summaryrefslogtreecommitdiff
path: root/mm/ksm.c
AgeCommit message (Collapse)AuthorFilesLines
2013-03-09ksm: fix m68k build: only NUMA needs pfn_to_nidHugh Dickins1-1/+1
A CONFIG_DISCONTIGMEM=y m68k config gave mm/ksm.c: In function `get_kpfn_nid': mm/ksm.c:492: error: implicit declaration of function `pfn_to_nid' linux/mmzone.h declares it for CONFIG_SPARSEMEM and CONFIG_FLATMEM, but expects the arch's asm/mmzone.h to declare it for CONFIG_DISCONTIGMEM (see arch/mips/include/asm/mmzone.h for example). Or perhaps it is only expected when CONFIG_NUMA=y: too much of a maze, and m68k got away without it so far, so fix the build in mm/ksm.c. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Petr Holasek <pholasek@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28hlist: drop the node parameter from iteratorsSasha Levin1-10/+5
I'm not sure why, but the hlist for each entry iterators were conceived list_for_each_entry(pos, head, member) The hlist ones were greedy and wanted an extra parameter: hlist_for_each_entry(tpos, pos, head, member) Why did they need an extra pos parameter? I'm not quite sure. Not only they don't really need it, it also prevents the iterator from looking exactly like the list iterator, which is unfortunate. Besides the semantic patch, there was some manual work required: - Fix up the actual hlist iterators in linux/list.h - Fix up the declaration of other iterators based on the hlist ones. - A very small amount of places were using the 'node' parameter, this was modified to use 'obj->member' instead. - Coccinelle didn't handle the hlist_for_each_entry_safe iterator properly, so those had to be fixed up manually. The semantic patch which is mostly the work of Peter Senna Tschudin is here: @@ iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host; type T; expression a,c,d,e; identifier b; statement S; @@ -T b; <+... when != b ( hlist_for_each_entry(a, - b, c, d) S | hlist_for_each_entry_continue(a, - b, c) S | hlist_for_each_entry_from(a, - b, c) S | hlist_for_each_entry_rcu(a, - b, c, d) S | hlist_for_each_entry_rcu_bh(a, - b, c, d) S | hlist_for_each_entry_continue_rcu_bh(a, - b, c) S | for_each_busy_worker(a, c, - b, d) S | ax25_uid_for_each(a, - b, c) S | ax25_for_each(a, - b, c) S | inet_bind_bucket_for_each(a, - b, c) S | sctp_for_each_hentry(a, - b, c) S | sk_for_each(a, - b, c) S | sk_for_each_rcu(a, - b, c) S | sk_for_each_from -(a, b) +(a) S + sk_for_each_from(a) S | sk_for_each_safe(a, - b, c, d) S | sk_for_each_bound(a, - b, c) S | hlist_for_each_entry_safe(a, - b, c, d, e) S | hlist_for_each_entry_continue_rcu(a, - b, c) S | nr_neigh_for_each(a, - b, c) S | nr_neigh_for_each_safe(a, - b, c, d) S | nr_node_for_each(a, - b, c) S | nr_node_for_each_safe(a, - b, c, d) S | - for_each_gfn_sp(a, c, d, b) S + for_each_gfn_sp(a, c, d) S | - for_each_gfn_indirect_valid_sp(a, c, d, b) S + for_each_gfn_indirect_valid_sp(a, c, d) S | for_each_host(a, - b, c) S | for_each_host_safe(a, - b, c, d) S | for_each_mesh_entry(a, - b, c, d) S ) ...+> [akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c] [akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c] [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix warnings] [akpm@linux-foudnation.org: redo intrusive kvm changes] Tested-by: Peter Senna Tschudin <peter.senna@gmail.com> Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24ksm: allocate roots when neededHugh Dickins1-23/+49
It is a pity to have MAX_NUMNODES+MAX_NUMNODES tree roots statically allocated, particularly when very few users will ever actually tune merge_across_nodes 0 to use more than 1+1 of those trees. Not a big deal (only 16kB wasted on each machine with CONFIG_MAXSMP), but a pity. Start off with 1+1 statically allocated, then if merge_across_nodes is ever tuned, allocate for nr_node_ids+nr_node_ids. Do not attempt to free up the extra if it's tuned back, that would be a waste of effort. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24mm,ksm: FOLL_MIGRATION do migration_entry_waitHugh Dickins1-1/+1
In "ksm: remove old stable nodes more thoroughly" I said that I'd never seen its WARN_ON_ONCE(page_mapped(page)). True at the time of writing, but it soon appeared once I tried fuller tests on the whole series. It turned out to be due to the KSM page migration itself: unmerge_and_ remove_all_rmap_items() failed to locate and replace all the KSM pages, because of that hiatus in page migration when old pte has been replaced by migration entry, but not yet by new pte. follow_page() finds no page at that instant, but a KSM page reappears shortly after, without a fault. Add FOLL_MIGRATION flag, so follow_page() can do migration_entry_wait() for KSM's break_cow(). I'd have preferred to avoid another flag, and do it every time, in case someone else makes the same easy mistake; but did not find another transgressor (the common get_user_pages() is of course safe), and cannot be sure that every follow_page() caller is prepared to sleep - ia64's xencomm_vtop()? Now, THP's wait_split_huge_page() can already sleep there, since anon_vma locking was changed to mutex, but maybe that's somehow excluded. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24ksm: shrink 32-bit rmap_item back to 32 bytesHugh Dickins1-12/+14
Think of struct rmap_item as an extension of struct page (restricted to MADV_MERGEABLE areas): there may be a lot of them, we need to keep them small, especially on 32-bit architectures of limited lowmem. Siting "int nid" after "unsigned int checksum" works nicely on 64-bit, making no change to its 64-byte struct rmap_item; but bloats the 32-bit struct rmap_item from (nicely cache-aligned) 32 bytes to 36 bytes, which rounds up to 40 bytes once allocated from slab. We'd better avoid that. Hey, I only just remembered that the anon_vma pointer in struct rmap_item has no purpose until the rmap_item is hung from a stable tree node (which has its own nid field); and rmap_item's nid field no purpose than to say which tree root to tell rb_erase() when unlinking from an unstable tree. Double them up in a union. There's just one place where we set anon_vma early (when we already hold mmap_sem): now we must remove tree_rmap_item from its unstable tree there, before overwriting nid. No need to spatter BUG()s around: we'd be seeing oopses if this were wrong. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24ksm: treat unstable nid like in stable treeHugh Dickins1-10/+9
