summaryrefslogtreecommitdiff
path: root/mm/internal.h
AgeCommit message (Collapse)AuthorFilesLines
2015-07-01mm: meminit: finish initialisation of struct pages before basic setupMel Gorman1-24/+0
Waiman Long reported that 24TB machines hit OOM during basic setup when struct page initialisation was deferred. One approach is to initialise memory on demand but it interferes with page allocator paths. This patch creates dedicated threads to initialise memory before basic setup. It then blocks on a rw_semaphore until completion as a wait_queue and counter is overkill. This may be slower to boot but it's simplier overall and also gets rid of a section mangling which existed so kswapd could do the initialisation. [akpm@linux-foundation.org: include rwsem.h, use DECLARE_RWSEM, fix comment, remove unneeded cast] Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Waiman Long <waiman.long@hp.com Cc: Nathan Zimmer <nzimmer@sgi.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Scott Norton <scott.norton@hp.com> Tested-by: Daniel J Blueman <daniel@numascale.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-07-01mm: meminit: remove mminit_verify_page_linksMel Gorman1-8/+0
mminit_verify_page_links() is an extremely paranoid check that was introduced when memory initialisation was being heavily reworked. Profiles indicated that up to 10% of parallel memory initialisation was spent on checking this for every page. The cost could be reduced but in practice this check only found problems very early during the initialisation rewrite and has found nothing since. This patch removes an expensive unnecessary check. Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Nate Zimmer <nzimmer@sgi.com> Tested-by: Waiman Long <waiman.long@hp.com> Tested-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Robin Holt <robinmholt@gmail.com> Cc: Nate Zimmer <nzimmer@sgi.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Scott Norton <scott.norton@hp.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-07-01mm: meminit: initialise remaining struct pages in parallel with kswapdMel Gorman1-0/+6
Only a subset of struct pages are initialised at the moment. When this patch is applied kswapd initialise the remaining struct pages in parallel. This should boot faster by spreading the work to multiple CPUs and initialising data that is local to the CPU. The user-visible effect on large machines is that free memory will appear to rapidly increase early in the lifetime of the system until kswapd reports that all memory is initialised in the kernel log. Once initialised there should be no other user-visibile effects. Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Nate Zimmer <nzimmer@sgi.com> Tested-by: Waiman Long <waiman.long@hp.com> Tested-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Robin Holt <robinmholt@gmail.com> Cc: Nate Zimmer <nzimmer@sgi.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Scott Norton <scott.norton@hp.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-07-01mm: meminit: initialise a subset of struct pages if ↵Mel Gorman1-0/+18
CONFIG_DEFERRED_STRUCT_PAGE_INIT is set This patch initalises all low memory struct pages and 2G of the highest zone on each node during memory initialisation if CONFIG_DEFERRED_STRUCT_PAGE_INIT is set. That config option cannot be set but will be available in a later patch. Parallel initialisation of struct page depends on some features from memory hotplug and it is necessary to alter alter section annotations. Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Nate Zimmer <nzimmer@sgi.com> Tested-by: Waiman Long <waiman.long@hp.com> Tested-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Robin Holt <robinmholt@gmail.com> Cc: Nate Zimmer <nzimmer@sgi.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Scott Norton <scott.norton@hp.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-07-01mm: page_alloc: pass PFN to __free_pages_bootmemMel Gorman1-1/+2
__free_pages_bootmem prepares a page for release to the buddy allocator and assumes that the struct page is initialised. Parallel initialisation of struct pages defers initialisation and __free_pages_bootmem can be called for struct pages that cannot yet map struct page to PFN. This patch passes PFN to __free_pages_bootmem with no other functional change. Signed-off-by: Mel Gorman <mgorman@suse.de> Tested-by: Nate Zimmer <nzimmer@sgi.com> Tested-by: Waiman Long <waiman.long@hp.com> Tested-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Pekka Enberg <penberg@kernel.org> Cc: Robin Holt <robinmholt@gmail.com> Cc: Nate Zimmer <nzimmer@sgi.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Waiman Long <waiman.long@hp.com> Cc: Scott Norton <scott.norton@hp.com> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16mm: remove rest of ACCESS_ONCE() usagesJason Low1-2/+2
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/ tree since it doesn't work reliably on non-scalar types. This patch removes the rest of the usages of ACCESS_ONCE, and use the new READ_ONCE API for the read accesses. This makes things cleaner, instead of using separate/multiple sets of APIs. Signed-off-by: Jason Low <jason.low2@hp.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Davidlohr Bueso <dave@stgolabs.net> Acked-by: Rik van Riel <riel@redhat.com> Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15mm/compaction: enhance compaction finish conditionJoonsoo Kim1-0/+2
Compaction has anti fragmentation algorithm. It is that freepage should be more than pageblock order to finish the compaction if we don't find any freepage in requested migratetype buddy list. This is for mitigating fragmentation, but, there is a lack of migratetype consideration and it is too excessive compared to page allocator's anti fragmentation algorithm. Not considering migratetype would cause premature finish of compaction. For example, if allocation request is for unmovable migratetype, freepage with CMA migratetype doesn't help that allocation and compaction should not be stopped. But, current logic regards this situation as compaction is no longer needed, so finish the compaction. Secondly, condition is too excessive compared to page allocator's logic. We can steal freepage from other migratetype and change pageblock migratetype on more relaxed conditions in page allocator. This is designed to prevent fragmentation and we can use it here. Imposing hard constraint only to the compaction doesn't help much in this case since page allocator would cause fragmentation again. To solve these problems, this patch borrows anti fragmentation logic from page allocator. It will reduce premature compaction finish in some cases and reduce excessive compaction work. stress-highalloc test in mmtests with non movable order 7 allocation shows considerable increase of compaction success rate. Compaction success rate (Compaction success * 100 / Compaction stalls, %) 31.82 : 42.20 I tested it on non-reboot 5 runs stress-highalloc benchmark and found that there is no more degradation on allocation success rate than before. That roughly means that this patch doesn't result in more fragmentations. Vlastimil suggests additional idea that we only test for fallbacks when migration scanner has scanned a whole pageblock. It looked good for fragmentation because chance of stealing increase due to making more free pages in certain pageblock. So, I tested it, but, it results in decreased compaction success rate, roughly 38.00. I guess the reason that if system is low memory condition, watermark check could be failed due to not enough order 0 free page and so, sometimes, we can't reach a fallback check although migrate_pfn is aligned to pageblock_nr_pages. I can insert code to cope with this situation but it makes code more complicated so I don't include his idea at this patch. [akpm@linux-foundation.org: fix CONFIG_CMA=n build] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15mm: rename __mlock_vma_pages_range() to populate_vma_page_range()Kirill A. Shutemov1-1/+1
