFS support with CONFIG_SLUB_TINY
mm, slub: add CONFIG_SLUB_TINY
mm, slab: ignore hardened usercopy parameters when disabled
slab: Remove special-casing of const 0 size allocations
slab: Clean up SLOB vs kmalloc() definition
mm/sl[au]b: rearrange struct slab fields to allow larger rcu_head
mm/migrate: make isolate_movable_page() skip slab pages
mm/slab: move and adjust kernel-doc for kmem_cache_alloc
mm/slub, percpu: correct the calculation of early percpu allocation size
...
|
|
Ext4 needs this function to allow safe migration for journalled data
pages.
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20221207112722.22220-11-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
mm/migrate.c:1198:24: warning: Using plain integer as NULL pointer
Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=3080
Link: https://lkml.kernel.org/r/20221116012345.84870-1-yang.lee@linux.alibaba.com
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Quite straightforward, the page functions are converted to corresponding
folio functions. Same for comments.
THP specific code are converted to be large folio.
Link: https://lkml.kernel.org/r/20221109012348.93849-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "migrate: convert migrate_pages()/unmap_and_move() to use
folios", v2.
The conversion is quite straightforward, just replace the page API to the
corresponding folio API. migrate_pages() and unmap_and_move() mostly work
with folios (head pages) only.
This patch (of 2):
Quite straightforward, the page functions are converted to corresponding
folio functions. Same for comments.
Link: https://lkml.kernel.org/r/20221109012348.93849-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20221109012348.93849-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Revert commit 831568214883 ("mm: migration: fix the FOLL_GET failure on
following huge page"), since after commit 1a6baaa0db73 ("s390/hugetlb:
switch to generic version of follow_huge_pud()") and commit 57a196a58421
("hugetlb: simplify hugetlb handling in follow_page_mask") were merged,
now all the following huge page routines can support FOLL_GET operation.
Link: https://lkml.kernel.org/r/496786039852aba90ffa68f10d0df3f4236a990b.1667983080.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Haiyue Wang <haiyue.wang@intel.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Clean up unmap_and_move_huge_page() by converting move_hugetlb_state() to
take in folios.
[akpm@linux-foundation.org: fix CONFIG_HUGETLB_PAGE=n build]
Link: https://lkml.kernel.org/r/20221101223059.460937-10-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Bui Quang Minh <minhquangbui99@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In the next commit we want to rearrange struct slab fields to allow a larger
rcu_head. Afterwards, the page->mapping field will overlap with SLUB's "struct
list_head slab_list", where the value of prev pointer can become LIST_POISON2,
which is 0x122 + POISON_POINTER_DELTA. Unfortunately the bit 1 being set can
confuse PageMovable() to be a false positive and cause a GPF as reported by lkp
[1].
To fix this, make isolate_movable_page() skip pages with the PageSlab flag set.
This is a bit tricky as we need to add memory barriers to SLAB and SLUB's page
allocation and freeing, and their counterparts to isolate_movable_page().
Based on my RFC from [2]. Added a comment update from Matthew's variant in [3]
and, as done there, moved the PageSlab checks to happen before trying to take
the page lock.
[1] https://lore.kernel.org/all/208c1757-5edd-fd42-67d4-1940cc43b50f@intel.com/
[2] https://lore.kernel.org/all/aec59f53-0e53-1736-5932-25407125d4d4@suse.cz/
[3] https://lore.kernel.org/all/YzsVM8eToHUeTP75@casper.infradead.org/
Reported-by: kernel test robot <yujie.liu@intel.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
|
|
When creating a virtual machine, we will use memfd_create() to get a file
descriptor which can be used to create share memory mappings using the
mmap function, meanwhile the mmap() will set the MAP_POPULATE flag to
allocate physical pages for the virtual machine.
When allocating physical pages for the guest, the host can fallback to
allocate some CMA pages for the guest when over half of the zone's free
memory is in the CMA area.
In guest os, when the application wants to do some data transaction with
DMA, our QEMU will call VFIO_IOMMU_MAP_DMA ioctl to do longterm-pin and
create IOMMU mappings for the DMA pages. However, when calling
VFIO_IOMMU_MAP_DMA ioctl to pin the physical pages, we found it will be
failed to longterm-pin sometimes.
After some invetigation, we found the pages used to do DMA mapping can
contain some CMA pages, and these CMA pages will cause a possible failure
of the longterm-pin, due to failed to migrate the CMA pages. The reason
of migration failure may be temporary reference count or memory allocation
failure. So that will cause the VFIO_IOMMU_MAP_DMA ioctl returns error,
which makes the application failed to start.
