Age | Commit message (Collapse) | Author | Files | Lines |
|
Variable ret is being assigned a value that is never read. If the
for-loop is entered then ret is immediately re-assigned a new
value. If the for-loop is not executed ret is never read. The
assignment is redundant and can be removed.
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
|
|
Add a new helper function to help iterate over multi-index entries.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
|
|
Add the return value check of kcalloc() to avoid potential
NULL ptr dereference.
Fixes: a8ea8bdd9df9 ("lib/mpi: Extend the MPI library")
Signed-off-by: Zizhuang Deng <sunsetdzz@gmail.com>
Reviewed-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
In preparation for using blake2s in the RNG, we change the way that it
is wired-in to the build system. Instead of using ifdefs to select the
right symbol, we use weak symbols. And because ARM doesn't need the
generic implementation, we make the generic one default only if an arch
library doesn't need it already, and then have arch libraries that do
need it opt-in. So that the arch libraries can remain tristate rather
than bool, we then split the shash part from the glue code.
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: linux-kbuild@vger.kernel.org
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
On x86_64, currently 3 variants of AVX512, 3 variants of AVX2
and 3 variants of SSE2 are benchmarked on initialization, taking
between 144-153 jiffies. Testing across a hardware pool of
various generations of intel cpus I could not find a single
case where SSE2 won over AVX2 or AVX512. There are cases where
AVX2 wins over AVX512 however.
Change "prefer" into an integer priority field (similar to
how recov selection works) to have more than one ranking level
available, which is backwards compatible with existing behavior.
Give AVX2/512 variants higher priority over SSE2 in order to skip
SSE testing when AVX is available. in a AVX2/x86_64/HZ=250 case this
saves in the order of 200ms of initialization time.
Signed-off-by: Dirk Müller <dmueller@suse.de>
Acked-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Song Liu <song@kernel.org>
|
|
In commit fe5cbc6e06c7 ("md/raid6 algorithms: delta syndrome functions")
a xor_syndrome() benchmarking was added also to the raid6_choose_gen()
function. However, the results of that benchmarking were intentionally
discarded and did not influence the choice. It picked the
xor_syndrome() variant related to the best performing gen_syndrome().
Reduce runtime of raid6_choose_gen() without modifying its outcome by
only benchmarking the xor_syndrome() of the best gen_syndrome() variant.
For a HZ=250 x86_64 system with avx2 and without avx512 this removes
5 out of 6 xor() benchmarks, saving 340ms of raid6 initialization time.
Signed-off-by: Dirk Müller <dmueller@suse.de>
Signed-off-by: Song Liu <song@kernel.org>
|
|
Take advantage of how kmap_local_folio() works to simplify the loop.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
|
|
There is no need to pass the pointer to the kset in the struct
kset_uevent_ops callbacks as no one uses it, so just remove that pointer
entirely.
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Wedson Almeida Filho <wedsonaf@google.com>
Link: https://lore.kernel.org/r/20211227163924.3970661-1-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This way instances of kobj_type (which contain function pointers) can be
stored in .rodata, which means that they cannot be [easily/accidentally]
modified at runtime.
Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com>
Link: https://lore.kernel.org/r/20211224231345.777370-1-wedsonaf@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Use 'bitmap_zalloc()' to simplify code, improve the semantic and reduce
some open-coded arithmetic in allocator arguments.
Also change the corresponding 'kfree()' into 'bitmap_free()' to keep
consistency.
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Link: https://lore.kernel.org/r/f9541b085ec68e573004e1be200c11c9c901181a.1640295165.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
... same as the rest of implementations
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
On 32-bit, the first entry might be at 0/NULL, but that's
strange and leads to issues, e.g. where we check "if (ret)".
Use a IOREMAP_BIAS/IOREMAP_MASK of 0x80000000UL to avoid
this. This then requires reducing the number of areas (via
MAX_AREAS), but we still have 128 areas, which is enough.
Fixes: ca2e334232b6 ("lib: add iomem emulation (logic_iomem)")
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
On a 32-bit build, the (unsigned long long) casts throw warnings
(or errors) due to being to a different integer size. Cast to
uintptr_t first (with the __force for sparse) and then further
to get the consistent print on 32 and 64-bit.
Fixes: ca2e334232b6 ("lib: add iomem emulation (logic_iomem)")
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
Currently, the results for individial parameters in a parameterised test
are simply output as (K)TAP diagnostic lines.
As kunit_tool now supports nested subtests, report each parameter as its
own subtest.
For example, here's what the output now looks like:
# Subtest: inode_test_xtimestamp_decoding
ok 1 - 1901-12-13 Lower bound of 32bit < 0 timestamp, no extra bits
ok 2 - 1969-12-31 Upper bound of 32bit < 0 timestamp, no extra bits
ok 3 - 1970-01-01 Lower bound of 32bit >=0 timestamp, no extra bits
ok 4 - 2038-01-19 Upper bound of 32bit >=0 timestamp, no extra bits
ok 5 - 2038-01-19 Lower bound of 32bit <0 timestamp, lo extra sec bit on
ok 6 - 2106-02-07 Upper bound of 32bit <0 timestamp, lo extra sec bit on
ok 7 - 2106-02-07 Lower bound of 32bit >=0 timestamp, lo extra sec bit on
ok 8 - 2174-02-25 Upper bound of 32bit >=0 timestamp, lo extra sec bit on
ok 9 - 2174-02-25 Lower bound of 32bit <0 timestamp, hi extra sec bit on
ok 10 - 2242-03-16 Upper bound of 32bit <0 timestamp, hi extra sec bit on
ok 11 - 2242-03-16 Lower bound of 32bit >=0 timestamp, hi extra sec bit on
ok 12 - 2310-04-04 Upper bound of 32bit >=0 timestamp, hi extra sec bit on
ok 13 - 2310-04-04 Upper bound of 32bit>=0 timestamp, hi extra sec bit 1. 1 ns
ok 14 - 2378-04-22 Lower bound of 32bit>= timestamp. Extra sec bits 1. Max ns
ok 15 - 2378-04-22 Lower bound of 32bit >=0 timestamp. All extra sec bits on
ok 16 - 2446-05-10 Upper bound of 32bit >=0 timestamp. All extra sec bits on
# inode_test_xtimestamp_decoding: pass:16 fail:0 skip:0 total:16
ok 1 - inode_test_xtimestamp_decoding
Signed-off-by: David Gow <davidgow@google.com>
Reviewed-by: Daniel Latypov <dlatypov@google.com>
Reviewed-by: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
|
|
It's possible that a parameterised test could end up with zero
parameters. At the moment, the test function will nevertheless be called
with NULL as the parameter. Instead, don't try to run the test code, and
just mark the test as SKIPped.
Reported-by: Daniel Latypov <dlatypov@google.com>
Signed-off-by: David Gow <davidgow@google.com>
Reviewed-by: Daniel Latypov <dlatypov@google.com>
Reviewed-by: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
|
|
Update complete_and_exit to call kthread_exit instead of do_exit.
Change the name to reflect this change in functionality. All of the
users of complete_and_exit are causing the current kthread to exit so
this change makes it clear what is happening.
Move the implementation of kthread_complete_and_exit from
kernel/exit.c to to kernel/kthread.c. As this function is kthread
specific it makes most sense to live with the kthread functions.
There are no functional change.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
The generic atomic64 implementation provides:
* atomic64_and_return()
* atomic64_or_return()
* atomic64_xor_return()
... but none of these exist in the standard atomic64 API as described by
scripts/atomic/atomics.tbl, and none of these have prototypes exposed by
<asm-generic/atomic64.h>.