__mlock_vma_pages_range() doesn't necessarily mlock pages. It depends on vma flags. The same codepath is used for MAP_POPULATE. Let's rename __mlock_vma_pages_range() to populate_vma_page_range(). This patch also drops mlock_vma_pages_range() references from documentation. It has gone in cea10a19b797 ("mm: directly use __mlock_vma_pages_range() in find_extend_vma()"). Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13mm/internal.h: don't split printk call in twoRasmus Villemoes1-2/+4
All users of mminit_dprintk pass a compile-time constant as level, so this just makes gcc emit a single printk call instead of two. Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Vishnu Pratap Singh <vishnu.ps@samsung.com> Cc: Pintu Kumar <pintu.k@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Li Zefan <lizefan@huawei.com> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12mm: reduce try_to_compact_pages parametersVlastimil Babka1-0/+22
Expand the usage of the struct alloc_context introduced in the previous patch also for calling try_to_compact_pages(), to reduce the number of its parameters. Since the function is in different compilation unit, we need to move alloc_context definition in the shared mm/internal.h header. With this change we get simpler code and small savings of code size and stack usage: add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-27 (-27) function old new delta __alloc_pages_direct_compact 283 256 -27 add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-13 (-13) function old new delta try_to_compact_pages 582 569 -13 Stack usage of __alloc_pages_direct_compact goes from 24 to none (per scripts/checkstack.pl). Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Minchan Kim <minchan@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11mm, compaction: always update cached scanner positionsVlastimil Babka1-5/+0
Compaction caches the migration and free scanner positions between compaction invocations, so that the whole zone gets eventually scanned and there is no bias towards the initial scanner positions at the beginning/end of the zone. The cached positions are continuously updated as scanners progress and the updating stops as soon as a page is successfully isolated. The reasoning behind this is that a pageblock where isolation succeeded is likely to succeed again in near future and it should be worth revisiting it. However, the downside is that potentially many pages are rescanned without successful isolation. At worst, there might be a page where isolation from LRU succeeds but migration fails (potentially always). So upon encountering this page, cached position would always stop being updated for no good reason. It might have been useful to let such page be rescanned with sync compaction after async one failed, but this is now handled by caching scanner position for async and sync mode separately since commit 35979ef33931 ("mm, compaction: add per-zone migration pfn cache for async compaction"). After this patch, cached positions are updated unconditionally. In stress-highalloc benchmark, this has decreased the numbers of scanned pages by few percent, without affecting allocation success rates. To prevent free scanner from leaving free pages behind after they are returned due to page migration failure, the cached scanner pfn is changed to point to the pageblock of the returned free page with the highest pfn, before leaving compact_zone(). [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11mm, compaction: pass classzone_idx and alloc_flags to watermark checkingVlastimil Babka1-0/+2
Compaction relies on zone watermark checks for decisions such as if it's worth to start compacting in compaction_suitable() or whether compaction should stop in compact_finished(). The watermark checks take classzone_idx and alloc_flags parameters, which are related to the memory allocation request. But from the context of compaction they are currently passed as 0, including the direct compaction which is invoked to satisfy the allocation request, and could therefore know the proper values. The lack of proper values can lead to mismatch between decisions taken during compaction and decisions related to the allocation request. Lack of proper classzone_idx value means that lowmem_reserve is not taken into account. This has manifested (during recent changes to deferred compaction) when DMA zone was used as fallback for preferred Normal zone. compaction_suitable() without proper classzone_idx would think that the watermarks are already satisfied, but watermark check in get_page_from_freelist() would fail. Because of this problem, deferring compaction has extra complexity that can be removed in the following patch. The issue (not confirmed in practice) with missing alloc_flags is opposite in nature. For allocations that include ALLOC_HIGH, ALLOC_HIGHER or ALLOC_CMA in alloc_flags (the last includes all MOVABLE allocations on CMA-enabled systems) the watermark checking in compaction with 0 passed will be stricter than in get_page_from_freelist(). In these cases compaction might be running for a longer time than is really needed. Another issue compaction_suitable() is that the check for "does the zone need compaction at all?" comes only after the check "does the zone have enough free free pages to succeed compaction". The latter considers extra pages for migration and can therefore in some situations fail and return COMPACT_SKIPPED, although the high-order allocation would succeed and we should return COMPACT_PARTIAL. This patch fixes these problems by adding alloc_flags and classzone_idx to struct compact_control and related functions involved in direct compaction and watermark checking. Where possible, all other callers of compaction_suitable() pass proper values where those are known. This is currently limited to classzone_idx, which is sometimes known in kswapd context. However, the direct reclaim callers should_continue_reclaim() and compaction_ready() do not currently know the proper values, so the coordination between reclaim and compaction may still not be as accurate as it could. This can be fixed later, if it's shown to be an issue. Additionaly the checks in compact_suitable() are reordered to address the second issue described above. The effect of this patch should be slightly better high-order allocation success rates and/or less compaction overhead, depending on the type of allocations and presence of CMA. It allows simplifying deferred compaction code in a followup patch. When testing with stress-highalloc, there was some slight improvement (which might be just due to variance) in success rates of non-THP-like allocations. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-14mm/page_alloc: restrict max order of merging on isolated pageblockJoonsoo Kim1-0/+25