I observed one migration failure case (which is not easy to reproduce) is
that, the 'thp_migration_fail' count is 1 and the 'thp_split_page_failed'
count is also 1.
That means when migrating a THP which is in CMA area, but can not allocate
a new THP due to memory fragmentation, so it will split the THP. However
THP split is also failed, probably the reason is temporary reference count
of this THP. And the temporary reference count can be caused by dropping
page caches (I observed the drop caches operation in the system), but we
can not drop the shmem page caches due to they are already dirty at that
time.
Especially for THP split failure, which is caused by temporary reference
count, we can try again to mitigate the failure of migration in this case
according to previous discussion [1].
[1] https://lore.kernel.org/all/470dc638-a300-f261-94b4-e27250e42f96@redhat.com/
Link: https://lkml.kernel.org/r/6784730480a1df82e8f4cba1ed088e4ac767994b.1666599848.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Helper function to retrieve hstate information from a hugetlb folio.
Link: https://lkml.kernel.org/r/20220922154207.1575343-6-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Colin Cross <ccross@google.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
During THP migration, if THPs are not migrated but they are split and all
subpages are migrated successfully, migrate_pages() will still return the
number of THP pages that were not migrated. This will confuse the callers
of migrate_pages(). For example, the longterm pinning will failed though
all pages are migrated successfully.
Thus we should return 0 to indicate that all pages are migrated in this
case
Link: https://lkml.kernel.org/r/de386aa864be9158d2f3b344091419ea7c38b2f7.1666599848.git.baolin.wang@linux.alibaba.com
Fixes: b5bade978e9b ("mm: migrate: fix the return value of migrate_pages()")
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Fix several device private page reference counting issues",
v2
This series aims to fix a number of page reference counting issues in
drivers dealing with device private ZONE_DEVICE pages. These result in
use-after-free type bugs, either from accessing a struct page which no
longer exists because it has been removed or accessing fields within the
struct page which are no longer valid because the page has been freed.
During normal usage it is unlikely these will cause any problems. However
without these fixes it is possible to crash the kernel from userspace.
These crashes can be triggered either by unloading the kernel module or
unbinding the device from the driver prior to a userspace task exiting.
In modules such as Nouveau it is also possible to trigger some of these
issues by explicitly closing the device file-descriptor prior to the task
exiting and then accessing device private memory.
This involves some minor changes to both PowerPC and AMD GPU code.
Unfortunately I lack hardware to test either of those so any help there
would be appreciated. The changes mimic what is done in for both Nouveau
and hmm-tests though so I doubt they will cause problems.
This patch (of 8):
When the CPU tries to access a device private page the migrate_to_ram()
callback associated with the pgmap for the page is called. However no
reference is taken on the faulting page. Therefore a concurrent migration
of the device private page can free the page and possibly the underlying
pgmap. This results in a race which can crash the kernel due to the
migrate_to_ram() function pointer becoming invalid. It also means drivers
can't reliably read the zone_device_data field because the page may have
been freed with memunmap_pages().
Close the race by getting a reference on the page while holding the ptl to
ensure it has not been freed. Unfortunately the elevated reference count
will cause the migration required to handle the fault to fail. To avoid
this failure pass the faulting page into the migrate_vma functions so that
if an elevated reference count is found it can be checked to see if it's
expected or not.
[mpe@ellerman.id.au: fix build]
Link: https://lkml.kernel.org/r/87fsgbf3gh.fsf@mpe.ellerman.id.au
Link: https://lkml.kernel.org/r/cover.60659b549d8509ddecafad4f498ee7f03bb23c69.1664366292.git-series.apopple@nvidia.com
Link: https://lkml.kernel.org/r/d3e813178a59e565e8d78d9b9a4e2562f6494f90.1664366292.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
With all callers now passing in a folio, rename the function and convert
all callers. Removes a couple of calls to compound_head() and a reference
to page->mapping.
Link: https://lkml.kernel.org/r/20220902194653.1739778-55-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Saves several calls to compound_head() and removes a couple of uses of
page->lru.
Link: https://lkml.kernel.org/r/20220902194653.1739778-52-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Removes a lot of calls to compound_head(). Also remove a VM_BUG_ON that
can never trigger as the PageAnon bit is the bottom bit of page->mapping.
Link: https://lkml.kernel.org/r/20220902194653.1739778-51-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The handling Non-LRU pages returned by follow_page() jumps directly, it
doesn't call put_page() to handle the reference count, since 'FOLL_GET'
flag for follow_page() has get_page() called. Fix the zone device page
check by handling the page reference count correctly before returning.