The lkp kernel test robot noted this results in warnings when building with
W=1:
lib/atomic64.c:82:5: warning: no previous prototype for 'generic_atomic64_and_return' [-Wmissing-prototypes]
lib/atomic64.c:82:5: warning: no previous prototype for 'generic_atomic64_or_return' [-Wmissing-prototypes]
lib/atomic64.c:82:5: warning: no previous prototype for 'generic_atomic64_xor_return' [-Wmissing-prototypes]
This appears to have been a thinko in commit:
28aa2bda2211f432 ("locking/atomic: Implement atomic{,64,_long}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}()")
... where we grouped add/sub separately from and/ox/xor, so that we could avoid
implementing _return forms for the latter group, but forgot to remove
ATOMIC64_OP_RETURN() for that group.
This doesn't cause any functional problem, but it's pointless to build code
which cannot be used. Remove the unusable code. This does not affect add/sub,
for which _return forms will still be built.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Boqun Feng <boqun.feng@gmail.com>
Link: https://lore.kernel.org/r/20211126115923.41489-1-mark.rutland@arm.com
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Andrii Nakryiko says:
====================
bpf-next 2021-12-10 v2
We've added 115 non-merge commits during the last 26 day(s) which contain
a total of 182 files changed, 5747 insertions(+), 2564 deletions(-).
The main changes are:
1) Various samples fixes, from Alexander Lobakin.
2) BPF CO-RE support in kernel and light skeleton, from Alexei Starovoitov.
3) A batch of new unified APIs for libbpf, logging improvements, version
querying, etc. Also a batch of old deprecations for old APIs and various
bug fixes, in preparation for libbpf 1.0, from Andrii Nakryiko.
4) BPF documentation reorganization and improvements, from Christoph Hellwig
and Dave Tucker.
5) Support for declarative initialization of BPF_MAP_TYPE_PROG_ARRAY in
libbpf, from Hengqi Chen.
6) Verifier log fixes, from Hou Tao.
7) Runtime-bounded loops support with bpf_loop() helper, from Joanne Koong.
8) Extend branch record capturing to all platforms that support it,
from Kajol Jain.
9) Light skeleton codegen improvements, from Kumar Kartikeya Dwivedi.
10) bpftool doc-generating script improvements, from Quentin Monnet.
11) Two libbpf v0.6 bug fixes, from Shuyi Cheng and Vincent Minet.
12) Deprecation warning fix for perf/bpf_counter, from Song Liu.
13) MAX_TAIL_CALL_CNT unification and MIPS build fix for libbpf,
from Tiezhu Yang.
14) BTF_KING_TYPE_TAG follow-up fixes, from Yonghong Song.
15) Selftests fixes and improvements, from Ilya Leoshkevich, Jean-Philippe
Brucker, Jiri Olsa, Maxim Mikityanskiy, Tirthendu Sarkar, Yucong Sun,
and others.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (115 commits)
libbpf: Add "bool skipped" to struct bpf_map
libbpf: Fix typo in btf__dedup@LIBBPF_0.0.2 definition
bpftool: Switch bpf_object__load_xattr() to bpf_object__load()
selftests/bpf: Remove the only use of deprecated bpf_object__load_xattr()
selftests/bpf: Add test for libbpf's custom log_buf behavior
selftests/bpf: Replace all uses of bpf_load_btf() with bpf_btf_load()
libbpf: Deprecate bpf_object__load_xattr()
libbpf: Add per-program log buffer setter and getter
libbpf: Preserve kernel error code and remove kprobe prog type guessing
libbpf: Improve logging around BPF program loading
libbpf: Allow passing user log setting through bpf_object_open_opts
libbpf: Allow passing preallocated log_buf when loading BTF into kernel
libbpf: Add OPTS-based bpf_btf_load() API
libbpf: Fix bpf_prog_load() log_buf logic for log_level 0
samples/bpf: Remove unneeded variable
bpf: Remove redundant assignment to pointer t
selftests/bpf: Fix a compilation warning
perf/bpf_counter: Use bpf_map_create instead of bpf_create_map
samples: bpf: Fix 'unknown warning group' build warning on Clang
samples: bpf: Fix xdp_sample_user.o linking with Clang
...
====================
Link: https://lore.kernel.org/r/20211210234746.2100561-1-andrii@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Clang and GCC behave a little differently when it comes to the
__no_sanitize_thread attribute, which has valid reasons, and depending
on context either one could be right.
Traditionally, user space ThreadSanitizer [1] still expects instrumented
builtin atomics (to avoid false positives) and __tsan_func_{entry,exit}
(to generate meaningful stack traces), even if the function has the
attribute no_sanitize("thread").
[1] https://clang.llvm.org/docs/ThreadSanitizer.html#attribute-no-sanitize-thread
GCC doesn't follow the same policy (for better or worse), and removes
all kinds of instrumentation if no_sanitize is added. Arguably, since
this may be a problem for user space ThreadSanitizer, we expect this may
change in future.
Since KCSAN != ThreadSanitizer, the likelihood of false positives even
without barrier instrumentation everywhere, is much lower by design.
At least for Clang, however, to fully remove all sanitizer
instrumentation, we must add the disable_sanitizer_instrumentation
attribute, which is available since Clang 14.0.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Add support for modeling a subset of weak memory, which will enable
detection of a subset of data races due to missing memory barriers.
KCSAN's approach to detecting missing memory barriers is based on
modeling access reordering, and enabled if `CONFIG_KCSAN_WEAK_MEMORY=y`,
which depends on `CONFIG_KCSAN_STRICT=y`. The feature can be enabled or
disabled at boot and runtime via the `kcsan.weak_memory` boot parameter.
Each memory access for which a watchpoint is set up, is also selected
for simulated reordering within the scope of its function (at most 1
in-flight access).
We are limited to modeling the effects of "buffering" (delaying the
access), since the runtime cannot "prefetch" accesses (therefore no
acquire modeling). Once an access has been selected for reordering, it
is checked along every other access until the end of the function scope.
If an appropriate memory barrier is encountered, the access will no
longer be considered for reordering.
When the result of a memory operation should be ordered by a barrier,
KCSAN can then detect data races where the conflict only occurs as a
result of a missing barrier due to reordering accesses.
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
No conflicts.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Daniel Borkmann says:
====================
bpf 2021-12-08
We've added 12 non-merge commits during the last 22 day(s) which contain
a total of 29 files changed, 659 insertions(+), 80 deletions(-).
The main changes are:
1) Fix an off-by-two error in packet range markings and also add a batch of
new tests for coverage of these corner cases, from Maxim Mikityanskiy.
2) Fix a compilation issue on MIPS JIT for R10000 CPUs, from Johan Almbladh.
3) Fix two functional regressions and a build warning related to BTF kfunc
for modules, from Kumar Kartikeya Dwivedi.
4) Fix outdated code and docs regarding BPF's migrate_disable() use on non-
PREEMPT_RT kernels, from Sebastian Andrzej Siewior.
5) Add missing includes in order to be able to detangle cgroup vs bpf header
dependencies, from Jakub Kicinski.
6) Fix regression in BPF sockmap tests caused by missing detachment of progs
from sockets when they are removed from the map, from John Fastabend.