Current pageblock isolation logic could isolate each pageblock individually. This causes freepage accounting problem if freepage with pageblock order on isolate pageblock is merged with other freepage on normal pageblock. We can prevent merging by restricting max order of merging to pageblock order if freepage is on isolate pageblock. A side-effect of this change is that there could be non-merged buddy freepage even if finishing pageblock isolation, because undoing pageblock isolation is just to move freepage from isolate buddy list to normal buddy list rather than to consider merging. So, the patch also makes undoing pageblock isolation consider freepage merge. When un-isolation, freepage with more than pageblock order and it's buddy are checked. If they are on normal pageblock, instead of just moving, we isolate the freepage and free it in order to get merged. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Heesub Shin <heesub.shin@samsung.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Ritesh Harjani <ritesh.list@gmail.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-10mm, compaction: pass gfp mask to compact_controlDavid Rientjes1-1/+1
struct compact_control currently converts the gfp mask to a migratetype, but we need the entire gfp mask in a follow-up patch. Pass the entire gfp mask as part of struct compact_control. Signed-off-by: David Rientjes <rientjes@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-10mm, compaction: skip buddy pages by their order in the migrate scannerVlastimil Babka1-1/+15
The migration scanner skips PageBuddy pages, but does not consider their order as checking page_order() is generally unsafe without holding the zone->lock, and acquiring the lock just for the check wouldn't be a good tradeoff. Still, this could avoid some iterations over the rest of the buddy page, and if we are careful, the race window between PageBuddy() check and page_order() is small, and the worst thing that can happen is that we skip too much and miss some isolation candidates. This is not that bad, as compaction can already fail for many other reasons like parallel allocations, and those have much larger race window. This patch therefore makes the migration scanner obtain the buddy page order and use it to skip the whole buddy page, if the order appears to be in the valid range. It's important that the page_order() is read only once, so that the value used in the checks and in the pfn calculation is the same. But in theory the compiler can replace the local variable by multiple inlines of page_order(). Therefore, the patch introduces page_order_unsafe() that uses ACCESS_ONCE to prevent this. Testing with stress-highalloc from mmtests shows a 15% reduction in number of pages scanned by migration scanner. The reduction is >60% with __GFP_NO_KSWAPD allocations, along with success rates better by few percent. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-10mm, compaction: khugepaged should not give up due to need_resched()Vlastimil Babka1-2/+2
Async compaction aborts when it detects zone lock contention or need_resched() is true. David Rientjes has reported that in practice, most direct async compactions for THP allocation abort due to need_resched(). This means that a second direct compaction is never attempted, which might be OK for a page fault, but khugepaged is intended to attempt a sync compaction in such case and in these cases it won't. This patch replaces "bool contended" in compact_control with an int that distinguishes between aborting due to need_resched() and aborting due to lock contention. This allows propagating the abort through all compaction functions as before, but passing the abort reason up to __alloc_pages_slowpath() which decides when to continue with direct reclaim and another compaction attempt. Another problem is that try_to_compact_pages() did not act upon the reported contention (both need_resched() or lock contention) immediately and would proceed with another zone from the zonelist. When need_resched() is true, that means initializing another zone compaction, only to check again need_resched() in isolate_migratepages() and aborting. For zone lock contention, the unintended consequence is that the lock contended status reported back to the allocator is detrmined from the last zone where compaction was attempted, which is rather arbitrary. This patch fixes the problem in the following way: - async compaction of a zone aborting due to need_resched() or fatal signal pending means that further zones should not be tried. We report COMPACT_CONTENDED_SCHED to the allocator. - aborting zone compaction due to lock contention means we can still try another zone, since it has different set of locks. We report back COMPACT_CONTENDED_LOCK only if *all* zones where compaction was attempted, it was aborted due to lock contention. As a result of these fixes, khugepaged will proceed with second sync compaction as intended, when the preceding async compaction aborted due to need_resched(). Page fault compactions aborting due to need_resched() will spare some cycles previously wasted by initializing another zone compaction only to abort again. Lock contention will be reported only when compaction in all zones aborted due to lock contention, and therefore it's not a good idea to try again after reclaim. In stress-highalloc from mmtests configured to use __GFP_NO_KSWAPD, this has improved number of THP collapse allocations by 10%, which shows positive effect on khugepaged. The benchmark's success rates are unchanged as it is not recognized as khugepaged. Numbers of compact_stall and compact_fail events have however decreased by 20%, with compact_success still a bit improved, which is good. With benchmark configured not to use __GFP_NO_KSWAPD, there is 6% improvement in THP collapse allocations, and only slight improvement in stalls and failures. [akpm@linux-foundation.org: fix warnings] Reported-by: David Rientjes <rientjes@google.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-10mm, compaction: move pageblock checks up from isolate_migratepages_range()Vlastimil Babka1-2/+2