And as David reviewed, "device pages are never PageKsm pages". Drop this
zone device page check for break_ksm().
Since the zone device page can't be a transparent huge page, so drop the
redundant zone device page check for split_huge_pages_pid(). (by Miaohe)
Link: https://lkml.kernel.org/r/20220823135841.934465-3-haiyue.wang@intel.com
Fixes: 3218f8712d6b ("mm: handling Non-LRU pages returned by vm_normal_pages")
Signed-off-by: Haiyue Wang <haiyue.wang@intel.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
With memory tier support we can have memory only NUMA nodes in the top
tier from which we want to avoid promotion tracking NUMA faults. Update
node_is_toptier to work with memory tiers. All NUMA nodes are by default
top tier nodes. With lower(slower) memory tiers added we consider all
memory tiers above a memory tier having CPU NUMA nodes as a top memory
tier
[sj@kernel.org: include missed header file, memory-tiers.h]
Link: https://lkml.kernel.org/r/20220820190720.248704-1-sj@kernel.org
[akpm@linux-foundation.org: mm/memory.c needs linux/memory-tiers.h]
[aneesh.kumar@linux.ibm.com: make toptier_distance inclusive upper bound of toptiers]
Link: https://lkml.kernel.org/r/20220830081457.118960-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-10-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This patch switch the demotion target building logic to use memory tiers
instead of NUMA distance. All N_MEMORY NUMA nodes will be placed in the
default memory tier and additional memory tiers will be added by drivers
like dax kmem.
This patch builds the demotion target for a NUMA node by looking at all
memory tiers below the tier to which the NUMA node belongs. The closest
node in the immediately following memory tier is used as a demotion
target.
Since we are now only building demotion target for N_MEMORY NUMA nodes the
CPU hotplug calls are removed in this patch.
Link: https://lkml.kernel.org/r/20220818131042.113280-6-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This moves memory demotion related code to mm/memory-tiers.c. No
functional change in this patch.
Link: https://lkml.kernel.org/r/20220818131042.113280-3-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If THP is failed to migrate due to -ENOSYS or -ENOMEM case, the THP will
be split, and the subpages of fail-to-migrate THP will be tried to migrate
again, so we should not account the retry counter in the second loop,
since we already accounted 'nr_thp_failed' in the first loop.
Moreover we also do not need retry 10 times for -EAGAIN case for the
subpages of fail-to-migrate THP in the second loop, since we already
regarded the THP as migration failure, and save some migration time (for
the worst case, will try 512 * 10 times) according to previous discussion
[1].
[1] https://lore.kernel.org/linux-mm/87r13a7n04.fsf@yhuang6-desk2.ccr.corp.intel.com/
Link: https://lkml.kernel.org/r/20220817081408.513338-9-ying.huang@intel.com
Tested-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
After 10 retries, we will give up and the remaining pages will be counted
as failure in nr_failed and nr_thp_failed. We should count the failure in
nr_failed_pages too. This is done in this patch.
Link: https://lkml.kernel.org/r/20220817081408.513338-8-ying.huang@intel.com
Fixes: 5984fabb6e82 ("mm: move_pages: report the number of non-attempted pages")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If THP is failed to be migrated, it may be split and retry. But after
splitting, the head page will be left in "from" list, although THP
migration failure has been counted already. If the head page is failed to
be migrated too, the failure will be counted twice incorrectly. So this
is fixed in this patch via moving the head page of THP after splitting to
"thp_split_pages" too.
Link: https://lkml.kernel.org/r/20220817081408.513338-7-ying.huang@intel.com
Fixes: 5984fabb6e82 ("mm: move_pages: report the number of non-attempted pages")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If THP or hugetlbfs page migration isn't supported, unmap_and_move() or
unmap_and_move_huge_page() will return -ENOSYS. For THP, splitting will
be tried, but if splitting doesn't succeed, the THP will be left in "from"
list wrongly. If some other pages are retried, the THP migration failure
will counted again. This is fixed via moving the failure THP from "from"
to "ret_pages".
Another issue of the original code is that the unsupported failure
processing isn't consistent between THP and hugetlbfs page. Make them
consistent in this patch to make the code easier to be understood too.
Link: https://lkml.kernel.org/r/20220817081408.513338-6-ying.huang@intel.com
Fixes: 5984fabb6e82 ("mm: move_pages: report the number of non-attempted pages")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If THP is failed to be migrated for -ENOSYS and -ENOMEM, the THP will be
split into thp_split_pages, and after other pages are migrated, pages in
thp_split_pages will be migrated with no_subpage_counting == true, because
its failure have been counted already. If some pages in thp_split_pages
are retried during migration, we should not count their failure if
no_subpage_counting == true too. This is done this patch to fix the
failure counting for THP subpages retrying.