7) Fix a missing "no previous prototype" warning in x86 JIT caused by BPF
dispatcher, from Björn Töpel.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpf: Add selftests to cover packet access corner cases
bpf: Fix the off-by-two error in range markings
treewide: Add missing includes masked by cgroup -> bpf dependency
tools/resolve_btfids: Skip unresolved symbol warning for empty BTF sets
bpf: Fix bpf_check_mod_kfunc_call for built-in modules
bpf: Make CONFIG_DEBUG_INFO_BTF depend upon CONFIG_BPF_SYSCALL
mips, bpf: Fix reference to non-existing Kconfig symbol
bpf: Make sure bpf_disable_instrumentation() is safe vs preemption.
Documentation/locking/locktypes: Update migrate_disable() bits.
bpf, sockmap: Re-evaluate proto ops when psock is removed from sockmap
bpf, sockmap: Attach map progs to psock early for feature probes
bpf, x86: Fix "no previous prototype" warning
====================
Link: https://lore.kernel.org/r/20211208155125.11826-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
net device are refcounted. Over the years we had numerous bugs
caused by imbalanced dev_hold() and dev_put() calls.
The general idea is to be able to precisely pair each decrement with
a corresponding prior increment. Both share a cookie, basically
a pointer to private data storing stack traces.
This patch adds dev_hold_track() and dev_put_track().
To use these helpers, each data structure owning a refcount
should also use a "netdevice_tracker" to pair the hold and put.
netdevice_tracker dev_tracker;
...
dev_hold_track(dev, &dev_tracker, GFP_ATOMIC);
...
dev_put_track(dev, &dev_tracker);
Whenever a leak happens, we will get precise stack traces
of the point dev_hold_track() happened, at device dismantle phase.
We will also get a stack trace if too many dev_put_track() for the same
netdevice_tracker are attempted.
This is guarded by CONFIG_NET_DEV_REFCNT_TRACKER option.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
This module uses reference tracker, forcing two issues.
1) Double free of a tracker
2) leak of two trackers, one being allocated from softirq context.
"modprobe test_ref_tracker" would emit the following traces.
(Use scripts/decode_stacktrace.sh if necessary)
[ 171.648681] reference already released.
[ 171.653213] allocated in:
[ 171.656523] alloctest_ref_tracker_alloc2+0x1c/0x20 [test_ref_tracker]
[ 171.656526] init_module+0x86/0x1000 [test_ref_tracker]
[ 171.656528] do_one_initcall+0x9c/0x220
[ 171.656532] do_init_module+0x60/0x240
[ 171.656536] load_module+0x32b5/0x3610
[ 171.656538] __do_sys_init_module+0x148/0x1a0
[ 171.656540] __x64_sys_init_module+0x1d/0x20
[ 171.656542] do_syscall_64+0x4a/0xb0
[ 171.656546] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 171.656549] freed in:
[ 171.659520] alloctest_ref_tracker_free+0x13/0x20 [test_ref_tracker]
[ 171.659522] init_module+0xec/0x1000 [test_ref_tracker]
[ 171.659523] do_one_initcall+0x9c/0x220
[ 171.659525] do_init_module+0x60/0x240
[ 171.659527] load_module+0x32b5/0x3610
[ 171.659529] __do_sys_init_module+0x148/0x1a0
[ 171.659532] __x64_sys_init_module+0x1d/0x20
[ 171.659534] do_syscall_64+0x4a/0xb0
[ 171.659536] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 171.659575] ------------[ cut here ]------------
[ 171.659576] WARNING: CPU: 5 PID: 13016 at lib/ref_tracker.c:112 ref_tracker_free+0x224/0x270
[ 171.659581] Modules linked in: test_ref_tracker(+)
[ 171.659591] CPU: 5 PID: 13016 Comm: modprobe Tainted: G S 5.16.0-smp-DEV #290
[ 171.659595] RIP: 0010:ref_tracker_free+0x224/0x270
[ 171.659599] Code: 5e 41 5f 5d c3 48 c7 c7 04 9c 74 a6 31 c0 e8 62 ee 67 00 83 7b 14 00 75 1a 83 7b 18 00 75 30 4c 89 ff 4c 89 f6 e8 9c 00 69 00 <0f> 0b bb ea ff ff ff eb ae 48 c7 c7 3a 0a 77 a6 31 c0 e8 34 ee 67
[ 171.659601] RSP: 0018:ffff89058ba0bbd0 EFLAGS: 00010286
[ 171.659603] RAX: 0000000000000029 RBX: ffff890586b19780 RCX: 08895bff57c7d100
[ 171.659604] RDX: c0000000ffff7fff RSI: 0000000000000282 RDI: ffffffffc0407000
[ 171.659606] RBP: ffff89058ba0bc88 R08: 0000000000000000 R09: ffffffffa6f342e0
[ 171.659607] R10: 00000000ffff7fff R11: 0000000000000000 R12: 000000008f000000
[ 171.659608] R13: 0000000000000014 R14: 0000000000000282 R15: ffffffffc0407000
[ 171.659609] FS: 00007f97ea29d740(0000) GS:ffff8923ff940000(0000) knlGS:0000000000000000
[ 171.659611] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 171.659613] CR2: 00007f97ea299000 CR3: 0000000186b4a004 CR4: 00000000001706e0
[ 171.659614] Call Trace:
[ 171.659615] <TASK>
[ 171.659631] ? alloctest_ref_tracker_free+0x13/0x20 [test_ref_tracker]
[ 171.659633] ? init_module+0x105/0x1000 [test_ref_tracker]
[ 171.659636] ? do_one_initcall+0x9c/0x220
[ 171.659638] ? do_init_module+0x60/0x240
[ 171.659641] ? load_module+0x32b5/0x3610
[ 171.659644] ? __do_sys_init_module+0x148/0x1a0
[ 171.659646] ? __x64_sys_init_module+0x1d/0x20
[ 171.659649] ? do_syscall_64+0x4a/0xb0
[ 171.659652] ? entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 171.659656] ? 0xffffffffc040a000
[ 171.659658] alloctest_ref_tracker_free+0x13/0x20 [test_ref_tracker]
[ 171.659660] init_module+0x105/0x1000 [test_ref_tracker]
[ 171.659663] do_one_initcall+0x9c/0x220
[ 171.659666] do_init_module+0x60/0x240
[ 171.659669] load_module+0x32b5/0x3610
[ 171.659672] __do_sys_init_module+0x148/0x1a0
[ 171.659676] __x64_sys_init_module+0x1d/0x20
[ 171.659678] do_syscall_64+0x4a/0xb0
[ 171.659694] ? exc_page_fault+0x6e/0x140
[ 171.659696] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 171.659698] RIP: 0033:0x7f97ea3dbe7a
[ 171.659700] Code: 48 8b 0d 61 8d 06 00 f7 d8 64 89 01 48 83 c8 ff c3 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc 49 89 ca b8 af 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 2e 8d 06 00 f7 d8 64 89 01 48
[ 171.659701] RSP: 002b:00007ffea67ce608 EFLAGS: 00000246 ORIG_RAX: 00000000000000af
[ 171.659703] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f97ea3dbe7a
[ 171.659704] RDX: 00000000013a0ba0 RSI: 0000000000002808 RDI: 00007f97ea299000
[ 171.659705] RBP: 00007ffea67ce670 R08: 0000000000000003 R09: 0000000000000000
[ 171.659706] R10: 0000000000000000 R11: 0000000000000246 R12: 00000000013a1048
[ 171.659707] R13: 00000000013a0ba0 R14: 0000000001399930 R15: 00000000013a1030
[ 171.659709] </TASK>
[ 171.659710] ---[ end trace f5dbd6afa41e60a9 ]---
[ 171.659712] leaked reference.