An inconsistency emerged in reviewing the NUMA node changes to KSM: when meeting a page from the wrong NUMA node in a stable tree, we say that it's okay for comparisons, but not as a leaf for merging; whereas when meeting a page from the wrong NUMA node in an unstable tree, we bail out immediately. Now, it might be that a wrong NUMA node in an unstable tree is more likely to correlate with instablility (different content, with rbnode now misplaced) than page migration; but even so, we are accustomed to instablility in the unstable tree. Without strong evidence for which strategy is generally better, I'd rather be consistent with what's done in the stable tree: accept a page from the wrong NUMA node for comparison, but not as a leaf for merging. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24ksm: add some commentsHugh Dickins1-4/+14
Added slightly more detail to the Documentation of merge_across_nodes, a few comments in areas indicated by review, and renamed get_ksm_page()'s argument from "locked" to "lock_it". No functional change. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24ksm: stop hotremove lockdep warningHugh Dickins1-14/+41
Complaints are rare, but lockdep still does not understand the way ksm_memory_callback(MEM_GOING_OFFLINE) takes ksm_thread_mutex, and holds it until the ksm_memory_callback(MEM_OFFLINE): that appears to be a problem because notifier callbacks are made under down_read of blocking_notifier_head->rwsem (so first the mutex is taken while holding the rwsem, then later the rwsem is taken while still holding the mutex); but is not in fact a problem because mem_hotplug_mutex is held throughout the dance. There was an attempt to fix this with mutex_lock_nested(); but if that happened to fool lockdep two years ago, apparently it does so no longer. I had hoped to eradicate this issue in extending KSM page migration not to need the ksm_thread_mutex. But then realized that although the page migration itself is safe, we do still need to lock out ksmd and other users of get_ksm_page() while offlining memory - at some point between MEM_GOING_OFFLINE and MEM_OFFLINE, the struct pages themselves may vanish, and get_ksm_page()'s accesses to them become a violation. So, give up on holding ksm_thread_mutex itself from MEM_GOING_OFFLINE to MEM_OFFLINE, and add a KSM_RUN_OFFLINE flag, and wait_while_offlining() checks, to achieve the same lockout without being caught by lockdep. This is less elegant for KSM, but it's more important to keep lockdep useful to other users - and I apologize for how long it took to fix. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24ksm: make !merge_across_nodes migration safeHugh Dickins1-30/+134
The new KSM NUMA merge_across_nodes knob introduces a problem, when it's set to non-default 0: if a KSM page is migrated to a different NUMA node, how do we migrate its stable node to the right tree? And what if that collides with an existing stable node? ksm_migrate_page() can do no more than it's already doing, updating stable_node->kpfn: the stable tree itself cannot be manipulated without holding ksm_thread_mutex. So accept that a stable tree may temporarily indicate a page belonging to the wrong NUMA node, leave updating until the next pass of ksmd, just be careful not to merge other pages on to a misplaced page. Note nid of holding tree in stable_node, and recognize that it will not always match nid of kpfn. A misplaced KSM page is discovered, either when ksm_do_scan() next comes around to one of its rmap_items (we now have to go to cmp_and_merge_page even on pages in a stable tree), or when stable_tree_search() arrives at a matching node for another page, and this node page is found misplaced. In each case, move the misplaced stable_node to a list of migrate_nodes (and use the address of migrate_nodes as magic by which to identify them): we don't need them in a tree. If stable_tree_search() finds no match for a page, but it's currently exiled to this list, then slot its stable_node right there into the tree, bringing all of its mappings with it; otherwise they get migrated one by one to the original page of the colliding node. stable_tree_search() is now modelled more like stable_tree_insert(), in order to handle these insertions of migrated nodes. remove_node_from_stable_tree(), remove_all_stable_nodes() and ksm_check_stable_tree() have to handle the migrate_nodes list as well as the stable tree itself. Less obviously, we do need to prune the list of stale entries from time to time (scan_get_next_rmap_item() does it once each full scan): whereas stale nodes in the stable tree get naturally pruned as searches try to brush past them, these migrate_nodes may get forgotten and accumulate. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24ksm: make KSM page migration possibleHugh Dickins1-21/+73
KSM page migration is already supported in the case of memory hotremove, which takes the ksm_thread_mutex across all its migrations to keep life simple. But the new KSM NUMA merge_across_nodes knob introduces a problem, when it's set to non-default 0: if a KSM page is migrated to a different NUMA node, how do we migrate its stable node to the right tree? And what if that collides with an existing stable node? So far there's no provision for that, and this patch does not attempt to deal with it either. But how will I test a solution, when I don't know how to hotremove memory? The best answer is to enable KSM page migration in all cases now, and test more common cases. With THP and compaction added since KSM came in, page migration is now mainstream, and it's a shame that a KSM page can frustrate freeing a page block. Without worrying about merge_across_nodes 0 for now, this patch gets KSM page migration working reliably for default merge_across_nodes 1 (but leave the patch enabling it until near the end of the series). It's much simpler than I'd originally imagined, and does not require an additional tier of locking: page migration relies on the page lock, KSM page reclaim relies on the page lock, the page lock is enough for KSM page migration too. Almost all the care has to be in get_ksm_page(): that's the function which worries about when a stable node is stale and should be freed, now it also has to worry about the KSM page being migrated. The only new overhead is an additional put/get/lock/unlock_page when stable_tree_search() arrives at a matching node: to make sure migration respects the raised page count, and so does not migrate the page while we're busy with it here. That's probably avoidable, either by changing internal interfaces from using kpage to stable_node, or by moving the ksm_migrate_page() callsite into a page_freeze_refs() section (even if not swapcache); but this works well, I've no urge to pull it apart now. (Descents of the stable tree may pass through nodes whose KSM pages are under migration: being unlocked, the raised page count does not prevent that, nor need it: it's safe to memcmp against either old or new page.) You might worry about mremap, and whether page migration's rmap_walk to remove migration entries will find all the KSM locations where it inserted earlier: that should already be handled, by the satisfyingly heavy hammer of move_vma()'s call to ksm_madvise(,,,MADV_UNMERGEABLE,). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24ksm: remove old stable nodes more thoroughlyHugh Dickins1-4/+79