isolate_migratepages_range() is the main function of the compaction scanner, called either on a single pageblock by isolate_migratepages() during regular compaction, or on an arbitrary range by CMA's __alloc_contig_migrate_range(). It currently perfoms two pageblock-wide compaction suitability checks, and because of the CMA callpath, it tracks if it crossed a pageblock boundary in order to repeat those checks. However, closer inspection shows that those checks are always true for CMA: - isolation_suitable() is true because CMA sets cc->ignore_skip_hint to true - migrate_async_suitable() check is skipped because CMA uses sync compaction We can therefore move the compaction-specific checks to isolate_migratepages() and simplify isolate_migratepages_range(). Furthermore, we can mimic the freepage scanner family of functions, which has isolate_freepages_block() function called both by compaction from isolate_freepages() and by CMA from isolate_freepages_range(), where each use-case adds own specific glue code. This allows further code simplification. Thus, we rename isolate_migratepages_range() to isolate_migratepages_block() and limit its functionality to a single pageblock (or its subset). For CMA, a new different isolate_migratepages_range() is created as a CMA-specific wrapper for the _block() function. The checks specific to compaction are moved to isolate_migratepages(). As part of the unification of these two families of functions, we remove the redundant zone parameter where applicable, since zone pointer is already passed in cc->zone. Furthermore, going back to compact_zone() and compact_finished() when pageblock is found unsuitable (now by isolate_migratepages()) is wasteful - the checks are meant to skip pageblocks quickly. The patch therefore also introduces a simple loop into isolate_migratepages() so that it does not return immediately on failed pageblock checks, but keeps going until isolate_migratepages_range() gets called once. Similarily to isolate_freepages(), the function periodically checks if it needs to reschedule or abort async compaction. [iamjoonsoo.kim@lge.com: fix isolated page counting bug in compaction] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-07mm/internal.h: use nth_pageFabian Frederick1-1/+1
Use nth_page instead of pfn_to_page(page_to_pfn Signed-off-by: Fabian Frederick <fabf@skynet.be> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05mm, compaction: properly signal and act upon lock and need_sched() contentionVlastimil Babka1-1/+4
Compaction uses compact_checklock_irqsave() function to periodically check for lock contention and need_resched() to either abort async compaction, or to free the lock, schedule and retake the lock. When aborting, cc->contended is set to signal the contended state to the caller. Two problems have been identified in this mechanism. First, compaction also calls directly cond_resched() in both scanners when no lock is yet taken. This call either does not abort async compaction, or set cc->contended appropriately. This patch introduces a new compact_should_abort() function to achieve both. In isolate_freepages(), the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to match what the migration scanner does in the preliminary page checks. In case a pageblock is found suitable for calling isolate_freepages_block(), the checks within there are done on higher frequency. Second, isolate_freepages() does not check if isolate_freepages_block() aborted due to contention, and advances to the next pageblock. This violates the principle of aborting on contention, and might result in pageblocks not being scanned completely, since the scanning cursor is advanced. This problem has been noticed in the code by Joonsoo Kim when reviewing related patches. This patch makes isolate_freepages_block() check the cc->contended flag and abort. In case isolate_freepages() has already isolated some pages before aborting due to contention, page migration will proceed, which is OK since we do not want to waste the work that has been done, and page migration has own checks for contention. However, we do not want another isolation attempt by either of the scanners, so cc->contended flag check is added also to compaction_alloc() and compact_finished() to make sure compaction is aborted right after the migration. The outcome of the patch should be reduced lock contention by async compaction and lower latencies for higher-order allocations where direct compaction is involved. [akpm@linux-foundation.org: fix typo in comment] Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Tested-by: Shawn Guo <shawn.guo@linaro.org> Tested-by: Kevin Hilman <khilman@linaro.org> Tested-by: Stephen Warren <swarren@nvidia.com> Tested-by: Fabio Estevam <fabio.estevam@freescale.com> Cc: David Rientjes <rientjes@google.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05mm: fold mlocked_vma_newpage() into its only call siteJianyu Zhan1-29/+0
In previous commit(mm: use the light version __mod_zone_page_state in mlocked_vma_newpage()) a irq-unsafe __mod_zone_page_state is used. And as suggested by Andrew, to reduce the risks that new call sites incorrectly using mlocked_vma_newpage() without knowing they are adding racing, this patch folds mlocked_vma_newpage() into its only call site, page_add_new_anon_rmap, to make it open-cocded for people to know what is going on. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Jianyu Zhan <nasa4836@gmail.com> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Suggested-by: Hugh Dickins <hughd@google.com> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05mm: use the light version __mod_zone_page_state in mlocked_vma_newpage()Jianyu Zhan1-1/+6
mlocked_vma_newpage() is called with pte lock held(a spinlock), which implies preemtion disabled, and the vm stat counter is not modified from interrupt context, so we need not use an irq-safe mod_zone_page_state() here, using a light-weight version __mod_zone_page_state() would be OK. This patch also documents __mod_zone_page_state() and some of its callsites. The comment above __mod_zone_page_state() is from Hugh Dickins, and acked by Christoph. Most credits to Hugh and Christoph for the clarification on the usage of the __mod_zone_page_state(). [akpm@linux-foundation.org: coding-style fixes] Suggested-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Hugh Dickins <hughd@google.com> Signed-off-by: Jianyu Zhan <nasa4836@gmail.com> Reviewed-by: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05mm, compaction: embed migration mode in compact_controlDavid Rientjes1-1/+1
We're going to want to manipulate the migration mode for compaction in the page allocator, and currently compact_control's sync field is only a bool. Currently, we only do MIGRATE_ASYNC or MIGRATE_SYNC_LIGHT compaction depending on the value of this bool. Convert the bool to enum migrate_mode and pass the migration mode in directly. Later, we'll want to avoid MIGRATE_SYNC_LIGHT for thp allocations in the pagefault patch to avoid unnecessary latency. This also alters compaction triggered from sysfs, either for the entire system or for a node, to force MIGRATE_SYNC. [akpm@linux-foundation.org: fix build] [iamjoonsoo.kim@lge.com: use MIGRATE_SYNC in alloc_contig_range()] Signed-off-by: David Rientjes <rientjes@google.com> Suggested-by: Mel Gorman <mgorman@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-05mm: move get_user_pages()-related code to separate fileKirill A. Shutemov1-0/+5