[ 171.663393] alloctest_ref_tracker_alloc0+0x1c/0x20 [test_ref_tracker]
[ 171.663395] test_ref_tracker_timer_func+0x9/0x20 [test_ref_tracker]
[ 171.663397] call_timer_fn+0x31/0x140
[ 171.663401] expire_timers+0x46/0x110
[ 171.663403] __run_timers+0x16f/0x1b0
[ 171.663404] run_timer_softirq+0x1d/0x40
[ 171.663406] __do_softirq+0x148/0x2d3
[ 171.663408] leaked reference.
[ 171.667101] alloctest_ref_tracker_alloc1+0x1c/0x20 [test_ref_tracker]
[ 171.667103] init_module+0x81/0x1000 [test_ref_tracker]
[ 171.667104] do_one_initcall+0x9c/0x220
[ 171.667106] do_init_module+0x60/0x240
[ 171.667108] load_module+0x32b5/0x3610
[ 171.667111] __do_sys_init_module+0x148/0x1a0
[ 171.667113] __x64_sys_init_module+0x1d/0x20
[ 171.667115] do_syscall_64+0x4a/0xb0
[ 171.667117] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 171.667131] ------------[ cut here ]------------
[ 171.667132] WARNING: CPU: 5 PID: 13016 at lib/ref_tracker.c:30 ref_tracker_dir_exit+0x104/0x130
[ 171.667136] Modules linked in: test_ref_tracker(+)
[ 171.667144] CPU: 5 PID: 13016 Comm: modprobe Tainted: G S W 5.16.0-smp-DEV #290
[ 171.667147] RIP: 0010:ref_tracker_dir_exit+0x104/0x130
[ 171.667150] Code: 01 00 00 00 00 ad de 48 89 03 4c 89 63 08 48 89 df e8 20 a0 d5 ff 4c 89 f3 4d 39 ee 75 a8 4c 89 ff 48 8b 75 d0 e8 7c 05 69 00 <0f> 0b eb 0c 4c 89 ff 48 8b 75 d0 e8 6c 05 69 00 41 8b 47 08 83 f8
[ 171.667151] RSP: 0018:ffff89058ba0bc68 EFLAGS: 00010286
[ 171.667154] RAX: 08895bff57c7d100 RBX: ffffffffc0407010 RCX: 000000000000003b
[ 171.667156] RDX: 000000000000003c RSI: 0000000000000282 RDI: ffffffffc0407000
[ 171.667157] RBP: ffff89058ba0bc98 R08: 0000000000000000 R09: ffffffffa6f342e0
[ 171.667159] R10: 00000000ffff7fff R11: 0000000000000000 R12: dead000000000122
[ 171.667160] R13: ffffffffc0407010 R14: ffffffffc0407010 R15: ffffffffc0407000
[ 171.667162] FS: 00007f97ea29d740(0000) GS:ffff8923ff940000(0000) knlGS:0000000000000000
[ 171.667164] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 171.667166] CR2: 00007f97ea299000 CR3: 0000000186b4a004 CR4: 00000000001706e0
[ 171.667169] Call Trace:
[ 171.667170] <TASK>
[ 171.667171] ? 0xffffffffc040a000
[ 171.667173] init_module+0x126/0x1000 [test_ref_tracker]
[ 171.667175] do_one_initcall+0x9c/0x220
[ 171.667179] do_init_module+0x60/0x240
[ 171.667182] load_module+0x32b5/0x3610
[ 171.667186] __do_sys_init_module+0x148/0x1a0
[ 171.667189] __x64_sys_init_module+0x1d/0x20
[ 171.667192] do_syscall_64+0x4a/0xb0
[ 171.667194] ? exc_page_fault+0x6e/0x140
[ 171.667196] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 171.667199] RIP: 0033:0x7f97ea3dbe7a
[ 171.667200] Code: 48 8b 0d 61 8d 06 00 f7 d8 64 89 01 48 83 c8 ff c3 cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc 49 89 ca b8 af 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 2e 8d 06 00 f7 d8 64 89 01 48
[ 171.667201] RSP: 002b:00007ffea67ce608 EFLAGS: 00000246 ORIG_RAX: 00000000000000af
[ 171.667203] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f97ea3dbe7a
[ 171.667204] RDX: 00000000013a0ba0 RSI: 0000000000002808 RDI: 00007f97ea299000
[ 171.667205] RBP: 00007ffea67ce670 R08: 0000000000000003 R09: 0000000000000000
[ 171.667206] R10: 0000000000000000 R11: 0000000000000246 R12: 00000000013a1048
[ 171.667207] R13: 00000000013a0ba0 R14: 0000000001399930 R15: 00000000013a1030
[ 171.667209] </TASK>
[ 171.667210] ---[ end trace f5dbd6afa41e60aa ]---
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
It can be hard to track where references are taken and released.
In networking, we have annoying issues at device or netns dismantles,
and we had various proposals to ease root causing them.
This patch adds new infrastructure pairing refcount increases
and decreases. This will self document code, because programmers
will have to associate increments/decrements.
This is controled by CONFIG_REF_TRACKER which can be selected
by users of this feature.
This adds both cpu and memory costs, and thus should probably be
used with care.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
The 'set' bitmap is local to this function. No concurrent access to it is
possible.
So prefer the non-atomic '__[set|clear]_bit()' function to save a few
cycles.
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/1abf81a5e509d372393bd22041eed4ebc07ef9f7.1638023178.git.christophe.jaillet@wanadoo.fr
|
|
The ww-mutex selftest operates directly on ww_mutex::base and assumes
its type is struct mutex. This isn't true on PREEMPT_RT which turns the
mutex into a rtmutex.
Add a ww_mutex_base_ abstraction which maps to the relevant mutex_ or
rt_mutex_ function.
Change the CONFIG_DEBUG_MUTEXES ifdef to DEBUG_WW_MUTEXES. The latter is
true for the MUTEX and RTMUTEX implementation of WW-MUTEX. The
assignment is required in order to pass the tests.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211129174654.668506-10-bigeasy@linutronix.de
|
|
The softirq context on PREEMPT_RT is different compared to !PREEMPT_RT.
As such lockdep_softirq_enter() is a nop and the all the "softirq safe"
tests fail on PREEMPT_RT because there is no difference.
Skip the softirq context tests on PREEMPT_RT.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211129174654.668506-9-bigeasy@linutronix.de
|
|
The tests with unbalanced lock() + unlock() operation leave a modified
preemption counter behind which is then reset to its original value
after the test.
The spin_lock() function on PREEMPT_RT does not include a
preempt_disable() statement but migrate_disable() and read_rcu_lock().
As a consequence both counter never get back to their original value
and the system explodes later after the selftest. In the
double-unlock case on PREEMPT_RT, the migrate_disable() and RCU code
will trigger a warning which should be avoided. These counter should
not be decremented below their initial value.
Save both counters and bring them back to their original value after
the test. In the double-unlock case, increment both counter in
advance to they become balanced after the double unlock.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211129174654.668506-8-bigeasy@linutronix.de
|
|
The local_lock related functions
local_lock_acquire()
local_lock_release()
are part of the internal implementation and should be avoided.
Define the lock as DEFINE_PER_CPU so the normal local_lock() function
can be used.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20211129174654.668506-7-bigeasy@linutronix.de
|
|
Vinicius Costa Gomes reported [0] that build fails when
CONFIG_DEBUG_INFO_BTF is enabled and CONFIG_BPF_SYSCALL is disabled.