Switching merge_across_nodes after running KSM is liable to oops on stale nodes still left over from the previous stable tree. It's not something that people will often want to do, but it would be lame to demand a reboot when they're trying to determine which merge_across_nodes setting is best. How can this happen? We only permit switching merge_across_nodes when pages_shared is 0, and usually set run 2 to force that beforehand, which ought to unmerge everything: yet oopses still occur when you then run 1. Three causes: 1. The old stable tree (built according to the inverse merge_across_nodes) has not been fully torn down. A stable node lingers until get_ksm_page() notices that the page it references no longer references it: but the page is not necessarily freed as soon as expected, particularly when swapcache. Fix this with a pass through the old stable tree, applying get_ksm_page() to each of the remaining nodes (most found stale and removed immediately), with forced removal of any left over. Unless the page is still mapped: I've not seen that case, it shouldn't occur, but better to WARN_ON_ONCE and EBUSY than BUG. 2. __ksm_enter() has a nice little optimization, to insert the new mm just behind ksmd's cursor, so there's a full pass for it to stabilize (or be removed) before ksmd addresses it. Nice when ksmd is running, but not so nice when we're trying to unmerge all mms: we were missing those mms forked and inserted behind the unmerge cursor. Easily fixed by inserting at the end when KSM_RUN_UNMERGE. 3. It is possible for a KSM page to be faulted back from swapcache into an mm, just after unmerge_and_remove_all_rmap_items() scanned past it. Fix this by copying on fault when KSM_RUN_UNMERGE: but that is private to ksm.c, so dissolve the distinction between ksm_might_need_to_copy() and ksm_does_need_to_copy(), doing it all in the one call into ksm.c. A long outstanding, unrelated bugfix sneaks in with that third fix: ksm_does_need_to_copy() would copy from a !PageUptodate page (implying I/O error when read in from swap) to a page which it then marks Uptodate. Fix this case by not copying, letting do_swap_page() discover the error. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24ksm: get_ksm_page lockedHugh Dickins1-10/+13
In some places where get_ksm_page() is used, we need the page to be locked. When KSM migration is fully enabled, we shall want that to make sure that the page just acquired cannot be migrated beneath us (raised page count is only effective when there is serialization to make sure migration notices). Whereas when navigating through the stable tree, we certainly do not want to lock each node (raised page count is enough to guarantee the memcmps, even if page is migrated to another node). Since we're about to add another use case, add the locked argument to get_ksm_page() now. Hmm, what's that rcu_read_lock() about? Complete misunderstanding, I really got the wrong end of the stick on that! There's a configuration in which page_cache_get_speculative() can do something cheaper than get_page_unless_zero(), relying on its caller's rcu_read_lock() to have disabled preemption for it. There's no need for rcu_read_lock() around get_page_unless_zero() (and mapping checks) here. Cut out that silliness before making this any harder to understand. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24ksm: reorganize ksm_check_stable_treeHugh Dickins1-16/+22
Memory hotremove's ksm_check_stable_tree() is pitifully inefficient (restarting whenever it finds a stale node to remove), but rearrange so that at least it does not needlessly restart from nid 0 each time. And add a couple of comments: here is why we keep pfn instead of page. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24ksm: trivial tidyupsHugh Dickins1-26/+22
Add NUMA() and DO_NUMA() macros to minimize blight of #ifdef CONFIG_NUMAs (but indeed we don't want to expand struct rmap_item by nid when not NUMA). Add comment, remove "unsigned" from rmap_item->nid, as "int nid" elsewhere. Define ksm_merge_across_nodes 1U when #ifndef NUMA to help optimizing out. Use ?: in get_kpfn_nid(). Adjust a few comments noticed in ongoing work. Leave stable_tree_insert()'s rb_linkage until after the node has been set up, as unstable_tree_search_insert() does: ksm_thread_mutex and page lock make either way safe, but we're going to copy and I prefer this precedent. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Petr Holasek <pholasek@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24ksm: allow trees per NUMA nodePetr Holasek1-19/+132
Here's a KSM series, based on mmotm 2013-01-23-17-04: starting with Petr's v7 "KSM: numa awareness sysfs knob"; then fixing the two issues we had with that, fully enabling KSM page migration on the way. (A different kind of KSM/NUMA issue which I've certainly not begun to address here: when KSM pages are unmerged, there's usually no sense in preferring to allocate the new pages local to the caller's node.) This patch: Introduces new sysfs boolean knob /sys/kernel/mm/ksm/merge_across_nodes which control merging pages across different numa nodes. When it is set to zero only pages from the same node are merged, otherwise pages from all nodes can be merged together (default behavior). Typical use-case could be a lot of KVM guests on NUMA machine and cpus from more distant nodes would have significant increase of access latency to the merged ksm page. Sysfs knob was choosen for higher variability when some users still prefers higher amount of saved physical memory regardless of access latency. Every numa node has its own stable & unstable trees because of faster searching and