mm/memory.c is overloaded: over 4k lines. get_user_pages() code is pretty much self-contained let's move it to separate file. No other changes made. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08mm/readahead.c: inline ra_submitFabian Frederick1-0/+15
Commit f9acc8c7b35a ("readahead: sanify file_ra_state names") left ra_submit with a single function call. Move ra_submit to internal.h and inline it to save some stack. Thanks to Andrew Morton for commenting different versions. Signed-off-by: Fabian Frederick <fabf@skynet.be> Suggested-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-08mm: page_alloc: spill to remote nodes before waking kswapdJohannes Weiner1-0/+1
On NUMA systems, a node may start thrashing cache or even swap anonymous pages while there are still free pages on remote nodes. This is a result of commits 81c0a2bb515f ("mm: page_alloc: fair zone allocator policy") and fff4068cba48 ("mm: page_alloc: revert NUMA aspect of fair allocation policy"). Before those changes, the allocator would first try all allowed zones, including those on remote nodes, before waking any kswapds. But now, the allocator fastpath doubles as the fairness pass, which in turn can only consider the local node to prevent remote spilling based on exhausted fairness batches alone. Remote nodes are only considered in the slowpath, after the kswapds are woken up. But if remote nodes still have free memory, kswapd should not be woken to rebalance the local node or it may thrash cash or swap prematurely. Fix this by adding one more unfair pass over the zonelist that is allowed to spill to remote nodes after the local fairness pass fails but before entering the slowpath and waking the kswapds. This also gets rid of the GFP_THISNODE exemption from the fairness protocol because the unfair pass is no longer tied to kswapd, which GFP_THISNODE is not allowed to wake up. However, because remote spills can be more frequent now - we prefer them over local kswapd reclaim - the allocation batches on remote nodes could underflow more heavily. When resetting the batches, use atomic_long_read() directly instead of zone_page_state() to calculate the delta as the latter filters negative counter values. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: <stable@kernel.org> [3.12+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-30mm/page-writeback.c: do not count anon pages as dirtyable memoryJohannes Weiner1-1/+0
The VM is currently heavily tuned to avoid swapping. Whether that is good or bad is a separate discussion, but as long as the VM won't swap to make room for dirty cache, we can not consider anonymous pages when calculating the amount of dirtyable memory, the baseline to which dirty_background_ratio and dirty_ratio are applied. A simple workload that occupies a significant size (40+%, depending on memory layout, storage speeds etc.) of memory with anon/tmpfs pages and uses the remainder for a streaming writer demonstrates this problem. In that case, the actual cache pages are a small fraction of what is considered dirtyable overall, which results in an relatively large portion of the cache pages to be dirtied. As kswapd starts rotating these, random tasks enter direct reclaim and stall on IO. Only consider free pages and file pages dirtyable. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Tejun Heo <tj@kernel.org> Tested-by: Tejun Heo <tj@kernel.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24mm: improve documentation of page_orderMel Gorman1-3/+5
Developers occasionally try and optimise PFN scanners by using page_order but miss that in general it requires zone->lock. This has happened twice for compaction.c and rejected both times. This patch clarifies the documentation of page_order and adds a note to compaction.c why page_order is not used. [akpm@linux-foundation.org: tweaks] [lauraa@codeaurora.org: Corrected a page_zone(page)->lock reference] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rafael Aquini <aquini@redhat.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Laura Abbott <lauraa@codeaurora.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24mm: show message when updating min_free_kbytes in thpHan Pingtian1-0/+1
min_free_kbytes may be raised during THP's initialization. Sometimes, this will change the value which was set by the user. Showing this message will clarify this confusion. Only show this message when changing a value which was set by the user according to Michal Hocko's suggestion. Show the old value of min_free_kbytes according to Dave Hansen's suggestion. This will give user the chance to restore old value of min_free_kbytes. Signed-off-by: Han Pingtian <hanpt@linux.vnet.ibm.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-24mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGESasha Levin1-5/+5
Most of the VM_BUG_ON assertions are performed on a page. Usually, when one of these assertions fails we'll get a BUG_ON with a call stack and the registers. I've recently noticed based on the requests to add a small piece of code that dumps the page to various VM_BUG_ON sites that the page dump is quite useful to people debugging issues in mm. This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what VM_BUG_ON() does, also dumps the page before executing the actual BUG_ON. [akpm@linux-foundation.org: fix up includes] Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22mm: thp: __get_page_tail_foll() can use get_huge_page_tail()Oleg Nesterov1-4/+1
Cleanup. Change __get_page_tail_foll() to use get_huge_page_tail() to avoid the code duplication. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dave Jones <davej@redhat.com> Cc: Darren Hart <dvhart@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Acked-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-22mm: tail page refcounting optimization for slab and hugetlbfsAndrea Arcangeli1-1/+2
This skips the _mapcount mangling for slab and hugetlbfs pages. The main trouble in doing this is to guarantee that PageSlab and PageHeadHuge remains constant for all get_page/put_page run on the tail of slab or hugetlbfs compound pages. Otherwise if they're set during get_page but not set during put_page, the _mapcount of the tail page would underflow. PageHeadHuge will remain true until the compound page is released and enters the buddy allocator so it won't risk to change even if the tail page is the last reference left on the page. PG_slab instead is cleared before the slab frees the head page with put_page, so if the tail pin is released after the slab freed the page, we would have a problem. But in the slab case the tail pin cannot be the last reference left on the page. This is because the slab code is free to reuse the compound page after a kfree/kmem_cache_free without having to check if there's any tail pin left. In turn all tail pins must be always released while the head is still pinned by the slab code and so we know PG_slab will be still set too. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-12mm: vmscan: fix do_try_to_free_pages() livelockLisa Du1-0/+2