This leads to btf.c not being compiled, and then no symbol being present
in vmlinux for the declarations in btf.h. Since BTF is not useful
without enabling BPF subsystem, disallow this combination.
However, theoretically disabling both now could still fail, as the
symbol for kfunc_btf_id_list variables is not available. This isn't a
problem as the compiler usually optimizes the whole register/unregister
call, but at lower optimization levels it can fail the build in linking
stage.
Fix that by adding dummy variables so that modules taking address of
them still work, but the whole thing is a noop.
[0]: https://lore.kernel.org/bpf/20211110205418.332403-1-vinicius.gomes@intel.com
Fixes: 14f267d95fe4 ("bpf: btf: Introduce helpers for dynamic BTF set registration")
Reported-by: Vinicius Costa Gomes <vinicius.gomes@intel.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20211122144742.477787-2-memxor@gmail.com
|
|
On ARM v6 and later, we define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
because the ordinary load/store instructions (ldr, ldrh, ldrb) can
tolerate any misalignment of the memory address. However, load/store
double and load/store multiple instructions (ldrd, ldm) may still only
be used on memory addresses that are 32-bit aligned, and so we have to
use the CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS macro with care, or we
may end up with a severe performance hit due to alignment traps that
require fixups by the kernel. Testing shows that this currently happens
with clang-13 but not gcc-11. In theory, any compiler version can
produce this bug or other problems, as we are dealing with undefined
behavior in C99 even on architectures that support this in hardware,
see also https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100363.
Fortunately, the get_unaligned() accessors do the right thing: when
building for ARMv6 or later, the compiler will emit unaligned accesses
using the ordinary load/store instructions (but avoid the ones that
require 32-bit alignment). When building for older ARM, those accessors
will emit the appropriate sequence of ldrb/mov/orr instructions. And on
architectures that can truly tolerate any kind of misalignment, the
get_unaligned() accessors resolve to the leXX_to_cpup accessors that
operate on aligned addresses.
Since the compiler will in fact emit ldrd or ldm instructions when
building this code for ARM v6 or later, the solution is to use the
unaligned accessors unconditionally on architectures where this is
known to be fast. The _aligned version of the hash function is
however still needed to get the best performance on architectures
that cannot do any unaligned access in hardware.
This new version avoids the undefined behavior and should produce
the fastest hash on all architectures we support.
Link: https://lore.kernel.org/linux-arm-kernel/20181008211554.5355-4-ard.biesheuvel@linaro.org/
Link: https://lore.kernel.org/linux-crypto/CAK8P3a2KfmmGDbVHULWevB0hv71P2oi2ZCHEAqT=8dQfa0=cqQ@mail.gmail.com/
Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Fixes: 2c956a60778c ("siphash: add cryptographically secure PRF")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Linux 5.16-rc2 is needed because nonurgent fixes headed
for next are strongly textually dependent on a fix that
was applied for rc2.
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
|
|
PA-RISC uses a much bigger frame size for functions than other
architectures. So increase it to 2048 for 32- and 64-bit kernels.
This fixes e.g. a warning in lib/xxhash.c.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Helge Deller <deller@gmx.de>
|
|
As done in commit d73dad4eb5ad ("kasan: test: bypass __alloc_size
checks") for __write_overflow warnings, also silence some more cases
that trip the __read_overflow warnings seen in 5.16-rc1[1]:
In file included from include/linux/string.h:253,
from include/linux/bitmap.h:10,
from include/linux/cpumask.h:12,
from include/linux/mm_types_task.h:14,
from include/linux/mm_types.h:5,
from include/linux/page-flags.h:13,
from arch/arm64/include/asm/mte.h:14,
from arch/arm64/include/asm/pgtable.h:12,
from include/linux/pgtable.h:6,
from include/linux/kasan.h:29,
from lib/test_kasan.c:10:
In function 'memcmp',
inlined from 'kasan_memcmp' at lib/test_kasan.c:897:2:
include/linux/fortify-string.h:263:25: error: call to '__read_overflow' declared with attribute error: detected read beyond size of object (1st parameter)
263 | __read_overflow();
| ^~~~~~~~~~~~~~~~~
In function 'memchr',
inlined from 'kasan_memchr' at lib/test_kasan.c:872:2:
include/linux/fortify-string.h:277:17: error: call to '__read_overflow' declared with attribute error: detected read beyond size of object (1st parameter)
277 | __read_overflow();
| ^~~~~~~~~~~~~~~~~
[1] http://kisskb.ellerman.id.au/kisskb/buildresult/14660585/log/
Link: https://lkml.kernel.org/r/20211116004111.3171781-1-keescook@chromium.org
Fixes: d73dad4eb5ad ("kasan: test: bypass __alloc_size checks")
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull zstd fixes from Nick Terrell:
"Fix stack usage on parisc & improve code size bloat
This contains three commits:
1. Fixes a minor unused variable warning reported by Kernel test
robot [0].
2. Improves the reported code bloat (-88KB / 374KB) [1] by outlining
some functions that are unlikely to be used in performance
sensitive workloads.
3. Fixes the reported excess stack usage on parisc [2] by removing
-O3 from zstd's compilation flags. -O3 triggered bugs in the
hppa-linux-gnu gcc-8 compiler. -O2 performance is acceptable:
neutral compression, about -1% decompression speed. We also reduce
code bloat (-105KB / 374KB).
After this our code bloat is cut from 374KB to 105KB with gcc-11. If
we wanted to cut the remaining 105KB we'd likely have to trade
signicant performance, so I want to say that this is enough for now.
We should be able to get further gains without sacrificing speed, but
that will take some significant optimization effort, and isn't
suitable for a quick fix. I've opened an upstream issue [3] to track
the code size, and try to avoid future regressions, and improve it in
the long term"
Link: https://lore.kernel.org/linux-mm/202111120312.833wII4i-lkp@intel.com/T/ [0]
Link: https://lkml.org/lkml/2021/11/15/710 [1]
Link: https://lkml.org/lkml/2021/11/14/189 [2]
Link: https://github.com/facebook/zstd/issues/2867 [3]
Link: https://lore.kernel.org/r/20211117014949.1169186-1-nickrterrell@gmail.com/
Link: https://lore.kernel.org/r/20211117201459.1194876-1-nickrterrell@gmail.com/
* tag 'zstd-for-linus-5.16-rc1' of git://github.com/terrelln/linux:
lib: zstd: Don't add -O3 to cflags
lib: zstd: Don't inline functions in zstd_opt.c
lib: zstd: Fix unused variable warning
|
|
After the update to zstd-1.4.10 passing -O3 is no longer necessary to
get good performance from zstd. Using the default optimization level -O2
is sufficient to get good performance.
I've measured no significant change to compression speed, and a ~1%
decompression speed loss, which is acceptable.