Link: https://lkml.kernel.org/r/20220817081408.513338-5-ying.huang@intel.com
Fixes: 5984fabb6e82 ("mm: move_pages: report the number of non-attempted pages")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In unmap_and_move(), if the new THP cannot be allocated, -ENOMEM will be
returned, and migrate_pages() will try to split the THP unless "reason" is
MR_NUMA_MISPLACED (that is, nosplit == true). But when nosplit == true,
the THP migration failure will not be counted.
This is incorrect, so in this patch, the THP migration failure will be
counted for -ENOMEM regardless of nosplit is true or false. The nr_failed
counting isn't fixed because it's not used. Added some comments for it
per Baolin's suggestion.
Link: https://lkml.kernel.org/r/20220817081408.513338-4-ying.huang@intel.com
Fixes: 5984fabb6e82 ("mm: move_pages: report the number of non-attempted pages")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Before commit b5bade978e9b ("mm: migrate: fix the return value of
migrate_pages()"), the tail pages of THP will be put in the "from"
list directly. So one of the loop cursors (page2) needs to be reset,
as is done in try_split_thp() via list_safe_reset_next(). But after
the commit, the tail pages of THP will be put in a dedicated
list (thp_split_pages). That is, the "from" list will not be changed
during splitting. So, it's unnecessary to call list_safe_reset_next()
anymore.
This is a code cleanup, no functionality changes are expected.
Link: https://lkml.kernel.org/r/20220817081408.513338-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "migrate_pages(): fix several bugs in error path", v3.
During review the code of migrate_pages() and build a test program for
it. Several bugs in error path are identified and fixed in this
series.
Most patches are tested via
- Apply error-inject.patch in Linux kernel
- Compile test-migrate.c (with -lnuma)
- Test with test-migrate.sh
error-inject.patch, test-migrate.c, and test-migrate.sh are as below.
It turns out that error injection is an important tool to fix bugs in
error path.
This patch (of 8):
The return value of move_pages() syscall is incorrect when counting
the remaining pages to be migrated. For example, for the following
test program,
"
#define _GNU_SOURCE
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/uio.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>
#include <numaif.h>
#include <numa.h>
#ifndef MADV_FREE
#define MADV_FREE 8 /* free pages only if memory pressure */
#endif
#define ONE_MB (1024 * 1024)
#define MAP_SIZE (16 * ONE_MB)
#define THP_SIZE (2 * ONE_MB)
#define THP_MASK (THP_SIZE - 1)
#define ERR_EXIT_ON(cond, msg) \
do { \
int __cond_in_macro = (cond); \
if (__cond_in_macro) \
error_exit(__cond_in_macro, (msg)); \
} while (0)
void error_msg(int ret, int nr, int *status, const char *msg)
{
int i;
fprintf(stderr, "Error: %s, ret : %d, error: %s\n",
msg, ret, strerror(errno));
if (!nr)
return;
fprintf(stderr, "status: ");
for (i = 0; i < nr; i++)
fprintf(stderr, "%d ", status[i]);
fprintf(stderr, "\n");
}
void error_exit(int ret, const char *msg)
{
error_msg(ret, 0, NULL, msg);
exit(1);
}
int page_size;
bool do_vmsplice;
bool do_thp;
static int pipe_fds[2];
void *addr;
char *pn;
char *pn1;
void *pages[2];
int status[2];
void prepare()
{
int ret;
struct iovec iov;
if (addr) {
munmap(addr, MAP_SIZE);
close(pipe_fds[0]);
close(pipe_fds[1]);
}
ret = pipe(pipe_fds);
ERR_EXIT_ON(ret, "pipe");
addr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
ERR_EXIT_ON(addr == MAP_FAILED, "mmap");
if (do_thp) {
ret = madvise(addr, MAP_SIZE, MADV_HUGEPAGE);
ERR_EXIT_ON(ret, "advise hugepage");
}
pn = (char *)(((unsigned long)addr + THP_SIZE) & ~THP_MASK);
pn1 = pn + THP_SIZE;
pages[0] = pn;
pages[1] = pn1;
*pn = 1;
if (do_vmsplice) {
iov.iov_base = pn;
iov.iov_len = page_size;
ret = vmsplice(pipe_fds[1], &iov, 1, 0);
ERR_EXIT_ON(ret < 0, "vmsplice");
}
status[0] = status[1] = 1024;
}
void test_migrate()
{
int ret;
int nodes[2] = { 1, 1 };
pid_t pid = getpid();
prepare();