This patch is based on KOSAKI's work and I add a little more description, please refer https://lkml.org/lkml/2012/6/14/74. Currently, I found system can enter a state that there are lots of free pages in a zone but only order-0 and order-1 pages which means the zone is heavily fragmented, then high order allocation could make direct reclaim path's long stall(ex, 60 seconds) especially in no swap and no compaciton enviroment. This problem happened on v3.4, but it seems issue still lives in current tree, the reason is do_try_to_free_pages enter live lock: kswapd will go to sleep if the zones have been fully scanned and are still not balanced. As kswapd thinks there's little point trying all over again to avoid infinite loop. Instead it changes order from high-order to 0-order because kswapd think order-0 is the most important. Look at 73ce02e9 in detail. If watermarks are ok, kswapd will go back to sleep and may leave zone->all_unreclaimable =3D 0. It assume high-order users can still perform direct reclaim if they wish. Direct reclaim continue to reclaim for a high order which is not a COSTLY_ORDER without oom-killer until kswapd turn on zone->all_unreclaimble= . This is because to avoid too early oom-kill. So it means direct_reclaim depends on kswapd to break this loop. In worst case, direct-reclaim may continue to page reclaim forever when kswapd sleeps forever until someone like watchdog detect and finally kill the process. As described in: http://thread.gmane.org/gmane.linux.kernel.mm/103737 We can't turn on zone->all_unreclaimable from direct reclaim path because direct reclaim path don't take any lock and this way is racy. Thus this patch removes zone->all_unreclaimable field completely and recalculates zone reclaimable state every time. Note: we can't take the idea that direct-reclaim see zone->pages_scanned directly and kswapd continue to use zone->all_unreclaimable. Because, it is racy. commit 929bea7c71 (vmscan: all_unreclaimable() use zone->all_unreclaimable as a name) describes the detail. [akpm@linux-foundation.org: uninline zone_reclaimable_pages() and zone_reclaimable()] Cc: Aaditya Kumar <aaditya.kumar.30@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Nick Piggin <npiggin@gmail.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Bob Liu <lliubbo@gmail.com> Cc: Neil Zhang <zhangwm@marvell.com> Cc: Russell King - ARM Linux <linux@arm.linux.org.uk> Reviewed-by: Michal Hocko <mhocko@suse.cz> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Lisa Du <cldu@marvell.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-09mm: remove unused __put_page()Zhang Yanfei1-5/+0
This function is nowhere used, and it has a confusing name with put_page in mm/swap.c. So better to remove it. Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-28mm: accelerate munlock() treatment of THP pagesMichel Lespinasse1-1/+1
munlock_vma_pages_range() was always incrementing addresses by PAGE_SIZE at a time. When munlocking THP pages (or the huge zero page), this resulted in taking the mm->page_table_lock 512 times in a row. We can do better by making use of the page_mask returned by follow_page_mask (for the huge zero page case), or the size of the page munlock_vma_page() operated on (for the true THP page case). Signed-off-by: Michel Lespinasse <walken@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-24mm: directly use __mlock_vma_pages_range() in find_extend_vma()Michel Lespinasse1-2/+2
In find_extend_vma(), we don't need mlock_vma_pages_range() to verify the vma type - we know we're working with a stack. So, we can call directly into __mlock_vma_pages_range(), and remove the last make_pages_present() call site. Note that we don't use mm_populate() here, so we can't release the mmap_sem while allocating new stack pages. This is deemed acceptable, because the stack vmas grow by a bounded number of pages at a time, and these are anon pages so we don't have to read from disk to populate them. Signed-off-by: Michel Lespinasse <walken@google.com> Acked-by: Rik van Riel <riel@redhat.com> Tested-by: Andy Lutomirski <luto@amacapital.net> Cc: Greg Ungerer <gregungerer@westnet.com.au> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-11mm: compaction: Partially revert capture of suitable high-order pageMel Gorman1-1/+0
Eric Wong reported on 3.7 and 3.8-rc2 that ppoll() got stuck when waiting for POLLIN on a local TCP socket. It was easier to trigger if there was disk IO and dirty pages at the same time and he bisected it to commit 1fb3f8ca0e92 ("mm: compaction: capture a suitable high-order page immediately when it is made available"). The intention of that patch was to improve high-order allocations under memory pressure after changes made to reclaim in 3.6 drastically hurt THP allocations but the approach was flawed. For Eric, the problem was that page->pfmemalloc was not being cleared for captured pages leading to a poor interaction with swap-over-NFS support causing the packets to be dropped. However, I identified a few more problems with the patch including the fact that it can increase contention on zone->lock in some cases which could result in async direct compaction being aborted early. In retrospect the capture patch took the wrong approach. What it should have done is mark the pageblock being migrated as MIGRATE_ISOLATE if it was allocating for THP and avoided races that way. While the patch was showing to improve allocation success rates at the time, the benefit is marginal given the relative complexity and it should be revisited from scratch in the context of the other reclaim-related changes that have taken place since the patch was first written and tested. This patch partially reverts commit 1fb3f8ca "mm: compaction: capture a suitable high-order page immediately when it is made available". Reported-and-tested-by: Eric Wong <normalperson@yhbt.net> Tested-by: Eric Dumazet <eric.dumazet@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-17Merge tag 'balancenuma-v11' of ↵Linus Torvalds1-2/+5