This fixes the reported parisc -Wframe-larger-than=1536 errors [0]. The
gcc-8-hppa-linux-gnu compiler performed very poorly with -O3, generating
stacks that are ~3KB. With -O2 these same functions generate stacks in
the < 100B, completely fixing the problem. Function size deltas are
listed below:
ZSTD_compressBlock_fast_extDict_generic: 3800 -> 68
ZSTD_compressBlock_fast: 2216 -> 40
ZSTD_compressBlock_fast_dictMatchState: 1848 -> 64
ZSTD_compressBlock_doubleFast_extDict_generic: 3744 -> 76
ZSTD_fillDoubleHashTable: 3252 -> 0
ZSTD_compressBlock_doubleFast: 5856 -> 36
ZSTD_compressBlock_doubleFast_dictMatchState: 5380 -> 84
ZSTD_copmressBlock_lazy2: 2420 -> 72
Additionally, this improves the reported code bloat [1]. With gcc-11
bloat-o-meter shows an 80KB code size improvement:
```
> ../scripts/bloat-o-meter vmlinux.old vmlinux
add/remove: 31/8 grow/shrink: 24/155 up/down: 25734/-107924 (-82190)
Total: Before=6418562, After=6336372, chg -1.28%
```
Compared to before the zstd-1.4.10 update we see a total code size
regression of 105KB, down from 374KB at v5.16-rc1:
```
> ../scripts/bloat-o-meter vmlinux.old vmlinux
add/remove: 292/62 grow/shrink: 56/88 up/down: 235009/-127487 (107522)
Total: Before=6228850, After=6336372, chg +1.73%
```
[0] https://lkml.org/lkml/2021/11/15/710
[1] https://lkml.org/lkml/2021/11/14/189
Link: https://lore.kernel.org/r/20211117014949.1169186-4-nickrterrell@gmail.com/
Link: https://lore.kernel.org/r/20211117201459.1194876-4-nickrterrell@gmail.com/
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Nick Terrell <terrelln@fb.com>
|
|
`zstd_opt.c` contains the match finder for the highest compression
levels. These levels are already very slow, and are unlikely to be used
in the kernel. If they are used, they shouldn't be used in latency
sensitive workloads, so slowing them down shouldn't be a big deal.
This saves 188 KB of the 288 KB regression reported by Geert Uytterhoeven [0].
I've also opened an issue upstream [1] so that we can properly tackle
the code size issue in `zstd_opt.c` for all users, and can hopefully
remove this hack in the next zstd version we import.
Bloat-o-meter output on x86-64:
```
> ../scripts/bloat-o-meter vmlinux.old vmlinux
add/remove: 6/5 grow/shrink: 1/9 up/down: 16673/-209939 (-193266)
Function old new delta
ZSTD_compressBlock_opt_generic.constprop - 7559 +7559
ZSTD_insertBtAndGetAllMatches - 6304 +6304
ZSTD_insertBt1 - 1731 +1731
ZSTD_storeSeq - 693 +693
ZSTD_BtGetAllMatches - 255 +255
ZSTD_updateRep - 128 +128
ZSTD_updateTree 96 99 +3
ZSTD_insertAndFindFirstIndexHash3 81 - -81
ZSTD_setBasePrices.constprop 98 - -98
ZSTD_litLengthPrice.constprop 138 - -138
ZSTD_count 362 181 -181
ZSTD_count_2segments 1407 938 -469
ZSTD_insertBt1.constprop 2689 - -2689
ZSTD_compressBlock_btultra2 19990 423 -19567
ZSTD_compressBlock_btultra 19633 15 -19618
ZSTD_initStats_ultra 19825 - -19825
ZSTD_compressBlock_btopt 20374 12 -20362
ZSTD_compressBlock_btopt_extDict 29984 12 -29972
ZSTD_compressBlock_btultra_extDict 30718 15 -30703
ZSTD_compressBlock_btopt_dictMatchState 32689 12 -32677
ZSTD_compressBlock_btultra_dictMatchState 33574 15 -33559
Total: Before=6611828, After=6418562, chg -2.92%
```
[0] https://lkml.org/lkml/2021/11/14/189
[1] https://github.com/facebook/zstd/issues/2862
Link: https://lore.kernel.org/r/20211117014949.1169186-3-nickrterrell@gmail.com/
Link: https://lore.kernel.org/r/20211117201459.1194876-3-nickrterrell@gmail.com/
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Nick Terrell <terrelln@fb.com>
|
|
The variable `litLengthSum` is only used by an `assert()`, so when
asserts are disabled the compiler doesn't see any usage and warns.
This issue is already fixed upstream by PR #2838 [0]. It was reported
by the Kernel test robot in [1].
Another approach would be to change zstd's disabled `assert()`
definition to use the argument in a disabled branch, instead of
ignoring the argument. I've avoided this approach because there are
some small changes necessary to get zstd to build, and I would
want to thoroughly re-test for performance, since that is slightly
changing the code in every function in zstd. It seems like a
trivial change, but some functions are pretty sensitive to small
changes. However, I think it is a valid approach that I would
like to see upstream take, so I've opened Issue #2868 to attempt
this upstream.
Lastly, I've chosen not to use __maybe_unused because all code
in lib/zstd/ must eventually be upstreamed. Upstream zstd can't
use __maybe_unused because it isn't portable across all compilers.
[0] https://github.com/facebook/zstd/pull/2838
[1] https://lore.kernel.org/linux-mm/202111120312.833wII4i-lkp@intel.com/T/
[2] https://github.com/facebook/zstd/issues/2868
Link: https://lore.kernel.org/r/20211117014949.1169186-2-nickrterrell@gmail.com/
Link: https://lore.kernel.org/r/20211117201459.1194876-2-nickrterrell@gmail.com/
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Nick Terrell <terrelln@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux
Pull printk fixes from Petr Mladek:
- Try to flush backtraces from other CPUs also on the local one. This
was a regression caused by printk_safe buffers removal.
- Remove header dependency warning.
* tag 'printk-for-5.16-fixup' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux:
printk: Remove printk.h inclusion in percpu.h
printk: restore flushing of NMI buffers on remote CPUs after NMI backtraces
|
|
Some of the users want to have easy way to allocate array of strings
that will be automatically cleaned when associated device is gone.
Introduce managed variant of kasprintf_strarray() for such use cases.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
|
|
We have a few users already that basically want to have array of
sequential strings to be allocated and filled.
Provide a helper for them (basically adjusted version from gpio-mockup.c).
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
|
|
|
|
In the current code, the actual max tail call count is 33 which is greater
than MAX_TAIL_CALL_CNT (defined as 32). The actual limit is not consistent
with the meaning of MAX_TAIL_CALL_CNT and thus confusing at first glance.
We can see the historical evolution from commit 04fd61ab36ec ("bpf: allow
bpf programs to tail-call other bpf programs") and commit f9dabe016b63
("bpf: Undo off-by-one in interpreter tail call count limit"). In order
to avoid changing existing behavior, the actual limit is 33 now, this is
reasonable.
After commit 874be05f525e ("bpf, tests: Add tail call test suite"), we can
see there exists failed testcase.
On all archs when CONFIG_BPF_JIT_ALWAYS_ON is not set:
# echo 0 > /proc/sys/net/core/bpf_jit_enable
# modprobe test_bpf
# dmesg | grep -w FAIL
Tail call error path, max count reached jited:0 ret 34 != 33 FAIL
On some archs:
# echo 1 > /proc/sys/net/core/bpf_jit_enable
# modprobe test_bpf
# dmesg | grep -w FAIL
Tail call error path, max count reached jited:1 ret 34 != 33 FAIL
Although the above failed testcase has been fixed in commit 18935a72eb25
("bpf/tests: Fix error in tail call limit tests"), it would still be good
to change the value of MAX_TAIL_CALL_CNT from 32 to 33 to make the code
more readable.
The 32-bit x86 JIT was using a limit of 32, just fix the wrong comments and
limit to 33 tail calls as the constant MAX_TAIL_CALL_CNT updated. For the
mips64 JIT, use "ori" instead of "addiu" as suggested by Johan Almbladh.