ret = move_pages(pid, 1, pages, nodes, status, MPOL_MF_MOVE_ALL);
error_msg(ret, 1, status, "move 1 page");
prepare();
ret = move_pages(pid, 2, pages, nodes, status, MPOL_MF_MOVE_ALL);
error_msg(ret, 2, status, "move 2 pages, page 1 not mapped");
prepare();
*pn1 = 1;
ret = move_pages(pid, 2, pages, nodes, status, MPOL_MF_MOVE_ALL);
error_msg(ret, 2, status, "move 2 pages");
prepare();
*pn1 = 1;
nodes[1] = 0;
ret = move_pages(pid, 2, pages, nodes, status, MPOL_MF_MOVE_ALL);
error_msg(ret, 2, status, "move 2 pages, page 1 to node 0");
}
int main(int argc, char *argv[])
{
numa_run_on_node(0);
page_size = getpagesize();
test_migrate();
fprintf(stderr, "\nMake page 0 cannot be migrated:\n");
do_vmsplice = true;
test_migrate();
fprintf(stderr, "\nTest THP:\n");
do_thp = true;
do_vmsplice = false;
test_migrate();
fprintf(stderr, "\nTHP: make page 0 cannot be migrated:\n");
do_vmsplice = true;
test_migrate();
return 0;
}
"
The output of the current kernel is,
"
Error: move 1 page, ret : 0, error: Success
status: 1
Error: move 2 pages, page 1 not mapped, ret : 0, error: Success
status: 1 -14
Error: move 2 pages, ret : 0, error: Success
status: 1 1
Error: move 2 pages, page 1 to node 0, ret : 0, error: Success
status: 1 0
Make page 0 cannot be migrated:
Error: move 1 page, ret : 0, error: Success
status: 1024
Error: move 2 pages, page 1 not mapped, ret : 1, error: Success
status: 1024 -14
Error: move 2 pages, ret : 0, error: Success
status: 1024 1024
Error: move 2 pages, page 1 to node 0, ret : 1, error: Success
status: 1024 1024
"
While the expected output is,
"
Error: move 1 page, ret : 0, error: Success
status: 1
Error: move 2 pages, page 1 not mapped, ret : 0, error: Success
status: 1 -14
Error: move 2 pages, ret : 0, error: Success
status: 1 1
Error: move 2 pages, page 1 to node 0, ret : 0, error: Success
status: 1 0
Make page 0 cannot be migrated:
Error: move 1 page, ret : 1, error: Success
status: 1024
Error: move 2 pages, page 1 not mapped, ret : 1, error: Success
status: 1024 -14
Error: move 2 pages, ret : 1, error: Success
status: 1024 1024
Error: move 2 pages, page 1 to node 0, ret : 2, error: Success
status: 1024 1024
"
Fix this via correcting the remaining pages counting. With the fix,
the output for the test program as above is expected.
Link: https://lkml.kernel.org/r/20220817081408.513338-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20220817081408.513338-2-ying.huang@intel.com
Fixes: 5984fabb6e82 ("mm: move_pages: report the number of non-attempted pages")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When page migration happens, we always ignore the young/dirty bit settings
in the old pgtable, and marking the page as old in the new page table
using either pte_mkold() or pmd_mkold(), and keeping the pte clean.
That's fine from functional-wise, but that's not friendly to page reclaim
because the moving page can be actively accessed within the procedure.
Not to mention hardware setting the young bit can bring quite some
overhead on some systems, e.g. x86_64 needs a few hundreds nanoseconds to
set the bit. The same slowdown problem to dirty bits when the memory is
first written after page migration happened.
Actually we can easily remember the A/D bit configuration and recover the
information after the page is migrated. To achieve it, define a new set
of bits in the migration swap offset field to cache the A/D bits for old
pte. Then when removing/recovering the migration entry, we can recover
the A/D bits even if the page changed.
One thing to mention is that here we used max_swapfile_size() to detect
how many swp offset bits we have, and we'll only enable this feature if we
know the swp offset is big enough to store both the PFN value and the A/D
bits. Otherwise the A/D bits are dropped like before.
Link: https://lkml.kernel.org/r/20220811161331.37055-6-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "memory tiering: hot page selection", v4.
To optimize page placement in a memory tiering system with NUMA balancing,
the hot pages in the slow memory nodes need to be identified.