inserting. Changing of merge_across_nodes value is possible only when there are not any ksm shared pages in system. I've tested this patch on numa machines with 2, 4 and 8 nodes and measured speed of memory access inside of KVM guests with memory pinned to one of nodes with this benchmark: http://pholasek.fedorapeople.org/alloc_pg.c Population standard deviations of access times in percentage of average were following: merge_across_nodes=1 2 nodes 1.4% 4 nodes 1.6% 8 nodes 1.7% merge_across_nodes=0 2 nodes 1% 4 nodes 0.32% 8 nodes 0.018% RFC: https://lkml.org/lkml/2011/11/30/91 v1: https://lkml.org/lkml/2012/1/23/46 v2: https://lkml.org/lkml/2012/6/29/105 v3: https://lkml.org/lkml/2012/9/14/550 v4: https://lkml.org/lkml/2012/9/23/137 v5: https://lkml.org/lkml/2012/12/10/540 v6: https://lkml.org/lkml/2012/12/23/154 v7: https://lkml.org/lkml/2012/12/27/225 Hugh notes that this patch brings two problems, whose solution needs further support in mm/ksm.c, which follows in subsequent patches: 1) switching merge_across_nodes after running KSM is liable to oops on stale nodes still left over from the previous stable tree; 2) memory hotremove may migrate KSM pages, but there is no provision here for !merge_across_nodes to migrate nodes to the proper tree. Signed-off-by: Petr Holasek <pholasek@redhat.com> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Izik Eidus <izik.eidus@ravellosystems.com> Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24mm/ksm.c: use new hashtable implementationSasha Levin1-18/+12
Switch ksm to use the new hashtable implementation. This reduces the amount of generic unrelated code in the ksm module. Signed-off-by: Sasha Levin <levinsasha928@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24mm: reduce rmap overhead for ex-KSM page copies created on swap faultsJohannes Weiner1-6/+0
When ex-KSM pages are faulted from swap cache, the fault handler is not capable of re-establishing anon_vma-spanning KSM pages. In this case, a copy of the page is created instead, just like during a COW break. These freshly made copies are known to be exclusive to the faulting VMA and there is no reason to go look for this page in parent and sibling processes during rmap operations. Use page_add_new_anon_rmap() for these copies. This also puts them on the proper LRU lists and marks them SwapBacked, so we can get rid of doing this ad-hoc in the KSM copy code. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Simon Jeons <simon.jeons@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Satoru Moriya <satoru.moriya@hds.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-20ksm: make rmap walks more scalableHugh Dickins1-8/+8
The rmap walks in ksm.c are like those in rmap.c: they can safely be done with anon_vma_lock_read(). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-17Merge tag 'balancenuma-v11' of ↵Linus Torvalds1-3/+3
git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma Pull Automatic NUMA Balancing bare-bones from Mel Gorman: "There are three implementations for NUMA balancing, this tree (balancenuma), numacore which has been developed in tip/master and autonuma which is in aa.git. In almost all respects balancenuma is the dumbest of the three because its main impact is on the VM side with no attempt to be smart about scheduling. In the interest of getting the ball rolling, it would be desirable to see this much merged for 3.8 with the view to building scheduler smarts on top and adapting the VM where required for 3.9. The most recent set of comparisons available from different people are mel: https://lkml.org/lkml/2012/12/9/108 mingo: https://lkml.org/lkml/2012/12/7/331 tglx: https://lkml.org/lkml/2012/12/10/437 srikar: https://lkml.org/lkml/2012/12/10/397 The results are a mixed bag. In my own tests, balancenuma does reasonably well. It's dumb as rocks and does not regress against mainline. On the other hand, Ingo's tests shows that balancenuma is incapable of converging for this workloads driven by perf which is bad but is potentially explained by the lack of scheduler smarts. Thomas' results show balancenuma improves on mainline but falls far short of numacore or autonuma. Srikar's results indicate we all suffer on a large machine with imbalanced node sizes. My own testing showed that recent numacore results have improved dramatically, particularly in the last week but not universally. We've butted heads heavily on system CPU usage and high levels of migration even when it shows that overall performance is better. There are also cases where it regresses. Of interest is that for specjbb in some configurations it will regress for lower numbers of warehouses and show gains for higher numbers which is not reported by the tool by default and sometimes missed in treports. Recently I reported for numacore that the JVM was crashing with NullPointerExceptions but currently it's unclear what the source of this problem is. Initially I thought it was in how numacore batch handles PTEs but I'm no longer think this is the case. It's possible numacore is just able to trigger it due to higher rates of migration. These reports were quite late in the cycle so I/we would like to start with this tree as it contains much of the code we can agree on and has not changed significantly over the last 2-3 weeks." * tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits) mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable mm/rmap: Convert the struct anon_vma::mutex to an rwsem mm: migrate: Account a transhuge page properly when rate limiting mm: numa: Account for failed allocations and isolations as migration failures mm: numa: Add THP migration for the NUMA working set scanning fault case build fix mm: numa: Add THP migration for the NUMA working set scanning fault case. mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG mm: sched: numa: Control enabling and disabling of NUMA balancing mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships mm: numa: migrate: Set last_nid on newly allocated page mm: numa: split_huge_page: Transfer last_nid on tail page mm: numa: Introduce last_nid to the page frame sched: numa: Slowly increase the scanning period as NUMA faults are handled mm: numa: Rate limit setting of pte_numa if node is saturated mm: numa: Rate limit the amount of memory that is migrated between nodes mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting mm: numa: Migrate pages handled during a pmd_numa hinting fault mm: numa: Migrate on reference policy ...