For the riscv JIT, use RV_REG_TCC directly to save one register move as
suggested by Björn Töpel. For the other implementations, no function changes,
it does not change the current limit 33, the new value of MAX_TAIL_CALL_CNT
can reflect the actual max tail call count, the related tail call testcases
in test_bpf module and selftests can work well for the interpreter and the
JIT.
Here are the test results on x86_64:
# uname -m
x86_64
# echo 0 > /proc/sys/net/core/bpf_jit_enable
# modprobe test_bpf test_suite=test_tail_calls
# dmesg | tail -1
test_bpf: test_tail_calls: Summary: 8 PASSED, 0 FAILED, [0/8 JIT'ed]
# rmmod test_bpf
# echo 1 > /proc/sys/net/core/bpf_jit_enable
# modprobe test_bpf test_suite=test_tail_calls
# dmesg | tail -1
test_bpf: test_tail_calls: Summary: 8 PASSED, 0 FAILED, [8/8 JIT'ed]
# rmmod test_bpf
# ./test_progs -t tailcalls
#142 tailcalls:OK
Summary: 1/11 PASSED, 0 SKIPPED, 0 FAILED
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: Björn Töpel <bjorn@kernel.org>
Acked-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/bpf/1636075800-3264-1-git-send-email-yangtiezhu@loongson.cn
|
|
Pull zstd update from Nick Terrell:
"Update to zstd-1.4.10.
Add myself as the maintainer of zstd and update the zstd version in
the kernel, which is now 4 years out of date, to a much more recent
zstd release. This includes bug fixes, much more extensive fuzzing,
and performance improvements. And generates the kernel zstd
automatically from upstream zstd, so it is easier to keep the zstd
verison up to date, and we don't fall so far out of date again.
This includes 5 commits that update the zstd library version:
- Adds a new kernel-style wrapper around zstd.
This wrapper API is functionally equivalent to the subset of the
current zstd API that is currently used. The wrapper API changes to
be kernel style so that the symbols don't collide with zstd's
symbols. The update to zstd-1.4.10 maintains the same API and
preserves the semantics, so that none of the callers need to be
updated. All callers are updated in the commit, because there are
zero functional changes.
- Adds an indirection for `lib/decompress_unzstd.c` so it doesn't
depend on the layout of `lib/zstd/` to include every source file.
This allows the next patch to be automatically generated.
- Imports the zstd-1.4.10 source code. This commit is automatically
generated from upstream zstd (https://github.com/facebook/zstd).
- Adds me (terrelln@fb.com) as the maintainer of `lib/zstd`.
- Fixes a newly added build warning for clang.
The discussion around this patchset has been pretty long, so I've
included a FAQ-style summary of the history of the patchset, and why
we are taking this approach.
Why do we need to update?
-------------------------
The zstd version in the kernel is based off of zstd-1.3.1, which is
was released August 20, 2017. Since then zstd has seen many bug fixes
and performance improvements. And, importantly, upstream zstd is
continuously fuzzed by OSS-Fuzz, and bug fixes aren't backported to
older versions. So the only way to sanely get these fixes is to keep
up to date with upstream zstd.
There are no known security issues that affect the kernel, but we need
to be able to update in case there are. And while there are no known
security issues, there are relevant bug fixes. For example the problem
with large kernel decompression has been fixed upstream for over 2
years [1]
Additionally the performance improvements for kernel use cases are
significant. Measured for x86_64 on my Intel i9-9900k @ 3.6 GHz:
- BtrFS zstd compression at levels 1 and 3 is 5% faster
- BtrFS zstd decompression+read is 15% faster
- SquashFS zstd decompression+read is 15% faster
- F2FS zstd compression+write at level 3 is 8% faster
- F2FS zstd decompression+read is 20% faster
- ZRAM decompression+read is 30% faster
- Kernel zstd decompression is 35% faster
- Initramfs zstd decompression+build is 5% faster
On top of this, there are significant performance improvements coming
down the line in the next zstd release, and the new automated update
patch generation will allow us to pull them easily.
How is the update patch generated?
----------------------------------
The first two patches are preparation for updating the zstd version.
Then the 3rd patch in the series imports upstream zstd into the
kernel. This patch is automatically generated from upstream. A script
makes the necessary changes and imports it into the kernel. The
changes are:
- Replace all libc dependencies with kernel replacements and rewrite
includes.
- Remove unncessary portability macros like: #if defined(_MSC_VER).
- Use the kernel xxhash instead of bundling it.
This automation gets tested every commit by upstream's continuous
integration. When we cut a new zstd release, we will submit a patch to
the kernel to update the zstd version in the kernel.
The automated process makes it easy to keep the kernel version of zstd
up to date. The current zstd in the kernel shares the guts of the
code, but has a lot of API and minor changes to work in the kernel.
This is because at the time upstream zstd was not ready to be used in
the kernel envrionment as-is. But, since then upstream zstd has
evolved to support being used in the kernel as-is.
Why are we updating in one big patch?
-------------------------------------
The 3rd patch in the series is very large. This is because it is
restructuring the code, so it both deletes the existing zstd, and
re-adds the new structure. Future updates will be directly
proportional to the changes in upstream zstd since the last import.
They will admittidly be large, as zstd is an actively developed
project, and has hundreds of commits between every release. However,
there is no other great alternative.
One option ruled out is to replay every upstream zstd commit. This is
not feasible for several reasons:
- There are over 3500 upstream commits since the zstd version in the
kernel.
- The automation to automatically generate the kernel update was only
added recently, so older commits cannot easily be imported.
- Not every upstream zstd commit builds.
- Only zstd releases are "supported", and individual commits may have
bugs that were fixed before a release.
Another option to reduce the patch size would be to first reorganize
to the new file structure, and then apply the patch. However, the
current kernel zstd is formatted with clang-format to be more
"kernel-like". But, the new method imports zstd as-is, without
additional formatting, to allow for closer correlation with upstream,
and easier debugging. So the patch wouldn't be any smaller.
It also doesn't make sense to import upstream zstd commit by commit
going forward. Upstream zstd doesn't support production use cases
running of the development branch. We have a lot of post-commit
fuzzing that catches many bugs, so indiviudal commits may be buggy,
but fixed before a release. So going forward, I intend to import every
(important) zstd release into the Kernel.
So, while it isn't ideal, updating in one big patch is the only patch
I see forward.
Who is responsible for this code?
---------------------------------
I am. This patchset adds me as the maintainer for zstd. Previously,
there was no tree for zstd patches. Because of that, there were
several patches that either got ignored, or took a long time to merge,
since it wasn't clear which tree should pick them up. I'm officially
stepping up as maintainer, and setting up my tree as the path through
which zstd patches get merged. I'll make sure that patches to the
kernel zstd get ported upstream, so they aren't erased when the next
version update happens.
How is this code tested?
------------------------
I tested every caller of zstd on x86_64 (BtrFS, ZRAM, SquashFS, F2FS,
Kernel, InitRAMFS). I also tested Kernel & InitRAMFS on i386 and
aarch64. I checked both performance and correctness.
Also, thanks to many people in the community who have tested these
patches locally.
Lastly, this code will bake in linux-next before being merged into
v5.16.
Why update to zstd-1.4.10 when zstd-1.5.0 has been released?
------------------------------------------------------------
This patchset has been outstanding since 2020, and zstd-1.4.10 was the
latest release when it was created. Since the update patch is
automatically generated from upstream, I could generate it from
zstd-1.5.0.