git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma Pull Automatic NUMA Balancing bare-bones from Mel Gorman: "There are three implementations for NUMA balancing, this tree (balancenuma), numacore which has been developed in tip/master and autonuma which is in aa.git. In almost all respects balancenuma is the dumbest of the three because its main impact is on the VM side with no attempt to be smart about scheduling. In the interest of getting the ball rolling, it would be desirable to see this much merged for 3.8 with the view to building scheduler smarts on top and adapting the VM where required for 3.9. The most recent set of comparisons available from different people are mel: https://lkml.org/lkml/2012/12/9/108 mingo: https://lkml.org/lkml/2012/12/7/331 tglx: https://lkml.org/lkml/2012/12/10/437 srikar: https://lkml.org/lkml/2012/12/10/397 The results are a mixed bag. In my own tests, balancenuma does reasonably well. It's dumb as rocks and does not regress against mainline. On the other hand, Ingo's tests shows that balancenuma is incapable of converging for this workloads driven by perf which is bad but is potentially explained by the lack of scheduler smarts. Thomas' results show balancenuma improves on mainline but falls far short of numacore or autonuma. Srikar's results indicate we all suffer on a large machine with imbalanced node sizes. My own testing showed that recent numacore results have improved dramatically, particularly in the last week but not universally. We've butted heads heavily on system CPU usage and high levels of migration even when it shows that overall performance is better. There are also cases where it regresses. Of interest is that for specjbb in some configurations it will regress for lower numbers of warehouses and show gains for higher numbers which is not reported by the tool by default and sometimes missed in treports. Recently I reported for numacore that the JVM was crashing with NullPointerExceptions but currently it's unclear what the source of this problem is. Initially I thought it was in how numacore batch handles PTEs but I'm no longer think this is the case. It's possible numacore is just able to trigger it due to higher rates of migration. These reports were quite late in the cycle so I/we would like to start with this tree as it contains much of the code we can agree on and has not changed significantly over the last 2-3 weeks." * tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits) mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable mm/rmap: Convert the struct anon_vma::mutex to an rwsem mm: migrate: Account a transhuge page properly when rate limiting mm: numa: Account for failed allocations and isolations as migration failures mm: numa: Add THP migration for the NUMA working set scanning fault case build fix mm: numa: Add THP migration for the NUMA working set scanning fault case. mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG mm: sched: numa: Control enabling and disabling of NUMA balancing mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships mm: numa: migrate: Set last_nid on newly allocated page mm: numa: split_huge_page: Transfer last_nid on tail page mm: numa: Introduce last_nid to the page frame sched: numa: Slowly increase the scanning period as NUMA faults are handled mm: numa: Rate limit setting of pte_numa if node is saturated mm: numa: Rate limit the amount of memory that is migrated between nodes mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting mm: numa: Migrate pages handled during a pmd_numa hinting fault mm: numa: Migrate on reference policy ...
2012-12-12mm: introduce mm_find_pmd()Bob Liu1-0/+5
Several place need to find the pmd by(mm_struct, address), so introduce a function to simplify it. [akpm@linux-foundation.org: fix warning] Signed-off-by: Bob Liu <lliubbo@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Ni zhan Chen <nizhan.chen@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11mm: numa: Add THP migration for the NUMA working set scanning fault case.Mel Gorman1-2/+5
Note: This is very heavily based on a patch from Peter Zijlstra with fixes from Ingo Molnar, Hugh Dickins and Johannes Weiner. That patch put a lot of migration logic into mm/huge_memory.c where it does not belong. This version puts tries to share some of the migration logic with migrate_misplaced_page. However, it should be noted that now migrate.c is doing more with the pagetable manipulation than is preferred. The end result is barely recognisable so as before, the signed-offs had to be removed but will be re-added if the original authors are ok with it. Add THP migration for the NUMA working set scanning fault case. It uses the page lock to serialize. No migration pte dance is necessary because the pte is already unmapped when we decide to migrate. [dhillf@gmail.com: Fix memory leak on isolation failure] [dhillf@gmail.com: Fix transfer of last_nid information] Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-10-09mm, thp: fix mlock statisticsDavid Rientjes1-1/+2
NR_MLOCK is only accounted in single page units: there's no logic to handle transparent hugepages. This patch checks the appropriate number of pages to adjust the statistics by so that the correct amount of memory is reflected. Currently: $ grep Mlocked /proc/meminfo Mlocked: 19636 kB #define MAP_SIZE (4 << 30) /* 4GB */ void *ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); mlock(ptr, MAP_SIZE); $ grep Mlocked /proc/meminfo Mlocked: 29844 kB munlock(ptr, MAP_SIZE); $ grep Mlocked /proc/meminfo Mlocked: 19636 kB And with this patch: $ grep Mlock /proc/meminfo Mlocked: 19636 kB mlock(ptr, MAP_SIZE); $ grep Mlock /proc/meminfo Mlocked: 4213664 kB munlock(ptr, MAP_SIZE); $ grep Mlock /proc/meminfo Mlocked: 19636 kB Signed-off-by: David Rientjes <rientjes@google.com> Reported-by: Hugh Dickens <hughd@google.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09CMA: migrate mlocked pagesMinchan Kim1-1/+1
Presently CMA cannot migrate mlocked pages so it ends up failing to allocate contiguous memory space. This patch makes mlocked pages be migrated out. Of course, it can affect realtime processes but in CMA usecase, contiguous memory allocation failing is far worse than access latency to an mlocked page being variable while CMA is running. If someone wants to make the system realtime, he shouldn't enable CMA because stalls can still happen at random times. [akpm@linux-foundation.org: tweak comment text, per Mel] Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: use clear_page_mlock() in page_remove_rmap()Hugh Dickins1-6/+1
We had thought that pages could no longer get freed while still marked as mlocked; but Johannes Weiner posted this program to demonstrate that truncating an mlocked private file mapping containing COWed pages is still mishandled: #include <sys/types.h> #include <sys/mman.h> #include <sys/stat.h> #include <stdlib.h> #include <unistd.h> #include <fcntl.h> #include <stdio.h> int main(void) { char *map; int fd; system("grep mlockfreed /proc/vmstat"); fd = open("chigurh", O_CREAT|O_EXCL|O_RDWR); unlink("chigurh"); ftruncate(fd, 4096); map = mmap(NULL, 4096, PROT_WRITE, MAP_PRIVATE, fd, 0); map[0] = 11; mlock(map, sizeof(fd)); ftruncate(fd, 0); close(fd); munlock(map, sizeof(fd)); munmap(map, 4096); system("grep mlockfreed /proc/vmstat"); return 0; } The anon COWed pages are not caught by truncation's clear_page_mlock() of the pagecache pages; but unmap_mapping_range() unmaps them, so we ought to look out for them there in page_remove_rmap(). Indeed, why should truncation or invalidation be doing the clear_page_mlock() when removing from pagecache? mlock is a property of mapping in userspace, not a property of pagecache: an mlocked unmapped page is nonsensical. Reported-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: remove vma arg from page_evictableHugh Dickins1-3/+2