2012-12-12mm, oom: fix race when specifying a thread as the oom originDavid Rientjes1-5/+2
test_set_oom_score_adj() and compare_swap_oom_score_adj() are used to specify that current should be killed first if an oom condition occurs in between the two calls. The usage is short oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); ... compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); to store the thread's oom_score_adj, temporarily change it to the maximum score possible, and then restore the old value if it is still the same. This happens to still be racy, however, if the user writes OOM_SCORE_ADJ_MAX to /proc/pid/oom_score_adj in between the two calls. The compare_swap_oom_score_adj() will then incorrectly reset the old value prior to the write of OOM_SCORE_ADJ_MAX. To fix this, introduce a new oom_flags_t member in struct signal_struct that will be used for per-thread oom killer flags. KSM and swapoff can now use a bit in this member to specify that threads should be killed first in oom conditions without playing around with oom_score_adj. This also allows the correct oom_score_adj to always be shown when reading /proc/pid/oom_score. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Anton Vorontsov <anton.vorontsov@linaro.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12mm, oom: change type of oom_score_adj to shortDavid Rientjes1-1/+1
The maximum oom_score_adj is 1000 and the minimum oom_score_adj is -1000, so this range can be represented by the signed short type with no functional change. The extra space this frees up in struct signal_struct will be used for per-thread oom kill flags in the next patch. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Anton Vorontsov <anton.vorontsov@linaro.org> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12mm: introduce mm_find_pmd()Bob Liu1-12/+2
Several place need to find the pmd by(mm_struct, address), so introduce a function to simplify it. [akpm@linux-foundation.org: fix warning] Signed-off-by: Bob Liu <lliubbo@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Ni zhan Chen <nizhan.chen@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalableIngo Molnar1-3/+3
rmap_walk_anon() and try_to_unmap_anon() appears to be too careful about locking the anon vma: while it needs protection against anon vma list modifications, it does not need exclusive access to the list itself. Transforming this exclusive lock to a read-locked rwsem removes a global lock from the hot path of page-migration intense threaded workloads which can cause pathological performance like this: 96.43% process 0 [kernel.kallsyms] [k] perf_trace_sched_switch | --- perf_trace_sched_switch __schedule schedule schedule_preempt_disabled __mutex_lock_common.isra.6 __mutex_lock_slowpath mutex_lock | |--50.61%-- rmap_walk | move_to_new_page | migrate_pages | migrate_misplaced_page | __do_numa_page.isra.69 | handle_pte_fault | handle_mm_fault | __do_page_fault | do_page_fault | page_fault | __memset_sse2 | | | --100.00%-- worker_thread | | | --100.00%-- start_thread | --49.39%-- page_lock_anon_vma try_to_unmap_anon try_to_unmap migrate_pages migrate_misplaced_page __do_numa_page.isra.69 handle_pte_fault handle_mm_fault __do_page_fault do_page_fault page_fault __memset_sse2 | --100.00%-- worker_thread start_thread With this change applied the profile is now nicely flat and there's no anon-vma related scheduling/blocking. Rename anon_vma_[un]lock() => anon_vma_[un]lock_write(), to make it clearer that it's an exclusive write-lock in that case - suggested by Rik van Riel. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Turner <pjt@google.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-10-09mm: wrap calls to set_pte_at_notify with invalidate_range_start and ↵Haggai Eran1-2/+19
invalidate_range_end In order to allow sleeping during invalidate_page mmu notifier calls, we need to avoid calling when holding the PT lock. In addition to its direct calls, invalidate_page can also be called as a substitute for a change_pte call, in case the notifier client hasn't implemented change_pte. This patch drops the invalidate_page call from change_pte, and instead wraps all calls to change_pte with invalidate_range_start and invalidate_range_end calls. Note that change_pte still cannot sleep after this patch, and that clients implementing change_pte should not take action on it in case the number of outstanding invalidate_range_start calls is larger than one, otherwise they might miss a later invalidation. Signed-off-by: Haggai Eran <haggaie@mellanox.com> Cc: Andrea Arcangeli <andrea@qumranet.com> Cc: Sagi Grimberg <sagig@mellanox.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Or Gerlitz <ogerlitz@mellanox.com> Cc: Haggai Eran <haggaie@mellanox.com> Cc: Shachar Raindel <raindel@mellanox.com> Cc: Liran Liss <liranl@mellanox.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Avi Kivity <avi@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: remove vma arg from page_evictableHugh Dickins1-1/+1
page_evictable(page, vma) is an irritant: almost all its callers pass NULL for vma. Remove the vma arg and use mlocked_vma_newpage(vma, page) explicitly in the couple of places it's needed. But in those places we don't even need page_evictable() itself! They're dealing with a freshly allocated anonymous page, which has no "mapping" and cannot be mlocked yet. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm anon rmap: replace same_anon_vma linked list with an interval tree.Michel Lespinasse1-3/+6
When a large VMA (anon or private file mapping) is first touched, which will populate its anon_vma field, and then split into many regions through the use of mprotect(), the original anon_vma ends up linking all of the vmas on a linked list. This can cause rmap to become inefficient, as we have to walk potentially thousands of irrelevent vmas before finding the one a given anon page might fall into. By replacing the same_anon_vma linked list with an interval tree (where each avc's interval is determined by its vma's start and last pgoffs), we can make rmap efficient for this use case again. While the change is large, all of its pieces are fairly simple. Most places that were walking the same_anon_vma list were looking for a known pgoff, so they can just use the anon_vma_interval_tree_foreach() interval tree iterator instead. The exception here is ksm, where the page's index is not known. It would probably be possible to rework ksm so that the index would be known, but for now I have decided to keep things simple and just walk the entirety of the interval tree there. When updating vma's that already have an anon_vma assigned, we must take care to re-index the corresponding avc's on their interval tree. This is done through the use of anon_vma_interval_tree_pre_update_vma() and anon_vma_interval_tree_post_update_vma(), which remove the avc's from their interval tree before the update and re-insert them after the update. The anon_vma stays locked during the update, so there is no chance that rmap would miss the vmas that are being updated. Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Daniel Santos <daniel.santos@pobox.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: kill vma flag VM_RESERVED and mm->reserved_vm counterKonstantin Khlebnikov1-2/+1