However, there were some large stack usage regressions in zstd-1.5.0,
and are only fixed in the latest development branch. And the latest
development branch contains some new code that needs to bake in the
fuzzer before I would feel comfortable releasing to the kernel.
Once this patchset has been merged, and we've released zstd-1.5.1, we
can update the kernel to zstd-1.5.1, and exercise the update process.
You may notice that zstd-1.4.10 doesn't exist upstream. This release
is an artifical release based off of zstd-1.4.9, with some fixes for
the kernel backported from the development branch. I will tag the
zstd-1.4.10 release after this patchset is merged, so the Linux Kernel
is running a known version of zstd that can be debugged upstream.
Why was a wrapper API added?
----------------------------
The first versions of this patchset migrated the kernel to the
upstream zstd API. It first added a shim API that supported the new
upstream API with the old code, then updated callers to use the new
shim API, then transitioned to the new code and deleted the shim API.
However, Cristoph Hellwig suggested that we transition to a kernel
style API, and hide zstd's upstream API behind that. This is because
zstd's upstream API is supports many other use cases, and does not
follow the kernel style guide, while the kernel API is focused on the
kernel's use cases, and follows the kernel style guide.
Where is the previous discussion?
---------------------------------
Links for the discussions of the previous versions of the patch set
below. The largest changes in the design of the patchset are driven by
the discussions in v11, v5, and v1. Sorry for the mix of links, I
couldn't find most of the the threads on lkml.org"
Link: https://lkml.org/lkml/2020/9/29/27 [1]
Link: https://www.spinics.net/lists/linux-crypto/msg58189.html [v12]
Link: https://lore.kernel.org/linux-btrfs/20210430013157.747152-1-nickrterrell@gmail.com/ [v11]
Link: https://lore.kernel.org/lkml/20210426234621.870684-2-nickrterrell@gmail.com/ [v10]
Link: https://lore.kernel.org/linux-btrfs/20210330225112.496213-1-nickrterrell@gmail.com/ [v9]
Link: https://lore.kernel.org/linux-f2fs-devel/20210326191859.1542272-1-nickrterrell@gmail.com/ [v8]
Link: https://lkml.org/lkml/2020/12/3/1195 [v7]
Link: https://lkml.org/lkml/2020/12/2/1245 [v6]
Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v5]
Link: https://www.spinics.net/lists/linux-btrfs/msg105783.html [v4]
Link: https://lkml.org/lkml/2020/9/23/1074 [v3]
Link: https://www.spinics.net/lists/linux-btrfs/msg105505.html [v2]
Link: https://lore.kernel.org/linux-btrfs/20200916034307.2092020-1-nickrterrell@gmail.com/ [v1]
Signed-off-by: Nick Terrell <terrelln@fb.com>
Tested By: Paul Jones <paul@pauljones.id.au>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64
Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
* tag 'zstd-for-linus-v5.16' of git://github.com/terrelln/linux:
lib: zstd: Add cast to silence clang's -Wbitwise-instead-of-logical
MAINTAINERS: Add maintainer entry for zstd
lib: zstd: Upgrade to latest upstream zstd version 1.4.10
lib: zstd: Add decompress_sources.h for decompress_unzstd
lib: zstd: Add kernel-specific API
|
|
MIGRATE_PFN_LOCKED is used to indicate to migrate_vma_prepare() that a
source page was already locked during migrate_vma_collect(). If it
wasn't then the a second attempt is made to lock the page. However if
the first attempt failed it's unlikely a second attempt will succeed,
and the retry adds complexity. So clean this up by removing the retry
and MIGRATE_PFN_LOCKED flag.
Destination pages are also meant to have the MIGRATE_PFN_LOCKED flag
set, but nothing actually checks that.
Link: https://lkml.kernel.org/r/20211025041608.289017-1-apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ben Skeggs <bskeggs@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
printk from NMI context relies on irq work being raised on the local CPU
to print to console. This can be a problem if the NMI was raised by a
lockup detector to print lockup stack and regs, because the CPU may not
enable irqs (because it is locked up).
Introduce printk_trigger_flush() that can be called another CPU to try
to get those messages to the console, call that where printk_safe_flush
was previously called.
Fixes: 93d102f094be ("printk: remove safe buffers")
Cc: stable@vger.kernel.org # 5.15
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20211107045116.1754411-1-npiggin@gmail.com
|
|
Merge more updates from Andrew Morton:
"87 patches.
Subsystems affected by this patch series: mm (pagecache and hugetlb),
procfs, misc, MAINTAINERS, lib, checkpatch, binfmt, kallsyms, ramfs,
init, codafs, nilfs2, hfs, crash_dump, signals, seq_file, fork,
sysvfs, kcov, gdb, resource, selftests, and ipc"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (87 commits)
ipc/ipc_sysctl.c: remove fallback for !CONFIG_PROC_SYSCTL
ipc: check checkpoint_restore_ns_capable() to modify C/R proc files
selftests/kselftest/runner/run_one(): allow running non-executable files
virtio-mem: disallow mapping virtio-mem memory via /dev/mem
kernel/resource: disallow access to exclusive system RAM regions
kernel/resource: clean up and optimize iomem_is_exclusive()
scripts/gdb: handle split debug for vmlinux
kcov: replace local_irq_save() with a local_lock_t
kcov: avoid enable+disable interrupts if !in_task()
kcov: allocate per-CPU memory on the relevant node
Documentation/kcov: define `ip' in the example
Documentation/kcov: include types.h in the example
sysv: use BUILD_BUG_ON instead of runtime check
kernel/fork.c: unshare(): use swap() to make code cleaner
seq_file: fix passing wrong private data
seq_file: move seq_escape() to a header
signal: remove duplicate include in signal.h
crash_dump: remove duplicate include in crash_dump.h
crash_dump: fix boolreturn.cocci warning
hfs/hfsplus: use WARN_ON for sanity check
...
|
|
sg_miter_stop() checks for disabled preemption before unmapping a page
via kunmap_atomic(). The kernel doc mentions under context that
preemption must be disabled if SG_MITER_ATOMIC is set.
There is no active requirement for the caller to have preemption
disabled before invoking sg_mitter_stop(). The sg_mitter_*()
implementation itself has no such requirement.
In fact, preemption is disabled by kmap_atomic() as part of
sg_miter_next() and remains disabled as long as there is an active
SG_MITER_ATOMIC mapping. This is a consequence of kmap_atomic() and not
a requirement for sg_mitter_*() itself.
The user chooses SG_MITER_ATOMIC because it uses the API in a context
where blocking is not possible or blocking is possible but he chooses a
lower weight mapping which is not available on all CPUs and so it might
need less overhead to setup at a price that now preemption will be
disabled.
The kmap_atomic() implementation on PREEMPT_RT does not disable
preemption. It simply disables CPU migration to ensure that the task
remains on the same CPU while the caller remains preemptible. This in
turn triggers the warning in sg_miter_stop() because preemption is
allowed.
The PREEMPT_RT and !PREEMPT_RT implementation of kmap_atomic() disable
pagefaults as a requirement. It is sufficient to check for this instead
of disabled preemption.
Check for disabled pagefault handler in the SG_MITER_ATOMIC case.
Remove the "preemption disabled" part from the kernel doc as the
sg_milter*() implementation does not care.
[bigeasy@linutronix.de: commit description]
Link: https://lkml.kernel.org/r/20211015211409.cqopacv3pxdwn2ty@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|