Essentially, the original NUMA balancing implementation selects the mostly
recently accessed (MRU) pages to promote. But this isn't a perfect
algorithm to identify the hot pages. Because the pages with quite low
access frequency may be accessed eventually given the NUMA balancing page
table scanning period could be quite long (e.g. 60 seconds). So in this
patchset, we implement a new hot page identification algorithm based on
the latency between NUMA balancing page table scanning and hint page
fault. Which is a kind of mostly frequently accessed (MFU) algorithm.
In NUMA balancing memory tiering mode, if there are hot pages in slow
memory node and cold pages in fast memory node, we need to promote/demote
hot/cold pages between the fast and cold memory nodes.
A choice is to promote/demote as fast as possible. But the CPU cycles and
memory bandwidth consumed by the high promoting/demoting throughput will
hurt the latency of some workload because of accessing inflating and slow
memory bandwidth contention.
A way to resolve this issue is to restrict the max promoting/demoting
throughput. It will take longer to finish the promoting/demoting. But
the workload latency will be better. This is implemented in this patchset
as the page promotion rate limit mechanism.
The promotion hot threshold is workload and system configuration
dependent. So in this patchset, a method to adjust the hot threshold
automatically is implemented. The basic idea is to control the number of
the candidate promotion pages to match the promotion rate limit.
We used the pmbench memory accessing benchmark tested the patchset on a
2-socket server system with DRAM and PMEM installed. The test results are
as follows,
pmbench score promote rate
(accesses/s) MB/s
------------- ------------
base 146887704.1 725.6
hot selection 165695601.2 544.0
rate limit 162814569.8 165.2
auto adjustment 170495294.0 136.9
From the results above,
With hot page selection patch [1/3], the pmbench score increases about
12.8%, and promote rate (overhead) decreases about 25.0%, compared with
base kernel.
With rate limit patch [2/3], pmbench score decreases about 1.7%, and
promote rate decreases about 69.6%, compared with hot page selection
patch.
With threshold auto adjustment patch [3/3], pmbench score increases about
4.7%, and promote rate decrease about 17.1%, compared with rate limit
patch.
Baolin helped to test the patchset with MySQL on a machine which contains
1 DRAM node (30G) and 1 PMEM node (126G).
sysbench /usr/share/sysbench/oltp_read_write.lua \
......
--tables=200 \
--table-size=1000000 \
--report-interval=10 \
--threads=16 \
--time=120
The tps can be improved about 5%.
This patch (of 3):
To optimize page placement in a memory tiering system with NUMA balancing,
the hot pages in the slow memory node need to be identified. Essentially,
the original NUMA balancing implementation selects the mostly recently
accessed (MRU) pages to promote. But this isn't a perfect algorithm to
identify the hot pages. Because the pages with quite low access frequency
may be accessed eventually given the NUMA balancing page table scanning
period could be quite long (e.g. 60 seconds). The most frequently
accessed (MFU) algorithm is better.
So, in this patch we implemented a better hot page selection algorithm.
Which is based on NUMA balancing page table scanning and hint page fault
as follows,
- When the page tables of the processes are scanned to change PTE/PMD
to be PROT_NONE, the current time is recorded in struct page as scan
time.
- When the page is accessed, hint page fault will occur. The scan
time is gotten from the struct page. And The hint page fault
latency is defined as
hint page fault time - scan time
The shorter the hint page fault latency of a page is, the higher the
probability of their access frequency to be higher. So the hint page
fault latency is a better estimation of the page hot/cold.
It's hard to find some extra space in struct page to hold the scan time.
Fortunately, we can reuse some bits used by the original NUMA balancing.
NUMA balancing uses some bits in struct page to store the page accessing
CPU and PID (referring to page_cpupid_xchg_last()). Which is used by the
multi-stage node selection algorithm to avoid to migrate pages shared
accessed by the NUMA nodes back and forth. But for pages in the slow
memory node, even if they are shared accessed by multiple NUMA nodes, as
long as the pages are hot, they need to be promoted to the fast memory
node. So the accessing CPU and PID information are unnecessary for the
slow memory pages. We can reuse these bits in struct page to record the
scan time. For the fast memory pages, these bits are used as before.
For the hot threshold, the default value is 1 second, which works well in
our performance test. All pages with hint page fault latency < hot
threshold will be considered hot.
It's hard for users to determine the hot threshold. So we don't provide a
kernel ABI to set it, just provide a debugfs interface for advanced users
to experiment. We will continue to work on a hot threshold automatic
adjustment mechanism.
The downside of the above method is that the response time to the workload
hot spot changing may be much longer. For example,
- A previous cold memory area becomes hot
- The hint page fault will be triggered. But the hint page fault
latency isn't shorter than the hot threshold. So the pages will
not be promoted.