A long time ago, in v2.4, VM_RESERVED kept swapout process off VMA, currently it lost original meaning but still has some effects: | effect | alternative flags -+------------------------+--------------------------------------------- 1| account as reserved_vm | VM_IO 2| skip in core dump | VM_IO, VM_DONTDUMP 3| do not merge or expand | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP 4| do not mlock | VM_IO, VM_DONTEXPAND, VM_HUGETLB, VM_PFNMAP This patch removes reserved_vm counter from mm_struct. Seems like nobody cares about it, it does not exported into userspace directly, it only reduces total_vm showed in proc. Thus VM_RESERVED can be replaced with VM_IO or pair VM_DONTEXPAND | VM_DONTDUMP. remap_pfn_range() and io_remap_pfn_range() set VM_IO|VM_DONTEXPAND|VM_DONTDUMP. remap_vmalloc_range() set VM_DONTEXPAND | VM_DONTDUMP. [akpm@linux-foundation.org: drivers/vfio/pci/vfio_pci.c fixup] Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: kill vma flag VM_INSERTPAGEKonstantin Khlebnikov1-1/+1
Merge VM_INSERTPAGE into VM_MIXEDMAP. VM_MIXEDMAP VMA can mix pure-pfn ptes, special ptes and normal ptes. Now copy_page_range() always copies VM_MIXEDMAP VMA on fork like VM_PFNMAP. If driver populates whole VMA at mmap() it probably not expects page-faults. This patch removes special check from vma_wants_writenotify() which disables pages write tracking for VMA populated via vm_instert_page(). BDI below mapped file should not use dirty-accounting, moreover do_wp_page() can handle this. vm_insert_page() still marks vma after first usage. Usually it is called from f_op->mmap() handler under mm->mmap_sem write-lock, so it able to change vma->vm_flags. Caller must set VM_MIXEDMAP at mmap time if it wants to call this function from other places, for example from page-fault handler. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: introduce arch-specific vma flag VM_ARCH_1Konstantin Khlebnikov1-1/+6
Combine several arch-specific vma flags into one. before patch: 0x00000200 0x01000000 0x20000000 0x40000000 x86 VM_NOHUGEPAGE VM_HUGEPAGE - VM_PAT powerpc - - VM_SAO - parisc VM_GROWSUP - - - ia64 VM_GROWSUP - - - nommu - VM_MAPPED_COPY - - others - - - - after patch: 0x00000200 0x01000000 0x20000000 0x40000000 x86 - VM_PAT VM_HUGEPAGE VM_NOHUGEPAGE powerpc - VM_SAO - - parisc - VM_GROWSUP - - ia64 - VM_GROWSUP - - nommu - VM_MAPPED_COPY - - others - VM_ARCH_1 - - And voila! One completely free bit. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Carsten Otte <cotte@de.ibm.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Eric Paris <eparis@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Hugh Dickins <hughd@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morris <james.l.morris@oracle.com> Cc: Jason Baron <jbaron@redhat.com> Cc: Kentaro Takeda <takedakn@nttdata.co.jp> Cc: Matt Helsley <matthltc@us.ibm.com> Cc: Nick Piggin <npiggin@kernel.dk> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Robert Richter <robert.richter@amd.com> Cc: Suresh Siddha <suresh.b.siddha@intel.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Venkatesh Pallipadi <venki@google.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-22ksm: cleanup: introduce find_mergeable_vma()Bob Liu1-15/+19
There are multiple places which perform the same check. Add a new find_mergeable_vma() to handle this. Signed-off-by: Bob Liu <lliubbo@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-20mm: remove the second argument of k[un]map_atomic()Cong Wang1-6/+6
Signed-off-by: Cong Wang <amwang@redhat.com>
2012-03-06memcg: fix GPF when cgroup removal races with last exitHugh Dickins1-11/+0
When moving tasks from old memcg (with move_charge_at_immigrate on new memcg), followed by removal of old memcg, hit General Protection Fault in mem_cgroup_lru_del_list() (called from release_pages called from free_pages_and_swap_cache from tlb_flush_mmu from tlb_finish_mmu from exit_mmap from mmput from exit_mm from do_exit). Somewhat reproducible, takes a few hours: the old struct mem_cgroup has been freed and poisoned by SLAB_DEBUG, but mem_cgroup_lru_del_list() is still trying to update its stats, and take page off lru before freeing. A task, or a charge, or a page on lru: each secures a memcg against removal. In this case, the last task has been moved out of the old memcg, and it is exiting: anonymous pages are uncharged one by one from the memcg, as they are zapped from its pagetables, so the charge gets down to 0; but the pages themselves are queued in an mmu_gather for freeing. Most of those pages will be on lru (and force_empty is careful to lru_add_drain_all, to add pages from pagevec to lru first), but not necessarily all: perhaps some have been isolated for page reclaim, perhaps some isolated for other reasons. So, force_empty may find no task, no charge and no page on lru, and let the removal proceed. There would still be no problem if these pages were immediately freed; but typically (and the put_page_testzero protocol demands it) they have to be added back to lru before they are found freeable, then removed from lru and freed. We don't see the issue when adding, because the mem_cgroup_iter() loops keep their own reference to the memcg being scanned; but when it comes to mem_cgroup_lru_del_list(). I believe this was not an issue in v3.2: there, PageCgroupAcctLRU and PageCgroupUsed flags were used (like a trick with mirrors) to deflect view of pc->mem_cgroup to the stable root_mem_cgroup when neither set. 38c5d72f3ebe ("memcg: simplify LRU handling by new rule") mercifully removed those convolutions, but left this General Protection Fault. But it's surprisingly easy to restore the old behaviour: just check PageCgroupUsed in mem_cgroup_lru_add_list() (which decides on which lruvec to add), and reset pc to root_mem_cgroup if page is uncharged. A risky change? just going back to how it worked before; testing, and an audit of uses of pc->mem_cgroup, show no problem. And there's a nice bonus: with mem_cgroup_lru_add_list() itself making sure that an uncharged page goes to root lru, mem_cgroup_reset_owner() no longer has any purpose, and we can safely revert 4e5f01c2b9b9 ("memcg: clear pc->mem_cgroup if necessary"). Calling update_page_reclaim_stat() after add_page_to_lru_list() in swap.c is not strictly necessary: the lru_lock there, with RCU before memcg structures are freed, makes mem_cgroup_get_reclaim_stat_from_page safe without that; but it seems cleaner to rely on one dependency less. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-13memcg: clear pc->mem_cgroup if necessary.KAMEZAWA Hiroyuki1-0/+11