page_evictable(page, vma) is an irritant: almost all its callers pass NULL for vma. Remove the vma arg and use mlocked_vma_newpage(vma, page) explicitly in the couple of places it's needed. But in those places we don't even need page_evictable() itself! They're dealing with a freshly allocated anonymous page, which has no "mapping" and cannot be mlocked yet. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michel Lespinasse <walken@google.com> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: Restart compaction from near where it left offMel Gorman1-0/+4
This is almost entirely based on Rik's previous patches and discussions with him about how this might be implemented. Order > 0 compaction stops when enough free pages of the correct page order have been coalesced. When doing subsequent higher order allocations, it is possible for compaction to be invoked many times. However, the compaction code always starts out looking for things to compact at the start of the zone, and for free pages to compact things to at the end of the zone. This can cause quadratic behaviour, with isolate_freepages starting at the end of the zone each time, even though previous invocations of the compaction code already filled up all free memory on that end of the zone. This can cause isolate_freepages to take enormous amounts of CPU with certain workloads on larger memory systems. This patch caches where the migration and free scanner should start from on subsequent compaction invocations using the pageblock-skip information. When compaction starts it begins from the cached restart points and will update the cached restart points until a page is isolated or a pageblock is skipped that would have been scanned by synchronous compaction. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: cache if a pageblock was scanned and no pages were isolatedMel Gorman1-1/+3
When compaction was implemented it was known that scanning could potentially be excessive. The ideal was that a counter be maintained for each pageblock but maintaining this information would incur a severe penalty due to a shared writable cache line. It has reached the point where the scanning costs are a serious problem, particularly on long-lived systems where a large process starts and allocates a large number of THPs at the same time. Instead of using a shared counter, this patch adds another bit to the pageblock flags called PG_migrate_skip. If a pageblock is scanned by either migrate or free scanner and 0 pages were isolated, the pageblock is marked to be skipped in the future. When scanning, this bit is checked before any scanning takes place and the block skipped if set. The main difficulty with a patch like this is "when to ignore the cached information?" If it's ignored too often, the scanning rates will still be excessive. If the information is too stale then allocations will fail that might have otherwise succeeded. In this patch o CMA always ignores the information o If the migrate and free scanner meet then the cached information will be discarded if it's at least 5 seconds since the last time the cache was discarded o If there are a large number of allocation failures, discard the cache. The time-based heuristic is very clumsy but there are few choices for a better event. Depending solely on multiple allocation failures still allows excessive scanning when THP allocations are failing in quick succession due to memory pressure. Waiting until memory pressure is relieved would cause compaction to continually fail instead of using reclaim/compaction to try allocate the page. The time-based mechanism is clumsy but a better option is not obvious. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Kyungmin Park <kyungmin.park@samsung.com> Cc: Mark Brown <broonie@opensource.wolfsonmicro.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09revert "mm: have order > 0 compaction start off where it left"Mel Gorman1-6/+0
This reverts commit 7db8889ab05b ("mm: have order > 0 compaction start off where it left") and commit de74f1cc ("mm: have order > 0 compaction start near a pageblock with free pages"). These patches were a good idea and tests confirmed that they massively reduced the amount of scanning but the implementation is complex and tricky to understand. A later patch will cache what pageblocks should be skipped and reimplements the concept of compact_cached_free_pfn on top for both migration and free scanners. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Acked-by: Rafael Aquini <aquini@redhat.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: compaction: abort compaction loop if lock is contended or run too longShaohua Li1-1/+1
isolate_migratepages_range() might isolate no pages if for example when zone->lru_lock is contended and running asynchronous compaction. In this case, we should abort compaction, otherwise, compact_zone will run a useless loop and make zone->lru_lock is even contended. An additional check is added to ensure that cc.migratepages and cc.freepages get properly drained whan compaction is aborted. [minchan@kernel.org: Putback pages isolated for migration if aborting] [akpm@linux-foundation.org: compact_zone_order requires non-NULL arg contended] [akpm@linux-foundation.org: make compact_zone_order() require non-NULL arg `contended'] [minchan@kernel.org: Putback pages isolated for migration if aborting] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Shaohua Li <shli@fusionio.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09cma: fix watermark checkingBartlomiej Zolnierkiewicz1-0/+14
* Add ALLOC_CMA alloc flag and pass it to [__]zone_watermark_ok() (from Minchan Kim). * During watermark check decrease available free pages number by free CMA pages number if necessary (unmovable allocations cannot use pages from CMA areas). Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: cma: discard clean pages during contiguous allocation instead of migrationMinchan Kim1-1/+2
Drop clean cache pages instead of migration during alloc_contig_range() to minimise allocation latency by reducing the amount of migration that is necessary. It's useful for CMA because latency of migration is more important than evicting the background process's working set. In addition, as pages are reclaimed then fewer free pages for migration targets are required so it avoids memory reclaiming to get free pages, which is a contributory factor to increased latency. I measured elapsed time of __alloc_contig_migrate_range() which migrates 10M in 40M movable zone in QEMU machine. Before - 146ms, After - 7ms [akpm@linux-foundation.org: fix nommu build] Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Mel Gorman <mgorman@suse.de> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Rik van Riel <riel@redhat.com> Tested-by: Kyungmin Park <kyungmin.park@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09mm: adjust final #endif position in mm/internal.hMichel Lespinasse1-1/+2
Make sure the #endif that terminates the standard #ifndef / #define / #endif construct gets labeled, and gets positioned at the end of the file as is normally the case. Signed-off-by: Michel Lespinasse <walken@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>