- When the memory area is scanned again, maybe after a scan period,
the hint page fault latency measured will be shorter than the hot
threshold and the pages will be promoted.
To mitigate this, if there are enough free space in the fast memory node,
the hot threshold will not be used, all pages will be promoted upon the
hint page fault for fast response.
Thanks Zhong Jiang reported and tested the fix for a bug when disabling
memory tiering mode dynamically.
Link: https://lkml.kernel.org/r/20220713083954.34196-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20220713083954.34196-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: osalvador <osalvador@suse.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Not all huge page APIs support FOLL_GET option, so move_pages() syscall
will fail to get the page node information for some huge pages.
Like x86 on linux 5.19 with 1GB huge page API follow_huge_pud(), it will
return NULL page for FOLL_GET when calling move_pages() syscall with the
NULL 'nodes' parameter, the 'status' parameter has '-2' error in array.
Note: follow_huge_pud() now supports FOLL_GET in linux 6.0.
Link: https://lore.kernel.org/all/20220714042420.1847125-3-naoya.horiguchi@linux.dev
But these huge page APIs don't support FOLL_GET:
1. follow_huge_pud() in arch/s390/mm/hugetlbpage.c
2. follow_huge_addr() in arch/ia64/mm/hugetlbpage.c
It will cause WARN_ON_ONCE for FOLL_GET.
3. follow_huge_pgd() in mm/hugetlb.c
This is an temporary solution to mitigate the side effect of the race
condition fix by calling follow_page() with FOLL_GET set for huge pages.
After supporting follow huge page by FOLL_GET is done, this fix can be
reverted safely.
Link: https://lkml.kernel.org/r/20220823135841.934465-2-haiyue.wang@intel.com
Link: https://lkml.kernel.org/r/20220812084921.409142-1-haiyue.wang@intel.com
Fixes: 4cd614841c06 ("mm: migration: fix possible do_pages_stat_array racing with memory offline")
Signed-off-by: Haiyue Wang <haiyue.wang@intel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
|
|
With all users converted to migrate_folio(), remove this operation.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
This involves converting migrate_huge_page_move_mapping(). We also need a
folio variant of hugetlb_set_page_subpool(), but that's for a later patch.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
|
|
There is nothing iomap-specific about iomap_migratepage(), and it fits
a pattern used by several other filesystems, so move it to mm/migrate.c,
convert it to be filemap_migrate_folio() and convert the iomap filesystems
to use it.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Convert all callers to pass a folio. Most have the folio
already available. Switch all users from aops->migratepage to
aops->migrate_folio. Also turn the documentation into kerneldoc.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
|
|
Now that both callers have a folio, convert this function to
take a folio & rename it.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Use a folio throughout __buffer_migrate_folio(), add kernel-doc for
buffer_migrate_folio() and buffer_migrate_folio_norefs(), move their
declarations to buffer.h and switch all filesystems that have wired
them up.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Use a folio throughout this function.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Use a folio throughout. migrate_page() will be converted to
migrate_folio() later.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Provide a folio-based replacement for aops->migratepage. Update the
documentation to document migrate_folio instead of migratepage.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
These drivers are rather uncomfortably hammered into the
address_space_operations hole. They aren't filesystems and don't behave
like filesystems. They just need their own movable_operations structure,
which we can point to directly from page->mapping.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
With DEVICE_COHERENT, we'll soon have vm_normal_pages() return
device-managed anonymous pages that are not LRU pages. Although they
behave like normal pages for purposes of mapping in CPU page, and for COW.
They do not support LRU lists, NUMA migration or THP.
Callers to follow_page() currently don't expect ZONE_DEVICE pages,
however, with DEVICE_COHERENT we might now return ZONE_DEVICE. Check for
ZONE_DEVICE pages in applicable users of follow_page() as well.
Link: https://lkml.kernel.org/r/20220715150521.18165-5-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> [v2]
Reviewed-by: Alistair Popple <apopple@nvidia.com> [v6]
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
__migration_entry_wait and migration_entry_wait_on_locked assume pte is
always mapped from caller. But this is not the case when it's called from
migration_entry_wait_huge and follow_huge_pmd. Add a hugetlbfs variant
that calls hugetlb_migration_entry_wait(ptep == NULL) to fix this issue.
Link: https://lkml.kernel.org/r/20220530113016.16663-5-linmiaohe@huawei.com
Fixes: 30dad30922cc ("mm: migration: add migrate_entry_wait_huge()")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We might fail to isolate huge page due to e.g. the page is under
migration which cleared HPageMigratable. We should return errno in this
case rather than always return 1 which could confuse the user, i.e. the
caller might think all of the memory is migrated while the hugetlb page is
left behind. We make the prototype of isolate_huge_page consistent with
isolate_lru_page as suggested by Huang Ying and rename isolate_huge_page
to isolate_hugetlb as suggested by Muchun to improve the readability.