This is a preparation before removing a flag PCG_ACCT_LRU in page_cgroup and reducing atomic ops/complexity in memcg LRU handling. In some cases, pages are added to lru before charge to memcg and pages are not classfied to memory cgroup at lru addtion. Now, the lru where the page should be added is determined a bit in page_cgroup->flags and pc->mem_cgroup. I'd like to remove the check of flag. To handle the case pc->mem_cgroup may contain stale pointers if pages are added to LRU before classification. This patch resets pc->mem_cgroup to root_mem_cgroup before lru additions. [akpm@linux-foundation.org: fix CONFIG_CGROUP_MEM_CONT=n build] [hughd@google.com: fix CONFIG_CGROUP_MEM_RES_CTLR=y CONFIG_CGROUP_MEM_RES_CTLR_SWAP=n build] [akpm@linux-foundation.org: ksm.c needs memcontrol.h, per Michal] [hughd@google.com: stop oops in mem_cgroup_reset_owner()] [hughd@google.com: fix page migration to reset_owner] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Miklos Szeredi <mszeredi@suse.cz> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-11-01oom: fix race while temporarily setting current's oom_score_adjDavid Rientjes1-1/+2
test_set_oom_score_adj() was introduced in 72788c385604 ("oom: replace PF_OOM_ORIGIN with toggling oom_score_adj") to temporarily elevate current's oom_score_adj for ksm and swapoff without requiring an additional per-process flag. Using that function to both set oom_score_adj to OOM_SCORE_ADJ_MAX and then reinstate the previous value is racy since it's possible that userspace can set the value to something else itself before the old value is reinstated. That results in userspace setting current's oom_score_adj to a different value and then the kernel immediately setting it back to its previous value without notification. To fix this, a new compare_swap_oom_score_adj() function is introduced with the same semantics as the compare and swap CAS instruction, or CMPXCHG on x86. It is used to reinstate the previous value of oom_score_adj if and only if the present value is the same as the old value. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Ying Han <yinghan@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-16ksm: fix NULL pointer dereference in scan_get_next_rmap_item()Hugh Dickins1-0/+6
Andrea Righi reported a case where an exiting task can race against ksmd::scan_get_next_rmap_item (http://lkml.org/lkml/2011/6/1/742) easily triggering a NULL pointer dereference in ksmd. ksm_scan.mm_slot == &ksm_mm_head with only one registered mm CPU 1 (__ksm_exit) CPU 2 (scan_get_next_rmap_item) list_empty() is false lock slot == &ksm_mm_head list_del(slot->mm_list) (list now empty) unlock lock slot = list_entry(slot->mm_list.next) (list is empty, so slot is still ksm_mm_head) unlock slot->mm == NULL ... Oops Close this race by revalidating that the new slot is not simply the list head again. Andrea's test case: #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/mman.h> #define BUFSIZE getpagesize() int main(int argc, char **argv) { void *ptr; if (posix_memalign(&ptr, getpagesize(), BUFSIZE) < 0) { perror("posix_memalign"); exit(1); } if (madvise(ptr, BUFSIZE, MADV_MERGEABLE) < 0) { perror("madvise"); exit(1); } *(char *)NULL = 0; return 0; } Reported-by: Andrea Righi <andrea@betterlinux.com> Tested-by: Andrea Righi <andrea@betterlinux.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Chris Wright <chrisw@sous-sol.org> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-05-25oom: replace PF_OOM_ORIGIN with toggling oom_score_adjDavid Rientjes1-2/+5
There's a kernel-wide shortage of per-process flags, so it's always helpful to trim one when possible without incurring a significant penalty. It's even more important when you're planning on adding a per- process flag yourself, which I plan to do shortly for transparent hugepages. PF_OOM_ORIGIN is used by ksm and swapoff to prefer current since it has a tendency to allocate large amounts of memory and should be preferred for killing over other tasks. We'd rather immediately kill the task making the errant syscall rather than penalizing an innocent task. This patch removes PF_OOM_ORIGIN since its behavior is equivalent to setting the process's oom_score_adj to OOM_SCORE_ADJ_MAX. The process's old oom_score_adj is stored and then set to OOM_SCORE_ADJ_MAX during the time it used to have PF_OOM_ORIGIN. The old value is then reinstated when the process should no longer be considered a high priority for oom killing. Signed-off-by: David Rientjes <rientjes@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: Hugh Dickins <hughd@google.com> Cc: Izik Eidus <ieidus@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-31Fix common misspellingsLucas De Marchi1-1/+1
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
2011-03-23mm: rename drop_anon_vma() to put_anon_vma()Peter Zijlstra1-18/+5
The normal code pattern used in the kernel is: get/put. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14ksm: drain pagevecs to lruHugh Dickins1-0/+12
It was hard to explain the page counts which were causing new LTP tests of KSM to fail: we need to drain the per-cpu pagevecs to LRU occasionally. Signed-off-by: Hugh Dickins <hughd@google.com> Reported-by: CAI Qian <caiqian@redhat.com> Cc:Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14thp: add compound_trans_head() helperAndrea Arcangeli1-12/+3
Cleanup some code with common compound_trans_head helper. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Avi Kivity <avi@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14thp: KSM on THPAndrea Arcangeli1-9/+58
This makes KSM full operational with THP pages. Subpages are scanned while the hugepage is still in place and delivering max cpu performance, and only if there's a match and we're going to deduplicate memory, the single hugepages with the subpage match is split. There will be no false sharing between ksmd and khugepaged. khugepaged won't collapse 2m virtual regions with KSM pages inside. ksmd also should only split pages when the checksum matches and we're likely to split an hugepage for some long living ksm page (usual ksm heuristic to avoid sharing pages that get de-cowed). Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14thp: freeze khugepaged and ksmdAndrea Arcangeli1-2/+6
It's unclear why schedule friendly kernel threads can't be taken away by the CPU through the scheduler itself. It's safer to stop them as they can trigger memory allocation, if kswapd also freezes itself to avoid generating I/O they have too. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14thp: skip transhuge pages in ksm for nowAndrea Arcangeli1-4/+15
Skip transhuge pages in ksm for now. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-14thp: ksm: free swap when swapcache page is replacedHugh Dickins1-0/+2