Link: https://lkml.kernel.org/r/20220530113016.16663-4-linmiaohe@huawei.com
Fixes: e8db67eb0ded ("mm: migrate: move_pages() supports thp migration")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Suggested-by: Huang Ying <ying.huang@intel.com>
Reported-by: kernel test robot <lkp@intel.com> (build error)
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When non-lru movable page was freed from under us, __ClearPageMovable must
have been done. So we can remove unneeded lock page and PageMovable check
here. Also free_pages_prepare() will clear PG_isolated for us, so we can
further remove ClearPageIsolated as suggested by David.
Link: https://lkml.kernel.org/r/20220530113016.16663-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In our efforts to remove uses of PG_private, we have found folios with
the private flag clear and folio->private not-NULL. That is the root
cause behind 642d51fb0775 ("ceph: check folio PG_private bit instead
of folio->private"). It can also affect a few other filesystems that
haven't yet reported a problem.
compaction_alloc() can return a page with uninitialised page->private,
and rather than checking all the callers of migrate_pages(), just zero
page->private after calling get_new_page(). Similarly, the tail pages
from split_huge_page() may also have an uninitialised page->private.
Reported-by: Xiubo Li <xiubli@redhat.com>
Tested-by: Xiubo Li <xiubli@redhat.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Almost all of MM here. A few things are still getting finished off,
reviewed, etc.
- Yang Shi has improved the behaviour of khugepaged collapsing of
readonly file-backed transparent hugepages.
- Johannes Weiner has arranged for zswap memory use to be tracked and
managed on a per-cgroup basis.
- Munchun Song adds a /proc knob ("hugetlb_optimize_vmemmap") for
runtime enablement of the recent huge page vmemmap optimization
feature.
- Baolin Wang contributes a series to fix some issues around hugetlb
pagetable invalidation.
- Zhenwei Pi has fixed some interactions between hwpoisoned pages and
virtualization.
- Tong Tiangen has enabled the use of the presently x86-only
page_table_check debugging feature on arm64 and riscv.
- David Vernet has done some fixup work on the memcg selftests.
- Peter Xu has taught userfaultfd to handle write protection faults
against shmem- and hugetlbfs-backed files.
- More DAMON development from SeongJae Park - adding online tuning of
the feature and support for monitoring of fixed virtual address
ranges. Also easier discovery of which monitoring operations are
available.
- Nadav Amit has done some optimization of TLB flushing during
mprotect().
- Neil Brown continues to labor away at improving our swap-over-NFS
support.
- David Hildenbrand has some fixes to anon page COWing versus
get_user_pages().
- Peng Liu fixed some errors in the core hugetlb code.
- Joao Martins has reduced the amount of memory consumed by
device-dax's compound devmaps.
- Some cleanups of the arch-specific pagemap code from Anshuman
Khandual.
- Muchun Song has found and fixed some errors in the TLB flushing of
transparent hugepages.
- Roman Gushchin has done more work on the memcg selftests.
... and, of course, many smaller fixes and cleanups. Notably, the
customary million cleanup serieses from Miaohe Lin"
* tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (381 commits)
mm: kfence: use PAGE_ALIGNED helper
selftests: vm: add the "settings" file with timeout variable
selftests: vm: add "test_hmm.sh" to TEST_FILES
selftests: vm: check numa_available() before operating "merge_across_nodes" in ksm_tests
selftests: vm: add migration to the .gitignore
selftests/vm/pkeys: fix typo in comment
ksm: fix typo in comment
selftests: vm: add process_mrelease tests
Revert "mm/vmscan: never demote for memcg reclaim"
mm/kfence: print disabling or re-enabling message
include/trace/events/percpu.h: cleanup for "percpu: improve percpu_alloc_percpu event trace"
include/trace/events/mmflags.h: cleanup for "tracing: incorrect gfp_t conversion"
mm: fix a potential infinite loop in start_isolate_page_range()
MAINTAINERS: add Muchun as co-maintainer for HugeTLB
zram: fix Kconfig dependency warning
mm/shmem: fix shmem folio swapoff hang
cgroup: fix an error handling path in alloc_pagecache_max_30M()
mm: damon: use HPAGE_PMD_SIZE
tracing: incorrect isolate_mote_t cast in mm_vmscan_lru_isolate
nodemask.h: fix compilation error with GCC12
...
|