When a swapcache page is replaced by a ksm page, it's best to free that swap immediately. Reported-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-12-03ksm: annotate ksm_thread_mutex is no deadlock sourceKOSAKI Motohiro1-1/+6
commit 62b61f611e ("ksm: memory hotremove migration only") caused the following new lockdep warning. ======================================================= [ INFO: possible circular locking dependency detected ] ------------------------------------------------------- bash/1621 is trying to acquire lock: ((memory_chain).rwsem){.+.+.+}, at: [<ffffffff81079339>] __blocking_notifier_call_chain+0x69/0xc0 but task is already holding lock: (ksm_thread_mutex){+.+.+.}, at: [<ffffffff8113a3aa>] ksm_memory_callback+0x3a/0xc0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (ksm_thread_mutex){+.+.+.}: [<ffffffff8108b70a>] lock_acquire+0xaa/0x140 [<ffffffff81505d74>] __mutex_lock_common+0x44/0x3f0 [<ffffffff81506228>] mutex_lock_nested+0x48/0x60 [<ffffffff8113a3aa>] ksm_memory_callback+0x3a/0xc0 [<ffffffff8150c21c>] notifier_call_chain+0x8c/0xe0 [<ffffffff8107934e>] __blocking_notifier_call_chain+0x7e/0xc0 [<ffffffff810793a6>] blocking_notifier_call_chain+0x16/0x20 [<ffffffff813afbfb>] memory_notify+0x1b/0x20 [<ffffffff81141b7c>] remove_memory+0x1cc/0x5f0 [<ffffffff813af53d>] memory_block_change_state+0xfd/0x1a0 [<ffffffff813afd62>] store_mem_state+0xe2/0xf0 [<ffffffff813a0bb0>] sysdev_store+0x20/0x30 [<ffffffff811bc116>] sysfs_write_file+0xe6/0x170 [<ffffffff8114f398>] vfs_write+0xc8/0x190 [<ffffffff8114fc14>] sys_write+0x54/0x90 [<ffffffff810028b2>] system_call_fastpath+0x16/0x1b -> #0 ((memory_chain).rwsem){.+.+.+}: [<ffffffff8108b5ba>] __lock_acquire+0x155a/0x1600 [<ffffffff8108b70a>] lock_acquire+0xaa/0x140 [<ffffffff81506601>] down_read+0x51/0xa0 [<ffffffff81079339>] __blocking_notifier_call_chain+0x69/0xc0 [<ffffffff810793a6>] blocking_notifier_call_chain+0x16/0x20 [<ffffffff813afbfb>] memory_notify+0x1b/0x20 [<ffffffff81141f1e>] remove_memory+0x56e/0x5f0 [<ffffffff813af53d>] memory_block_change_state+0xfd/0x1a0 [<ffffffff813afd62>] store_mem_state+0xe2/0xf0 [<ffffffff813a0bb0>] sysdev_store+0x20/0x30 [<ffffffff811bc116>] sysfs_write_file+0xe6/0x170 [<ffffffff8114f398>] vfs_write+0xc8/0x190 [<ffffffff8114fc14>] sys_write+0x54/0x90 [<ffffffff810028b2>] system_call_fastpath+0x16/0x1b But it's a false positive. Both memory_chain.rwsem and ksm_thread_mutex have an outer lock (mem_hotplug_mutex). So they cannot deadlock. Thus, This patch annotate ksm_thread_mutex is not deadlock source. [akpm@linux-foundation.org: update comment, from Hugh] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-04ksm: fix bad user data when swappingHugh Dickins1-2/+4
Building under memory pressure, with KSM on 2.6.36-rc5, collapsed with an internal compiler error: typically indicating an error in swapping. Perhaps there's a timing issue which makes it now more likely, perhaps it's just a long time since I tried for so long: this bug goes back to KSM swapping in 2.6.33. Notice how reuse_swap_page() allows an exclusive page to be reused, but only does SetPageDirty if it can delete it from swap cache right then - if it's currently under Writeback, it has to be left in cache and we don't SetPageDirty, but the page can be reused. Fine, the dirty bit will get set in the pte; but notice how zap_pte_range() does not bother to transfer pte_dirty to page_dirty when unmapping a PageAnon. If KSM chooses to share such a page, it will look like a clean copy of swapcache, and not be written out to swap when its memory is needed; then stale data read back from swap when it's needed again. We could fix this in reuse_swap_page() (or even refuse to reuse a page under writeback), but it's more honest to fix my oversight in KSM's write_protect_page(). Several days of testing on three machines confirms that this fixes the issue they showed. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-09-10mm: fix swapin race conditionAndrea Arcangeli1-3/+0
The pte_same check is reliable only if the swap entry remains pinned (by the page lock on swapcache). We've also to ensure the swapcache isn't removed before we take the lock as try_to_free_swap won't care about the page pin. One of the possible impacts of this patch is that a KSM-shared page can point to the anon_vma of another process, which could exit before the page is freed. This can leave a page with a pointer to a recycled anon_vma object, or worse, a pointer to something that is no longer an anon_vma. [riel@redhat.com: changelog help] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: <stable@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-10ksm: cleanup for mm_slots_hashLai Jiangshan1-29/+9
Use compile-allocated memory instead of dynamic allocated memory for mm_slots_hash. Use hash_ptr() instead divisions for bucket calculation. Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com> Signed-off-by: Izik Eidus <ieidus@redhat.com> Cc: Avi Kivity <avi@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-10mm: extend KSM refcounts to the anon_vma rootRik van Riel1-11/+6
KSM reference counts can cause an anon_vma to exist after the processe it belongs to have already exited. Because the anon_vma lock now lives in the root anon_vma, we need to ensure that the root anon_vma stays around until after all the "child" anon_vmas have been freed. The obvious way to do this is to have a "child" anon_vma take a reference to the root in anon_vma_fork. When the anon_vma is freed at munmap or process exit, we drop the refcount in anon_vma_unlink and possibly free the root anon_vma. The KSM anon_vma reference count function also needs to be modified to deal with the possibility of freeing 2 levels of anon_vma. The easiest way to do this is to break out the KSM magic and make it generic. When compiling without CONFIG_KSM, this code is compiled out. Signed-off-by: Rik van Riel <riel@redhat.com> Tested-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Tested-by: Dave Young <hidave.darkstar@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-08-10mm: always lock the root (oldest) anon_vmaRik van Riel1-1/+1
Always (and only) lock the root (oldest) anon_vma whenever we do something in an anon_vma. The recently introduced anon_vma scalability is due to the rmap code scanning only the VMAs that need to be scanned. Many common operations still took the anon_vma lock on the root anon_vma, so always taking that lock is not expected to introduce any scalability issues. However, always taking the same lock does mean we only need to take one lock, which means rmap_walk on pages from any anon_vma in the vma is excluded from occurring during an munmap, expand_stack or other operation that needs to exclude rmap_walk and similar functions. Also add the proper locking to vma_adjust. Signed-off-by: Rik van Riel <riel@redhat.com> Tested-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Reviewed-by: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>